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Similarity‑based link prediction 
in social networks using latent 
relationships between the users
Ahmad Zareie & Rizos Sakellariou*

Social network analysis has recently attracted lots of attention among researchers due to its wide 
applicability in capturing social interactions. Link prediction, related to the likelihood of having a link 
between two nodes of the network that are not connected, is a key problem in social network analysis. 
Many methods have been proposed to solve the problem. Among these methods, similarity-based 
methods exhibit good efficiency by considering the network structure and using as a fundamental 
criterion the number of common neighbours between two nodes to establish structural similarity. 
High structural similarity may suggest that a link between two nodes is likely to appear. However, 
as shown in the paper, the number of common neighbours may not be always sufficient to provide 
comprehensive information about structural similarity between a pair of nodes. To address this, a 
neighbourhood vector is first specified for each node. Then, a novel measure is proposed to determine 
the similarity of each pair of nodes based on the number of common neighbours and correlation 
between the neighbourhood vectors of the nodes Experimental results, on a range of different real-
world networks, suggest that the proposed method results in higher accuracy than other state-of-the-
art similarity-based methods for link prediction.

Social networks are getting lots of attention to capture people’s interactions, partly as a result of the increased use 
of social media platforms. The large amount of data that may be associated with social networks has motivated 
research in a number of topics. Among these topics, the identification of missing links and prediction of future 
links is an important branch of social network analysis1. Link prediction is defined as the estimation of the 
likelihood of link formation between each pair of nodes for which a link does not exist. It has applications in a 
number of areas, such as, prediction of evolution in dynamic networks2, providing recommendation for friends 
in social networks3, finding latent links in an area of concern for security4, or finding missing links in networks5,6.

Different methods for the link prediction problem have been proposed4,7. In similarity-based methods8–11, 
structural similarity between a pair of nodes is taken into account to estimate the probability of link formation 
between the nodes. Nodes with high similarity tend to have a future relationship. Conversely, in probabilistic 
methods12,13, information beyond structure, such as behaviour of users and link features are required. However, 
the lack of sufficient and/or accurate information4 about such features has motivated researchers to focus pri-
marily on similarity-based methods and how to estimate structural similarity from which the likelihood of link 
formation between each pair of nodes can be derived.

A social network can be modelled as a graph G(V, E), where V = {v1, v2, v3, . . . ,V|V |} denotes the set of nodes 
(users) and | V | the number of nodes. The set E ⊂ V × V  is a set of links indicating the relationships between 
nodes. If there is a link between two nodes vi and vj , it is denoted by the edge eij , and the nodes are considered as 
neighbours or friends. Here, we use Ŵi and Ŵ(2)

i  to denote the set of first- and second-order neighbours of node vi , 
i.e., Ŵi = {vj | eij ∈ E} and Ŵ(2)

i = {vk | eij ∈ E, ejk ∈ E, eik /∈ E} , respectively. The size of Ŵi represents the degree 
of node vi , i.e., di =| Ŵi | . Link prediction aims to estimate the probability of existence (or formation) of each 
of the non-existing links in the network in order to identify a set of missing or future links between the users. 
The set of non-existing links is denoted by EN = U − E , where U is the universal set of the links in the network, 
i.e., U = V × V  . For example, consider the network shown in Fig. 1. In this network, V = {v1, v2, v3, v4, v5} , 
| V |= 5 , E = {e12, e23, e25, e34} . The set of non-existing edges is EN = {e13, e14, e15, e24, e35, e45} . The problem is 
to estimate the likelihood of formation for each of the links in EN . In similarity-based methods, the likelihood 
of formation of a non-existing edge is estimated using a similarity score, which, for each pair of nodes, captures 
structural similarity of the nodes.
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Different methods have been suggested to determine the similarity score, Sij , between a pair of nodes vi 
and vj . The number of common neighbours between two nodes is the best-known measure of similarity score. 
Based on this measure, the likelihood of formation of e24 in Fig. 1 is higher than the likelihood of formation of 
e45 , because nodes 2 and 4 have one common neighbour whereas nodes 4 and 5 have no common neighbour, 
hence, S24 = 1 > 0 = S45 . Although computing the number of common neighbours is highly time-efficient, 
this measure cannot capture the similarity between two nodes accurately. Different measures14–17 have been 
proposed to improve the accuracy of this measure by combining the number of common neighbours with addi-
tional information. However, these measures also suffer from low accuracy. In fact, as will be demonstrated in 
the next section, relying on the number of common first-order neighbours between two nodes, similarity-based 
methods cannot capture well the topological similarity between a pair of nodes. Beyond direct relationships, 
latent relationships between two nodes, such as indirect connectivity, may be important in predicting future 
relationships. This observation motivates the work in this paper.

