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Abstract

The nonsynonymous/synonymous rate ratio (o = dy/ds) is an important measure of the mode and strength of natural
selection acting on nonsynonymous mutations in protein-coding genes. The simplest such analysis is the estimation of the
dn/ds ratio using two sequences. Both heuristic counting methods and the maximume-likelihood (ML) method based on a
codon substitution model are widely used for such analysis. However, these methods do not have nice statistical prop-
erties, as the estimates can be zero or infinity in some data sets, so that their means and variances are infinite. In large
genome-scale comparisons, such extreme estimates (either 0 or c0) of  and sequence distance (t) are common. Here, we
implement a Bayesian method to estimate » and t in pairwise sequence comparisons. Using a combination of computer
simulation and real data analysis, we show that the Bayesian estimates have better statistical properties than the ML
estimates, because the prior on @ and t shrinks the posterior of those parameters away from extreme values. We also
calculate the posterior probability for @ > 1 as a Bayesian alternative to the likelihood ratio test. The new method is
computationally efficient and may be useful for genome-scale comparisons of protein-coding gene sequences.
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protein-coding sequences.

Introduction

The nonsynonymous/synonymous rate ratio (@ = dy/ds) is an
important measure of the mode and strength of natural se-
lection acting on protein-coding genes (Kimura 1977). A
number of methods have been developed to estimate w
from pairwise sequence alignments, ranging from heuristic
counting methods (Li et al. 1985; Nei and Gojobori 1986;
Yang and Nielsen 2000) to maximum-likelihood (ML) meth-
ods based on an explicit Markov model of codon evolution
(Goldman and Yang 1994). ML estimates (MLEs) of w for
thousands of genes are routinely calculated as descriptive
statistics in genomic comparisons (Nielsen et al. 2005; Ge
et al. 2008; Walters and Harrison 2010; Buschiazzo et al.
2012; Gladieux et al. 2013; Wang and Chen 2013). Although
the ML method for pairwise comparisons produces reason-
able estimates of w and sequence distance (t) for most data
sets, it suffers from a few problems when the data sets are
extreme. For example, the MLE of w (@) is 0 when the two
compared sequences have only synonymous differences and
oo when they have only nonsynonymous differences.
Similarly, when the sequences are identical, the MLE t is 0
and & is not unique. When the sequences are very divergent
may be oco.

Because of these infinite or undefined estimates, neither
nor t have finite means or variances. Extreme values of & and t
are commonly encountered in genome-level comparisons of
thousands of genes, and those extreme estimates cause diffi-
culties with the calculation of summary statistics (such as
mean & and t across all genes in the genome). An estimation

method that always produces finite and reasonable estimates
for w and t is thus desirable. Here, we develop a Bayesian
method to calculate the posterior means of w and t between
two sequences, denoted @ and t. Using computer simulation,
we show that the posterior means of @ and t are well behaved
and have better Frequentist properties than the MLEs. We
then use ML and the new Bayesian method to estimate w and
t from pairwise gene alignments for the genomes of four
mammals (human, chimpanzee, mouse, and rat) and three
bacterial strains (Escherichia coli O157:H7, E. coli K-12, and
Salmonella typhimurium LT2). We show that extreme MLEs
of w and t are common in these data sets, and that the
Bayesian method produces finite, well-behaved estimates.
The new Bayesian method is computationally efficient and
is implemented in the CODEML program of the PAML pack-
age (Yang 2007).

New Bayesian Approach to Estimate » and t

Here, we summarize the main features of the new Bayesian
approach. The joint posterior distribution of t and w given the
data x (the pairwise sequence alignment) is

010 = 2 fix L o)t ), Q0

where f(x|t,w) is the likelihood or the probability of
observing the data x given t and w, f(t, w) is the prior and
C = [[fix|t w)f(t, w)dtdw is the normalizing constant. The
posterior is proportional to the product of the likelihood and
the prior. If the model involves the transition/transversion rate
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ratio (), its MLE (k) is used. If the model involves nucleotide
or codon frequency parameters, they are estimated using the
observed frequencies. When the data are informative, the
likelihood dominates the posterior. When the data are unin-
formative, the prior may have a strong influence on the pos-
terior. Here, we use two independent gamma distributions to
construct the joint prior of t and w:

f(t,w) = G(t]1.1,1.1) X G(w| 1.1,2.2), )

where the gamma density G(x | o, 8) has mean «/f and var-
iance a/fB°. Here, the prior means of t and w are 1 and 0.5,
respectively, and the shape parameter « = 1.1 indicates that
the priors are quite diffuse. This joint prior has a mode away
from (0,0) and the prior density decays to 0 as either t or @
approaches 00, thus penalizing extreme values. The likelihood
is calculated from a pairwise sequence alignment using a
codon substitution model (Yang and Nielsen 1998). As
point estimates of w and t we use their posterior means

o =Ewl|x) = %//wf(xlt, , k) f(t, w)dtdw, (3)
0 0

oo o0
t=Et|x) = %/ / tf(x|t, w, k) f(t, w)dtdw. (4)
0 0

The posterior variances and covariance of w and t can be
similarly defined and can be calculated using standard nu-
merical techniques. We use Gaussian quadrature to calculate
all integrals numerically. We use similar techniques to calcu-
late P(w > 1] x), the posterior probability that @ > 1, which
may be compared with the likelihood ratio test (LRT) of the
null hypothesis Hy: @ = 1 (see Methods and Materials).

We consider five different scenarios in which the numerical
calculations of the integrals may differ. We simulated five data
sets to represent those five scenarios, each consisting of 2
sequences of 100 codons, with different numbers of synony-
mous (Sq) and nonsynonymous (Ng) differences. The poste-
rior and likelihood surfaces for the five cases are shown in
figure 1.

Case I: (Sq> 0, Ng > 0). This is the most common case,
with both synonymous and nonsynonymous differences ob-
served. The data are quite informative about @ and t and the
posterior distribution resembles the likelihood (fig. 1A” and
A). In our example data set, we have S=73.7, N=2263,
Sa =185, Ng=6.5, where S and N are the numbers of synon-
ymous and nonsynonymous sites. The MLEs are t = 0.30 and
@=0.11 whereas the posterior means are t=031 and
@=0.13.

Case llI: (Sq=Ng4=0). In this case, the two sequences are
identical. The likelihood is maximized when t=0 and when
t=0, w has no effect on the likelihood, so the MLE of w is
not unique (fig. 1B). In our example, S=733, N=226.7,
S4=Ng4=0. The posterior has a single mode and the posterior
means are t=0.011 and @ = 0.496 (fig. 1B). Note that the
posterior mean of w is almost equal to the prior mean,
since the data are uninformative about w. Also, the posterior

mean is markedly different from the posterior mode, because
the posterior distribution is highly skewed.

Case lll: (Sq4 > 0, Ng = 0). Only synonymous differences are
observed. In our example, S=74.4, N=2256, Sq4=24 and
Ng=0. Then, we have t =0.306 and ® = 0 (fig. 1C). The pos-
terior for @ has a mode away from 0 and t=0.316 and
®=0014 (g 1C).

Case IV: (Sq>> 0, Ng>> 0). Only nonsynonymous differ-
ences are observed. In our example, S =73.2, N =226.8,S4=0,
Ng = 40. The MLEs are t = 048 and & = oo (fig. 1D). The pos-
terior has a well-defined mode and thus t = 0.47 and @ = 3.1
(hg. 1D").

Case V: (Sq=> 0, Ng>> 0). The two sequences are so di-
vergent that they look like random sequences (S=759,
N =224.1, Sq=75, Nq=175). Here, the likelihood increases
with the increase of both t and w, with the MLEs at t = co
and @ = oo (fig. 1E). In the Bayesian analysis, the prior penal-
izes large values and thus the posterior means are t = 10.31
and @ =0.72 (fig. 1E"). Note that the posterior mean of w is
close to the prior mean, since the data of two nearly random
sequences are uninformative about w.

These five cases illustrate how the prior influences the
posterior depending on whether the data are informative
or not. The posterior means of t and w are finite for all five
cases, whereas the MLEs are not. We note that because the
MLEs of t and @ may be infinite, their mean square errors
(MSEs) are oo as well. The MSEs of the posterior means are in
contrast always well defined. In this sense, the posterior mean
estimates have better Frequentist properties than the MLEs.
In the next section, we study the statistical properties of the
Bayesian estimates of t and w using simulated and real data, in
comparison with the MLEs. We calculate the MSEs of the
MLEs by excluding the infinite estimates.