To build the argument of the paper, some real-world networks are first analysed to demonstrate the limitation 
of methods that rely on common first-order neighbours between the nodes as a similarity measure. To address 
this limitation, a measure is then proposed to take common second-order neighbours into account. Common 
second-order neighbours indicate a latent relationship between a pair of users. In this paper, we apply the Pearson 
correlation coefficient to capture the latent relationship between a pair of nodes. Based on the Pearson correlation 
coefficient, a new measure to estimate the similarity score for link prediction in social networks is proposed.

In the rest of the paper, the motivation for the proposed method is presented in the next section, followed by 
an overview of related work. Next, the proposed method is described in detail, followed by experimental evalu-
ation. Finally, the paper is concluded with some suggestions for future work.

Motivation
As suggested by Ke-ke et al.18, the number of common neighbours between a pair of nodes reveals structural 
similarity between the nodes and has a straight relationship with the link between the pair. However, as already 
mentioned, the number of common neighbours may be a simple and time-efficient method for link prediction, 
but it suffers from low accuracy and cannot provide comprehensive information to estimate the likelihood of 
link formation between the nodes. To demonstrate this, we examine nine different real-world networks including 
Zachary karate club (KRT)19, Hamsterster (HAM)20, Dolphins (DLN)21, US Airline (UAL)22, NetScience (NSC)23, 
Infectious (INF)24, Yeast (YST)25, email (EML)26 and KHN27 (detailed characteristics of these networks are 
summarized later in the paper, in Table 1). There are two key observations, which suggest that relying only on 
first-order neighbours is not an effective approach to estimate the likelihood of link formation.

•	 Observation 1: In real world-networks, a significant percentage of links may exist where the nodes connected 
by these links have no common neighbours. A quick check of the nine networks above reveals that this may 
indeed be a significant percentage. For example, 53.7% of the edges of the YST network have no common 
neighbour. In networks DLN, EML and KHN this value is 23.9%, 22.4% and 28.2% respectively. In the KRT 
network 14.1% of the links have no common neighbour. Finally, only in INF, NSC, UAL and HAM networks, 
this percentage is rather small: 4.9%, 4%, 3.1% and 3.8%, respectively. The suggestion is that considering com-
mon first-order neighbours may not always be a good predictor of future links. Depending on the network, 
methods whose prediction relies on common first-order neighbours alone may result in low accuracy.

•	 Observation 2: Sorting all existing links in a network (included in the set E), as well as all hypothetical links 
that may be formed between nodes without a link (defined as the set of non-existing links, EN ), by frequency 
for the same number of neighbours, we realize that there is a significant overlap. Consider, for example, 
Fig. 2. Although the set of (non-existing) links EN tends to have fewer common neighbours, on average, 
than the set E, there is a significant overlap between the two sets and, in some cases (say, around 8 common 
neighbours for the sets INF, EML, YST) the chance of an existing versus a non-existing link for that number 

Figure 1.   An example network (1).
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of neighbours is essentially split in half. This is another suggestion that the number of common neighbours 
may not be a good indicator for link prediction.

In general, it appears that many links may exist between nodes that share no common neighbours at all, while, 
other nodes may share a large number of common neighbours without a direct link between them. Although it is 
true that various methods14,16,17 have been proposed to improve the accuracy of link prediction based on the num-
ber of common neighbours, the key limitation is that they still rely mostly on common first-order neighbours.

Based on the above, it seems there is scope to depart from common first-order neighbours. For example, 
two nodes may not have a common first-order neighbour, but they may still have many common second-order 
neighbours. That is to say, the number of common neighbours shows an explicit relationship between two nodes 
but there might be a relationship between two nodes which is not captured using common first-order neighbours. 
This kind of relationship is termed latent relationship in this paper. As suggested by observation 1 and 2, such 
latent relationship cannot be fully appreciated using simply common neighbours between the nodes. Consider-
ing the neighbourhood of two nodes may more accurately capture latent relationships between the nodes. For 
instance in the network shown in Fig. 1, nodes 4 and 5 have no common neighbours, but the correlation between 
their neighbours, i.e., nodes 2 and 3, may reveal a latent relationship between the two nodes, which correlates 
with the possibility of a future link between them. This kind of latent relationship should be considered for link 
prediction.

The above is what, essentially, motivates the research in this paper:

•	 Hypothesis 1: If there is no common neighbour between the nodes connected to a future link, but the nodes 
have a significant latent relationship, link formation can be predicted.

•	 Hypothesis 2: Considering latent relationships helps justify differences in existing and non-existing links 
between pairs of nodes that may still have the same number of common neighbours.

Related work
There is a plethora of similarity-based methods for link prediction in the literature4,7. These methods essentially 
differ on what approach they use to estimate the similarity score between two nodes, which is then used to 
compute the likelihood of each non-existing link. Some methods estimate similarity based on neighbourhood, 

Figure 2.   The frequency of links in E and EN with the same number of common neighbours.
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i.e., they are based on local structural information, while other methods may consider paths of different length 
between the nodes to take semi-local information into account or may first need to traverse the whole graph for 
global structural information and then estimate the likelihood of non-existing links based on this information.

Some of the most commonly used methods (which will also be used later for evaluation) are discussed below:

•	 Common Neighbours8: In this method, the number of common neighbours between each pair of nodes is 
considered as their similarity score. Thus, the common neighbour similarity score between the pair of nodes 
vi and vj is calculated according to Eq. (1). 

•	 Preferential Attachment Index10: The degree of two nodes determines the likelihood of link formation. Thus, 
Eq. (2) is used to determine the similarity score between a pair of nodes vi and vj . 

•	 Jaccard Index11: In this method, the similarity score between a pair of nodes vi and vj is calculated with the 
help of Eq. (3). 

•	 Hub Promoted Index28: The ratio of the number of common neighbours to the minimum degree of nodes vi 
and vj is defined as the similarity measure. The similarity score of these nodes is calculated with the help of 
Eq. (4). 

•	 Common Neighbours Degree Penalization15: Penalization of common neighbours is considered in this 
method. The number of common neighbours for each pair of common neighbours of the two nodes is taken 
into account for this purpose. Then, the similarity score of nodes vi and vj is calculated using Eq. (5), where 
CN

(2)
z = {Ŵz ∩ Ŵi ∩ Ŵj} ∪ {vi , vj} . 

•	 Node-Coupling Clustering17: In this method, the clustering coefficient is used to determine the contribution 
of each common neighbour and the similarity between each pair of nodes. The similarity score between vi 
and vj is calculated using Eq. (6), where Cz is the clustering coefficient of node vz . 

•	 Parameterized Algorithm16: In this method, the number of common neighbours and the closeness of two 
nodes are both taken into account to estimate the similarity between a pair of nodes. The parameterized 
similarity score between vi and vj is calculated by Eq. (7), where α is a tunable parameter and dij is the shortest 
distance between nodes vi and vj . 

•	 Higher-Order Path Index29: Based on the common neighbours, the significance of paths between two nodes 
is taken into account to propose an iterative method. Summing up the significance of the paths between two 
nodes determines the likelihood of link formation between them. For this purpose, the significance of a path 
of length 2 between nodes vi and vj is calculated using Eq. (8). 

 The significance of paths of length l > 2 between nodes vi and vj is calculated based on the significance of 
its constituent edges using Eq. (9). 

where f1 and f2 denote the significance of the constituent edge and the significance of the path of previous 
iteration, and α is a tunable parameter.

Apart from these methods, various other local and semi-local methods have been used to estimate similarity 
between a pair of nodes. Local methods include: Adamic Adar index30, Sorensen index10, resource allocation 

(1)CNij =| Ŵi ∩ Ŵj |

(2)PAij = di · dj

(3)JCij =
| Ŵi ∩ Ŵj |

| Ŵi ∪ Ŵj |

(4)HPIij =
| Ŵi ∩ Ŵj |

min{di , dj}

(5)CNDPij =
∑

vz∈Ŵi∩Ŵj

| CN (2)
z | (d−βC

z )

(6)NCCij =
∑

vn∈Ŵi∩Ŵj

∑

vz∈CN
(2)
n
( 1
dz

+ Cz)
∑

vw∈Ŵn
( 1
dw

+ Cw)

(7)CCPAij = α(| Ŵi ∩ Ŵj |)+ (1− α)
| V |

dij

(8)Sij =
∑

vn∈Ŵi∩Ŵj

1

dz

(9)Sij =

l−2
∑

k=3

f1 · f2 · α
l−2,
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index31, node clustering coefficient32, node and link clustering coefficient33, heterogeneity index34 and tie con-
nection strength index35. Semi-local methods, which estimate the likelihood of link formation between a pair of 
nodes on the basis of the paths between them, include: effective paths index36, significant paths index37, penalizing 
non-contribution links index38, local paths39 and friend link40.