Results

Analysis of Simulated Data

To examine the statistical properties of the posterior esti-
mates of t and w, we conducted a computer simulation.
The program EVOLVER from the PAML package (Yang
2007) was used to generate pairwise sequence alignments
of length L.=500 codons. We used t=0.1, 0.5, 1, and 5 and
w=001, 0.1, 0.5, and 2 (16 combinations) with transition/
transversion rate ratio k=2 and equal codon frequencies
(1/61) to generate the data sets. The number of replicates
was 10,000. The simulated data sets were analyzed using both
ML and the new Bayesian method using the CODEML pro-
gram (Yang 2007). The same prior (eq. 2) was used for all data
sets. Equal codon frequencies are assumed in the model
(Fequal model).

Figures 2 and 3 show the histograms (smoothed densities)
of posterior mean estimates and MLEs of t and w. As we see in
figure 2, ML and Bayesian results are nearly identical for all
combinations of w=0.1 and 0.5 and t=0.5 and 1. However,
for w = 0.01, Bayesian estimates of w are shifted to the right
(too large) for all t values, as the prior for @ has a mean of 0.5
and affects the posterior estimates. For w =2, posterior esti-
mates of w are shifted to the left (too small) due to the prior.
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Fic. 1. Contour plots of log-likelihood (A-E) and log-posterior (A'~E’) densities for w and t for five synthetic pairwise sequence alignments of 100
codons. The dashed lines indicate the MLE. Five cases are analyzed: I. normal sequences (A and A’), Il. identical sequences (B and B’), lIl. sequences with
only synonymous changes (C and C), IV. with only nonsynonymous changes (D and D’), V. random sequences (E and FE').

Generally, both methods behave best (estimates are more
concentrated around the true value) for intermediate dis-
tances (t=0.5 and 1), because sequences of moderate diver-
gences are the most informative. The estimates of t show
similar patterns (fig. 3). Although for t=05 and 1 the
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Bayesian estimates are almost identical to the MLEs, for
t=0.1 Bayesian results are slightly shifted to the right (too
large) and for t =5 they are shifted to the left (too small).
The means of the Bayesian and ML estimates, the square
root of the MSE (+/MSE), and the 2.5% and 97.5% percentiles
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Fic. 2. Kernel density (smoothed histogram) of MLEs (dashed red) and Bayesian posterior means (solid green) for w in simulated data sets. The true
values of w and t are shown on the top and left of the plots, respectively. The sequence length is 500 codons. The number of replicates is 10,000. The
vertical dashed lines correspond to the true values of w. Independent gamma priors are used w ~ G(1.1, 2.2), t ~ G(1.1, 1.1) (eq. 2).

of estimates from the 10,000 simulations are presented in
tables 1 and 2. Those for the ML method are calculated
after the infinite estimates are removed. We see that for
highly similar (t = 0.1) and highly divergent (t = 5) sequences,
the prior has a noticeable impact. For example, when t =0.1
the mean of Bayesian estimates of w is 0.02 when the true
w=0.01and is 1.591 when the true @ = 2.0. The mean MLEs
are in comparison closer to the true values than the means of
Bayesian estimates. However, the means for the MLEs are
calculated after data sets in which @=o00 are excluded,
whereas those same data sets are included in the calculation
of the Bayesian estimates. Similar patterns are observed con-
cerning estimates of t. Moreover, for small and intermediate
and t, ML and Bayesian methods have similar MSE, but for
large w and t, the Bayesian has smaller MSE indicating that in
those cases Bayesian estimates are preferable to the MLEs.
We also considered a test of positive selection, indicated by
w > 1. For ML, a LRT is used to compare Hy: @ = 1 against H;:
w > 1, at the 5% significance level. In the Bayesian framework,
we require the posterior probability to exceed the threshold
P(w > 1| x) > 0.95. For the true w = 0.01, 0.1, 0.5, no data sets
showed significant positive selection by either method. When
the true w =2 and t = 0.5, 1, 5, both methods correctly detect
positive selection in almost 100% of the replicate data sets, so
that the power of detecting positive selection is high in both
methods but with the LRT having more power (table 1).

When @w=2 and t=0.1, positive selection is detected in
35% and 61% of data sets by the Bayesian and ML methods,
respectively. In this case, given the short sequence distance,
the prior has quite some impact on the ability of the Bayesian
method to detect selection. In particular, the prior mean
(w=0.5) is smaller than the true value (@ =2), so that @ is
shrunk away from 1.

Analysis of Real Data

We applied both ML and Bayesian methods to estimate @
and t for pairwise alignments of protein-coding genes from
four mammalian genomes (human, chimpanzee, mouse, and
rat) and from three bacterial genomes (E. coli O157:H7, E. coli
K-12, and S. typhimurium LT2). In all analyses, the codon
frequencies were estimated by using the observed codon fre-
quencies in the genes (the F61 model).

Analysis of the Mammalian Data Set

We conducted three sets of pairwise comparisons: human
versus chimpanzee, human versus mouse, and mouse versus
rat. Figure 4 shows the distributions (smoothed histograms)
of posterior means and the MLEs of t and w in those com-
parisons. In the human-chimpanzee comparison, the
Bayesian w estimates are slightly shifted to the right com-
pared with the MLEs for low w values and shifted to the left
for high @ values. The mean, median, and 25% and 75%
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Fic. 3. Kernel density (smoothed histogram) of MLEs (dashed red) and Bayesian posterior means (solid green) for t in simulated data sets. Details as in

figure 2.

Table 1. Summary Statistics of Bayesian (top, underlined) and ML (bottom)

Estimates of @ from 10,000 Simulated Data Sets.

»=0.01 w=0.1 w=05 w=2
Mean /MSE 25% 97.5% N, Mean MSE 2.5% 97.5% Mean MSE 25% 97.5% N, Mean /MSE 25% 97.5% N, P,
0.020 0.014 0.007 0.044 0 0.118 0.045 0.052 0.214 0.543 0.160 0301 0904 0 1.591 0.546 0966 2359 0 35.1
t=0.1 0.011 0.009 0 0.033 2861 0.103 0.039 0.041 0.194 0.528 0.172 0.278 0.936 0 2365 1484 1.015 5626 3 60.7
_ 0.012 0.005 0.005 0.021 0 0.104 0.018 0.072 0.141 0.511 0.076 0379 0.677 0 1.878 0329 1360 2543 0 983
t=05 0.010 0.004 0.003 0.019 15 0.101 0.018 0.069 0.138 0.506 0.076 0374 0.674 0 2.064 0.424 1409 3.031 0 989
0.011 0.003 0.006 0.018 0 0.102 0.014 0.076 0.132 0.506 0.062 0.397 0.637 0 1922 0278 1466 2497 0 999
t=1 0.010 0.003 0.005 0.017 0 0.100 0.014 0.075 0.130 0.503 0.062 0.393 0635 O 2038 0326 1508 2.764 0 100
0.014 0.005 0.009 0.022 0 0.129 0.038 0.089 0.183 0.526 0.109 0.348 0.755 O 1.876 0374 1331 2.642 0 974
t=5 0.010 0.005 O 0.019 370 0.101 0.034 0.037 0.171 0.515 0981 0.226 0.762 44 2.120 1.398 1400 3228 0 986

Note.—The Fequal model is used for codon frequencies. Results for ML have been calculated after removing infinite estimates. For @ =0.1, there were no data sets with 0 or
infinite estimates. N, is the number of replicates with @ =0, whereas N, is the number of replicates with & = co. P, is the proportion of replicates with significant evidence for
positive selection indicated by P(w > 1 | x) > 095 in the Bayesian method or by a significant LRT at the 5% level (one-sided with critical value 2.71) in the likelihood method.

percentiles of the Bayesian estimates are 0.369, 0.320, and
(0.180, 0.500) whereas those of the MLEs are 0.307, 0.193,
and (0.062, 0.411) (table 3). The human and chimpanzee
genes are very similar and the patterns are similar to those
observed in computer simulation for low t values. Moreover,
there are 377 and 2,507 gene alignments in which £ =0 and
@ =0, respectively, as well as 2 and 423 alignments where
t=00 and & = 00, respectively. The Bayesian method does
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not produce any such extreme estimates. The number of
genes in which the w estimate is >1 is 1,121 for ML and
299 for the Bayesian method (table 4). The discrepancy is
the result of two effects, a short evolutionary distance and
a short sequence length, both indicating a lack of information
and greater influence from the prior. Genes with @ > 1 tend
to be small (median sequence length 313 codons, compared
with 454 codons for all genes). For example, one gene among
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Table 2. Summary Statistics of Bayesian (top, underlined) and ML (bottom) Estimates of t from 10,000 Simulated Data Sets.

t=0.1 t=05 t=1 t=5

Mean MSE  25% 97.5% Mean MSE  25% 97.5% Mean MSE  25% 97.5% Mean MSE  25% 97.5% N