In this paper, a novel method is proposed, which goes beyond the number of common neighbours by taking 
into account local information from both first- and second-order neighbourhood of the nodes.

A novel method for link prediction based on latent relationships
In this section, we propose a novel method for similarity-based link prediction, which we call Direct-Indirect 
Common Neighbours (DICN). This method takes into account latent relationships between nodes as will be 
described next. The idea is first to estimate the impact of common second-order neighbours between each pair 
of nodes. Then, this is combined with the impact of common first-order neighbours to estimate the similarity 
between the pair.

In order to determine the impact of common second-order neighbours, a neighbourhood vector Ni is first 
defined for each node i with | V | entries as in Eq. (10). The zth entry of this vector corresponds to node z. When 
z = i , we set Ni[i] = di , that is, the degree of node i. If node z is a second-order neighbour of node i (in this 
case, by definition, node z is not a first-order neighbour of node i), we set the corresponding vector entry, Ni[z] , 
to CNiz (see Eq. (1)), whereas, if node z is a first-order neighbour of node i, we add 1 to this quantity. Finally, if 
node z is not a first- or second-order neighbour of node i, they do not have any common neighbour, so Ni[z] = 0.

In order to estimate the likelihood of link formation between nodes vi and vj , the union neighbourhood set, 
UNij , for these nodes is calculated using Eq. (11).

Greater correlation between the union neighbourhood set, UNij , of the vectors Ni and Nj indicates higher 
structural similarity between nodes i and j. Thus, the correlation coefficient between the union neighbourhood 
set of the vectors is then calculated to determine the correlation between two nodes. We use Pearson correlation 
coefficient for this purpose, thus, the correlation between the union neighbourhood set of the vectors Ni and Nj 
is calculated using Eq. (12).

In Eq. (12), Ni  is the mean of the values in the union neighbourhood set of vector Ni ; it is calculated using 
Eq. (13).

In our method, two nodes that do not have common neighbours may still have significant structural similarity. 
Thus, a relationship may be detected through correlation between their neighbours. Take, for example, the links 
e31 and e38 in the network shown in Fig. 3. Based on Eq. (12), nodes 3 and 1 have higher structural similarity, 
because Corr38 ∼= 0.32 and Corr31 ∼= 0.01 . When the neighbours of two nodes are highly correlated a latent rela-
tionship between the nodes is implied. Thus, in Eq. (12), greater correlation between two nodes shows higher 

(10)Ni[z] z=1,2,...,|V | =















di if z = i

CNiz if vz ∈ Ŵ
(2)
i

CNiz + 1 ifvz ∈ Ŵi

0 otherwise

(11)UNij = {z | (Ni[z] > 0) Or (Nj[z] > 0)}

(12)Corrij =

∑

z∈UNij
(Ni[z] − Ni) (Nj[z] − Nj)

√

∑

z∈UNij
(Ni[z] − Ni)2

√

∑

z∈UNij
(Nj[z] − Nj)2

(13)Ni =

∑

z∈UNij
Ni[z]

| UNij |

Figure 3.   An example network (2).
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indirect similarity between the nodes and formation of a link between them can be regarded as likely. Direct 
similarity between two nodes is calculated based on the number of common first-order neighbours. We combine 
indirect and direct similarity in Eq. (14) to calculate the Direct-Indirect Common Neighbours (DICN) similarity 
score of nodes i and j.

Pseudo-code to implement the proposed method is shown in Algorithm 1. In lines 1–5 of the algorithm, the 
neighbourhood vector, Ni , for each node vi is calculated. The likelihood of formation of each non-existing link 
between nodes vi and vj is calculated in lines 6–10, whereas the union neighbourhood set and the indirect simi-
larity between the nodes are calculated in lines 7 and 8, respectively. The link formation likelihood is computed 
in line 9 resulting in the DICN similarity score. 