0.102 0.015 0.074 0.134 0.504 0.045 0.421 0.596 1.013 0.100 0.837 1.223 3910 1322 2.600 5.506 0

©=001" 5100 o001 5 0072 0.132 0503 0045 0419 0595 1.011 0.100 0.836 1222 7572 8922 2676 43.744 244
0.102 0.015 0.075 0.133 0.503 0.041 0.427 0.587 1.007 0.077 0865 1.171 4406 0.869 3317 5.795 0

=01 0.100 0.015 0.073 0.131 0.502 0.041 0425 0.585 1.006 0.077 0864 1170 5629 2700 3.373 11506 24
0.102 0.015 0.075 0.132 0.503 0.036 0.436 0.574 1.004 0.057 0.895 1.118 5.158 1.469 4249 6.368 0

=05 0.100 0.015 0.073 0.130 0.501 0.036 0434 0.572 1.002 0.057 0894 1116 5440 2601 4228 7979 43
_ 0.102 0.015 0.075 0.131 0.501 0.035 0434 0.571 1.001 0056 0895 1112 4988 0.737 4274 6.035 0
w=2 0.100 0.014 0.073 0.129 0.500 0.035 0433 0.571 1.002 0056 0895 1.114 5119 0726 4323 6.401 3

Note.—The Fequal model is used for codon frequencies. Results for ML have been calculated after removing the infinite estimates. For t=0.1, 0.5, and 1, there were no data sets

with 0 or infinite estimate. N, is the number of replicates with @ = oo.

those 1,121 with @ > 1 has @ = 1.22 (95% confidence inter-
val—Cl 0.37-4.01) and posterior mean @ =0.93 (95% credi-
bility interval—Cl 0.36-2.43). This gene has a length of 262
codons and has a small evolutionary distance with t =0.043
(95% Cl 0.024-0.077) and = 0.047 (95% Cl 0.027-0.082), so
that the prior has an impact. Another gene has & = 1.27 (95%
C10.75-2.16) and & = 1.13 (95% Cl 0.60-2.13). This gene is 257
codons in length and the ML and Bayesian distance estimates
are 0.17 (95% Cl 0.13-0.24) and 0.18 (95% Cl 0.13-0.24), re-
spectively. The second gene has a similar length to the first
but because the sequence distance is greater, the prior is
much less important. In a third gene, of length 1,019
codons, the MLEs are t=0.041 (95% Cl 0.030-0.056) and
@ =127 (95% Cl 0.77-2.07), compared with the Bayesian es-
timates f = 0.042 (95% Cl 0.031-0.057) and & = 1.13 (95% Cl
0.59-2.14). In this case, the effect of the prior is unimportant,
because the gene is long.

Among the 1,121 genes with @ > 1 only 78 have sta-
tistically significantly evidence of positive selection, based
on the LRT («=5%) (table 4). All the 78 genes have the
posterior mean @ > 1. Moreover, out of them, three
showed strong evidence of positive selection in the
Bayesian analysis, with P(w>1 | x)>095 (table 4).
The difference (78 vs. 3 genes) in the number of genes
with @ > 1 between the ML and the Bayesian method is
consistent with the general expectation that the LRT
tends to reject the null more readily than the Bayesian
analysis. It is also consistent with the results observed in
the computer simulations for t=0.1 and w=2. We note
that the three genes significant in the Bayesian analysis
have fairly large sequence divergences, with t =~ 0.1,
whereas the other 75 genes (for which the LRT is signif-
icant but the Bayesian evidence is not strong) have highly
similar sequences, with t <0.07 (with median 0.021).

In the human—-mouse comparison, the ML and Bayesian
estimates are very similar. The sequence divergence is inter-
mediate, the data are informative, and the prior does not have
a noticeable impact. There are very few cases where the MLEs
are extreme (0 or 00). Also, the number of genes showing @
estimates >1 are nearly the same between the two methods
(7 vs. 6) and the same two genes show significant evidence for
positive selection by both methods. The mouse-rat

comparison shows similar patterns to the human-mouse
comparison: in both cases, the sequences are moderately di-
vergent and the data are informative.

To examine the sensitivity of posterior estimates of t and @
to the prior, we reanalyzed the human-chimpanzee and
human-mouse alignments using two alternative priors: AP1
and AP2. The first alternative prior (AP1) is t ~ G(2, 2) and
w ~ G(2, 4). This has the same means as the default prior of
equation (2) but the prior is more informative because of the
larger shape parameter (2 vs. 1.1). In the second alternative
prior (AP2), we used 2 for the shape parameter, but chose the
rate parameter such that the prior mean roughly matches the
median of the MLEs for all genes (table 3). Thus, for the
human-chimpanzee comparison, AP2 is t ~ G(2, 100), with
the prior mean 0.02 (while the median of MLEs of t is 0.016),
and w ~ G(2, 10), with the prior mean 0.2 (while the median
of MLEs of w is 0.193). For the human—mouse comparison,
AP2 specifies t~ G(2, 3), with the prior mean 0.67 (while
the median of the MLEs is 0.686) and w ~ G(2, 20), with the
prior mean 0.1 (the median of the MLEs is 0.089). While it is
in general not advisable to use the data to specify the prior,
we note that in specific comparisons, some prior information
may be available. For example, between the human and
the chimpanzee, the distance t is very likely to be smaller
than 0.1.

Posterior estimates of @ and t from the analysis using the
default and alternative priors are illustrated in figures 5 and 6.
In the human-chimpanzee comparison, the impact of the
prior is apparent. The Bayesian w estimates using the AP1 are
higher than those using the default prior for low @ values
(@ < 0.5) and lower for high w values (@ > 0.5) (fig. 5A). With
a more informative prior (shape parameter 2), the posterior
means are closer to the prior mean 0.5. For the human-
mouse comparison estimates under AP1 are close to those
under the default prior (fig. 5B). The Bayesian estimates of t
are less affected by the change in the prior in both
comparisons and the estimates are approximately the same
for the majority of the genes (fig. 6A and B). Prior AP2 has a
more significant effect. In both comparisons, the Bayesian
estimates of @ are smaller than those obtained using the
default prior for almost all genes (fig. 5C and D). The priors
are more informative (with shape parameter « = 2) and have
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Fic. 4. Distributions (smoothed histograms) of Bayesian and ML estimates of t and @ from mammalian and bacterial pairwise gene comparisons.
Numbers of genes analyzed in each comparison are shown in the right part of the figure.

lower means (0.2 and 0.1 for the human-chimpanzee and
human-mouse comparisons, respectively, instead of 0.5) and
thus affect posterior estimates more than the default prior.
The effect is more apparent in the human-chimpanzee
comparison because of the smaller sequence distances.
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Posterior estimates of t are less affected by the change
in the prior (fig. 6C and D). In summary, the prior affects
posterior estimates of w when the genes are not infor-
mative about w and does not affect significantly the pos-
terior estimates of t.
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Table 3. Descriptive Statistics of Bayesian (top, underlined) and ML (bottom) Estimates of t and @ from Pairwise Comparisons of Protein-Coding
Genes from Mammalian Species and Bacterial Strains.

w t

Mean  SD Quartiles No N Mean SD Quartiles No No

No. of Genes 25% 50% 75% 25% 50% 75%
Human—chimpanzee 0369 0246 0.180 0320 0.500 0 0 0025 0072 0013 0019 0028 0 0O
14215 0307 0418 0062 0.193 0411 2507 423 0.022 0042 0010 0016 0025 377 2
Human-mouse 0130 0125 0044 0093 0.176 0 0 0812 0574 0503 0691 0958 0 0O
14,624 0126 0.157 0040 0089 0170 221 0 0849 1252 0499 0686 0952 0 30
Mouse-rat 0168 0.168 0055 0.118 0228 0 0 0242 0179 0163 0215 0281 0 0O
13,359 0159 0.180 0046 0.108 0215 509 0 0238 0232 0161 0212 0278 0 3
Escherichia coli 0179 0170 0055 0.116 0252 0 0 0080 0354 0026 0043 0068 0 O
K-12-Ecoli 0157 2,619 0099 0174 0001 0034 0110 912 31 0073 0527 0020 0038 0064 121 6
E. coli K-12-Salmonella 0037 0042 0016 0025 0042 0 0 2261 1546 1153 1.836 3129 0 0
typhimurium LT2 2,619 0025 0042 0006 0018 0032 164 0 5052 8481 1087 1748 4066 0 217

Note—The F61 model is used for codon frequencies. Results for ML have been calculated after removing the infinite estimates. Ny is the number of genes with the MLE @ or

t=0, whereas N, is the number of genes with the MLE & or £ =oc.

Table 4. The Numbers of Genes with @ Estimate Greater or Less
than 1 Using the Bayesian and ML Methods.