Example: Take the network in Fig. 3, as an example. In this network | V |= 11 . Vectors N2 and N5 are cal-
culated as follows:

Furthermore, UN25 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} . The indirect similarity between v2 and v5 is calculated below:

Finally, the DICN similarity score between the nodes is given by:

Experimental results
Setting.  In order to evaluate the performance of the proposed DICN method, this method and another 8 
representative methods from the literature were implemented in Java and executed on a PC with an i5 2.3 GHz 
processor and 8 MB memory. The eight methods used for comparison are: Common Neighbours (CN)8, Pref-
erential Attachment Index  (PA)10, Jaccard Index  (JC)11, Hub Promoted Index  (HPI)28, Common Neighbours 
Degree Penalization  (CNDP)15, Node-coupling Clustering  (NCC)17, Parameterized Algorithm  (CCPA)16 and 
Significance of Higher-Order Path Index (SHOPI)29.

Nine different real-world networks with a variety of features were used in the experiments. Zachary karate 
club (KRT)19 and Hamsterster (HAM)20 are social networks. Dolphins (DLN)21 is an animal network. US Air-
line (UAL)22 is an airport traffic network. NetScience (NSC)23 and KHN27 are co-authorship networks. Infec-
tious (INF)24 is a network of face-to-face contacts in an exhibition. Yeast (YST)25 is a biological network. U. Rovira 
i Virgili email (EML)26 is an email communication network. Specific characteristics for each of the networks 
are shown in Table 1.

We follow an evaluation strategy, which is in line with the evaluation strategies used in other related work16,17. 
For each network, the set of existing edges, E, is randomly divided into two sets: the set of training edges ET and 
the set of test edges EP , where ET ∩ EP = and ET ∪ EP = E . We randomly select β percent of edges as ET and 
the remaining, 1− β percent of edges, as EP . To increase the confidence of the obtained results, the process is 
repeated 15 times and the average of the obtained results is reported in each experiment. The metric Area Under 
the receiver operating characteristic Curve (AUC​), widely applied in the relevant literature1, is used to assess the 
accuracy of methods. The AUC​ is computed by picking an edge from EP and an edge from the set of non-existing 
edges, EN , and calculating the similarity score between the pair of nodes connected to each of the edges. This 
process is repeated n times and AUC​ is calculated using Eq. (15).

(14)DICNij = (1+ CNij)(1+ Corrij)

N2 ={2, 5, 3, 2, 0, 0, 0, 1, 2, 1, 2}

N5 ={0, 0, 1, 0, 4, 2, 3, 1, 1, 2, 0}

Corr25 =

∑

z∈UN25(N2[z] − N2) (N5[z] − N5)
√

∑

z∈UN25(N2[z] − N2)2
√

∑

zz∈UN25(N5[z] − N5)2

∼= −0.74

DICN25 = (1+ 0)(1+ (−0.74)) = 0.26

(15)AUC =
n1 +

1
2
n2

n
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In Eq.  (15), n1 is the number of times when the similarity score of the nodes connected by the edge 
picked from the set EP is higher than the similarity score of the nodes connected by the edge picked 
from the set EN  , and n2 is the number of times when the two similarity scores are equal. With respect 
to the value of n, in our experiments we always compare every pair of links in EP and EN . This means that 
n = |EP | · |EN | = (1− β/100) · |E| · ( |V |·(|V |−1)

2
− |E|) , where β is the percentage of edges in the training set, 

ET . The value of AUC​ is between [0, 1], where a higher value shows higher accuracy.
We highlight the process of calculating AUC using an example. Consider the network shown in Fig. 4a 

and assume β = 80% . This network has 5 edges which, as shown in Fig. 4b,c, are randomly divided into a 
training edges set and a test edges set with 4 edges and 1 edge, respectively. The non-existing edges set for this 
network is shown in Fig. 4d. In order to calculate AUC in this example the likelihood of formation for the test 
edge e35 must be compared to non-existing edges e13 , e14 , e15 , e24 and e45 . Applying Eq. (14), DICN35 = 2.5 , 
DICN13 = 2.5 , DICN14 = 0.59 , DICN15 = 2.0 , DICN24 = 2.82 and DICN45 = 0.59 . Thus, n1 = 3 and n2 = 1 
and AUC =

3+ 1
2
×1

5
= 0.7.