None of the genes with @ > 1 is statistically significant
at the o =5% significance level according to the LRT and
none has P(w>1 | x)>095 (table 4). The gene se-

Data Bayesian quences from the E. coli K-12 and Salmonella are quite
o<1 0>1 N divergent. In most genes, the two methods produced
Human-chimpanzee < 13,094 0 78 similar estimates (fig. 4). However, some genes are very
wN>1 822 29§ divergent with the MLE =00 in 217 genes.
B
Human-mouse o<1 14,617 0 2 . .
o1 . p Discussion
Ng 2 We suggest that if possible one should conduct joint
Mouse-rat ML o<1 13313 0 5 comparative analysis of multiple protein-coding gene se-
"’N>B1 10 3‘; quences on a phylogeny, instead of pairwise comparisons.
L R In particular, a number of LRTs have been developed to
Escherichia coli K12~ o<1 2574 9 0 detect positive selection that affects particular evolution-
Coli 0157 »>1 43 2
Ng 0 ary lineages on the phylogeny or individual sites in the
E coli K-12-Salmonella o<1 2,617 0 0 protein (see, eg, Yang [2006a] and Cannarozzi and
typhimurium LT2 d>1 2 0 Schneider [2012], for reviews). To apply such tests of
Ng 0 positive selection, it is essential to use multiple sequences,

Note—N, is the number of genes with statistically significant @ > 1 based on the
LRT at the 5% level (one-sided with critical value 2.71) in the likelihood method,
whereas Ng is the number of genes with Plw>1 | x) > 095 in the Bayesian
analysis.

Analysis of the Bacterial Data Set

We conduct two pairwise comparisons: E. coli K-12 versus
E coli O157:H7 and E. coli K-12 versus S. typhimurium
LT2. Note that the two strains of E. coli have the same
evolutionary distance from the Salmonella.

The sequences from the two E. coli strains are very
similar, and the prior has an impact on Bayesian esti-
mates, similar to the comparison of the human and chim-
panzee genes. The mean, median, and 25% and 75%
percentiles of the Bayesian « estimates are 0.179, 0.116,
and (0.055, 0.252) while the corresponding results for the
MLEs are 0.099, 0.034, and (0.001, 0.110). The two meth-
ods are thus very different in analysis of those genes. Also,
the MLE ©=0 in 912 genes and ®=00 in 31 genes.

as a pair of sequences hardly contains enough information
for the tests to have any power (eg, Yang 2006b). Some
proteins may evolve in an episodic manner and thus
adaptive episodes may not be detected in pairwise com-
parisons, especially when the sequences are distantly re-
lated (Messier and Stewart 1997). In a pairwise
comparison, positive selection is detected only if the w
averaged over all sites in the protein and over the whole
evolutionary history connecting the two sequences is >1.
This seems to be an extremely stringent criterion. Analysis
of multiple sequences on a phylogeny allows one to
detect episodic positive selection that affects a particular
branch (Yang 1998).

Nevertheless, we note that pairwise sequence comparisons
are widely used, especially in comparative genomics,
sometimes to provide summary statistics of the data and
sometimes because of lack of a third genome. The ML
method has been used to estimate w and t in pairwise
comparisons of genes (e.g, Nielsen et al. 2005 Ge et al.
2008; Walters and Harrison 2010; Buschiazzo et al. 2012;
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w~G(2,20), t~G(2, 3).

Gladieux et al. 2013; Wang and Chen 2013). Counting
methods are also used due to their simplicity (Garcia-
Gil et al. 2003; Schenekar et al. 2011; Graves et al.
2013), even though they were found not to perform as
well as ML in computer simulations (Yang and Nielsen
2000). Both counting and ML methods sometimes return
0 or 0o as estimates, so that neither the expectation nor
the variance of the estimates is finite. The infinity esti-
mates of w appear to be particularly confusing to many
users of the methods. To avoid such extreme estimates,
some authors (e.g, Novaes et al. 2008; Bajgain et al. 2017;
Pellino et al. 2013) added a small arbitrary number (pseu-
docounts) to the numbers of synonymous and nonsynon-
ymous substitutions before calculating . Other authors
excluded genes with ds=0 from their analysis (e.g, Wang
and Chen 2013). The Bayesian method implemented here
may provide a better procedure than such ad hoc treat-
ments. It always returns finite estimates of @ and t as the
prior penalizes extreme values. Our computer simulation
suggests that the Bayesian estimates of w have nice sta-
tistical properties, with similar or smaller MSEs compared
with the MLEs. The posterior means are close to the
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MLEs when the data are informative, that is, when the
sequences are long and the sequence divergence is inter-
mediate, but the differences can be large when the se-
quences are short and are either too similar or too
divergent. Nearly identical sequences contain little infor-
mation while extremely divergent sequences contain too
much noise concerning w. In both cases, the data are not
informative and the prior has an impact on posterior
estimates of w. However, as sequence length increases
the effect of the prior decreases irrespective of the true
values of w and t. Our Bayesian method is used for the
analysis of only two sequences. A Bayesian method for
the analysis of multiple sequences in a phylogeny requires
calculation of high-dimensional integrals and is not pur-
sued here.