Results.  Four different experiments are performed. Their objective is, respectively, to: (1) assess the accuracy 
of DICN when compared to other methods; (2) assess the robustness of DICN, with different sizes of training 
data; (3) and (4) validate Hypothesis 1 and 2 described earlier in the motivating section.

Experiment 1.  In the first experiment, we consider a value of β equal to 80, as this is a value commonly used 
in other related experiments9,16. Then, for each of the nine methods and each of the nine networks, we calculate 
the value of AUC​. The results are shown in Table 2. It can be seen that in eight of the nine networks, DICN out-
performs all other methods. Even for the UAL network, DICN’s accuracy is very close to the best accuracy. As it 
relies on both the number of common neighbours and the correlation between the neighbours, DICN takes into 
account both direct and indirect similarity between the nodes which leads to better accuracy in distinguishing 
the links in EP and EN than other methods.

Experiment 2.  In the next experiment, the robustness of the different methods with respect to the size (that 
is, the value of β ) of the training set ET , is evaluated. For this purpose, the value of β is varied from 50 to 90 
in steps of 10, a range where some reasonably good accuracy is expected and is in line with other studies9. The 

Table 1.   Characteristics of the nine networks used in the experiments showing the number of nodes (| V | ), 
the number of edges (| E | ), average clustering coefficient (〈C〉 ), average degree (〈d〉 ) and degree assortativity (r).

Network | V | | E | 〈C〉 〈d〉 r

KRT 34 78 0.26 4.59 −0.4756

DLN 62 159 0.31 5.13 −0.0436

UAL 332 2126 0.63 12.81 −0.2079

NSC 379 914 0.74 4.82 −0.0817

INF 410 2765 0.46 13.49 0.2258

EML 1133 5451 0.22 9.62 0.0782

YST 2,284 6646 0.13 5.82 −0.0991

HAM 2,426 16,630 0.54 13.71 0.0474

KHN 3,772 12,718 0.25 6.74 −0.1205

Figure 4.   A simple example of the different sets or AUC calculation.
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accuracy of different methods for each value of β is calculated by AUC​. As all networks tend to follow a similar 
trend where higher values of β tend to increase accuracy, we show results in Fig. 5. Although, for small values 
of β , DICN does not have the best accuracy for some networks, this method is consistently best when the value 
of β is 70 or higher in seven of the nine networks. This is because, when the training set is smaller it is harder to 
detect the latent relationship between the nodes due to the lower correlation between them. So DICN may not 
be so accurate in networks with a relatively small training set. However, in the presence of a large training set 
the correlation between the nodes is detected more accurately and the latent relationship is estimated by DICN 
more accurately. It is also interesting to observe that in some networks DICN outperforms all other methods 
significantly, something that could be investigated further to document the advantages of DICN.

Table 2.   AUC​ of different methods in different networks. The best result in each network is shown with bold 
face.

Network CN PA JC HPI NCC CNDP CCPA SHOPI DICN

KRT 0.6884 0.6976 0.6884 0.6405 0.7044 0.7336 0.6995 0.7328 0.7654

DLN 0.7298 0.6072 0.7298 0.6303 0.7300 0.7276 0.7570 0.7285 0.7943

UAL 0.9289 0.8852 0.8913 0.7802 0.9416 0.9410 0.9195 0.9293 0.9367

NSC 0.9166 0.6171 0.9134 0.8302 0.9194 0.9195 0.8922 0.9050 0.9747

INF 0.9279 0.7009 0.9297 0.9094 0.9309 0.9278 0.9483 0.9292 0.9553

EML 0.8186 0.7767 0.8158 0.7465 0.8187 0.8180 0.8701 0.8729 0.8932

YST 0.6866 0.7737 0.6798 0.5319 0.6866 0.6869 0.7892 0.7547 0.8278

HAM 0.9520 0.8467 0.9450 0.8805 0.9553 0.9534 0.9617 0.9531 0.9725

KHN 0.7786 0.8090 0.7592 0.6651 0.7833 0.7840 0.8253 0.8509 0.8839

Figure 5.   The impact of varying the training set ratio on AUC​ for different methods.
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Experiment 3.  This experiment is dedicated to the validation of Hypothesis 1, which relates to the ability of 
the methods to distinguish links between nodes with no common neighbours. To do so, for each of the nine 
networks we take the set of test edges, EP and the set of non-existing edges, EN . From these two sets, we select 
those edges that connect nodes that have no common neighbours and the degree of these nodes is greater than 
1. Then we calculate the similarity score for each of these edges for our proposed method DICN and all other 
methods. We note that, with the exception of PA, CCPA and SHOPI, all other methods will result in a similarity 
score of zero, as the edges we selected are between nodes that have no common neighbour; hence, these methods 
are omitted for further analysis. The AUC​ of PA, CCPA, SHOPI and DICN methods is shown in Table 3. It can be 
seen that DICN is more accurate than other methods when distinguishing links between nodes with no common 
neighbours for five of the nine networks, while it has an accuracy very close to the best for the remaining four 
networks. In this experiment, by default the value of direct similarity in Eq. (14) is zero for all compared edges. 
Still, DICN can accurately distinguish the test and non-existing edges. Once again, this experiment suggests that 
calculating the correlation between neighbourhood vectors provides a good accuracy to detect indirect similar-
ity between nodes when there are no common neighbours between them.

Experiment 4.  This experiment is dedicated to validation of Hypothesis 2, which relates to assessing the abil-
ity of the methods to distinguish links between nodes with the same number of common neighbours. To do so, 
for each of the nine networks we take again the set of test edges, EP and the set of non-existing edges, EN . From 
these two sets, we select the edges that connect nodes with the same number of common neighbours. Then we 
calculate the similarity score for each of these edges using our proposed method DICN, and the best performing 
methods from Experiment 2: NCC, CNDP, CCPA and SHOPI. The AUC​ of each method is shown in Table 4. 
Once again, the ability of DICN to consider latent relationships leads to higher accuracy in five of the nine net-
works. In the KRT, DLN and YST networks, DICN has results that are close to the best method. Only in the UAL 
network the NCC, CNDP and SHOPI methods significantly outperform DICN. Overall, the results obtained in 
this experiment confirm that assessing correlation using a neighbourhood vector for nodes is an accurate way to 
distinguish the test and non-existing edges of nodes with an equal number of common neighbours.

Conclusion
The prediction of future links and the identification of missing links have attracted significant research in social 
networks analysis. Different methods have been proposed for it, many of which are based on the number of com-
mon neighbours. The idea behind this paper has been that latent relationships between the nodes are not captured 
by the number of common neighbours. Thus, to take into account such latent relationships, a correlation-based 
measure was proposed and its accuracy was compared to other related methods, giving superior accuracy results. 

Table 3.   Ability of methods to distinguish links between nodes with no common neighbours. The best result 
in each network is shown with bold face.

Network PA CCPA SHOPI DICN

KRT 0.7519 0.7211 0.6487 0.8319

DLN 0.4954 0.7211 0.6866 0.7028

UAL 0.6833 0.5900 0.8091 0.7979

NSC 0.6766 0.6750 0.6035 0.8471

INF 0.4506 0.8072 0.8404 0.7979

EML 0.6637 0.7132 0.7407 0.7595

YST 0.7755 0.7653 0.6276 0.7609

HAM 0.7296 0.7803 0.7326 0.7831

KHN 0.7798 0.7278 0.7326 0.8001

Table 4.   Ability of methods to distinguish links between nodes with the same number of common 
neighbours. The best result in each network is shown with bold face.

Network NCC CNDP CCPA SHOPI DICN

KRT 0.5637 0.6292 0.5594 0.6919 0.6728

DLN 0.4978 0.4953 0.6510 0.6157 0.6508

UAL 0.7161 0.7192 0.5153 0.7921 0.5684

NSC 0.5616 0.5689 0.6308 0.6432 0.7815

INF 0.5275 0.5335 0.7490 0.7598 0.7712

EML 0.5055 0.5089 0.6975 0.7331 0.7495

YST 0.5009 0.5019 0.7613 0.6278 0.7595

HAM 0.5381 0.5425 0.7352 0.7373 0.7483

KHN 0.5251 0.5284 0.7066 0.7682 0.7829
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Further work can look into more elaborate experimentation and networks with varying characteristics, includ-
ing directed and weighted networks. In addition, the definition of latent relationship can be expanded beyond 
second-order relationships, for example including correlation with the number of paths between the nodes or 
global properties, such as centrality of the nodes, and so on.
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