We emphasize that MLEs @ =00 should not be taken
as evidence for positive selection (w > 1) because the ex-
treme estimate may well be due to chance effects when
the numbers of changes are small. Instead, positive selec-
tion can be claimed only if the LRT is significant in the
ML framework or when P(w>1 | x)>095 in the
Bayesian analysis.
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alternative priors are as in figure 5.

Program Availability

The Bayesian method of this article is implemented in the
CODEML program in the PAML package. The program allows
the user to specify gamma priors for t and w. Although the
Bayesian method is computationally more intensive than ML,
it remains fast enough for large-scale screening. It takes 1-2s
to analyze one pair of sequences on a modern PC.

Methods and Materials

Theory

We use a simplified version of the model of Goldman and
Yang (1994) to model the evolution of codon sequences
(Yang and Nielsen 1998). The model accounts for the genetic
code structure, the transition/transversion rate ratio, the
codon frequencies as well as the dy/ds rate ratio w. The in-
stantaneous substitution rate from codon i to codon j (i # )
is given by

0, if i andj differ at two or three codon positions,
mj, if i andj differ by a synonymous transversion,
k7, if i and j differ by a synonymous transition,

wmj, if i and j differ by a nonsynonymous transversion,
wk;, if i and j differ by a nonsynonymous transition,

(5)

where 7; is the equilibrium frequency of codon j. Stop co-
dons are not considered (they are assumed not to occur
within protein-coding genes). Therefore, the substitution
rate matrix Q = {g;} is of size 61 x 61 for the standard ge-
netic code. The rate matrix is scaled so that the average
rate of codon substitution equals —Z?; migi = 1, and
thus time is measured by the expected number of nucleotide
substitutions per codon site. We use standard theory to cal-
culate the transition probability matrix over time t as
P(t) = exp(Qt). The likelihood function on a pairwise sequence
alignment x is

L
flxlt.k, ) = [ [Py, (6)
h=1

where j and j are the observed codons in the two sequences at
site h and L. is the number of codons.

The joint posterior distribution of @ and t is given by
equation (1). If  is a parameter in the model we replace it
with its MLE (k). If the two sequences are identical so that « is
not unique, we fix it at 2. Besides the posterior means of @
and t given in equations (3) and (4), we also calculate the
posterior variances and covariance

Var( | x) = Eo” | x) — [T, @)
Var(t | x) = E(¢” | x) — [E(t | 0T, ®)
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Cov(w, t|x) = E(wt|x) — E(w | x)E(t | x). 9)

Thus, six double integrals need to be computed, one for the
normalizing constant C, and five for the different expectations
in equations (3), (4), and (7)-(9).

Consider the calculation of the normalizing constant C. All
other integrals are calculated in the same way. We write
gt w) =fix| t, w) f(t, w). To avoid overflows and underflows,
we set h(t,w)=exp{log[g(t, ®)]—|nad, wWhere | is the
maximum of g(t, ), a constant chosen for scaling. The nor-
malizing constant can then be written as

C = exp(lmax) f / h(t, w)dtdw. (10)

We use the Gaussian quadrature method to calcu-
late all integrals numerically, which uses Legendre polyno-
mials to approximate any continuous integrand function

fox y):

1 1
n
[ [ seenay~ Y wmgen. @
-1 -1 =1

The weights w; and w; and the points x; and y; at which the
integrand is evaluated are predetermined given the total
number of points n. In our case, the limits of the integrals
are 0 and oo and we have to use a transformation to map the
(0, 00) limits to (—1, 1). A much more serious problem is that
the integrand g may be spiky (i.e, it is highly concentrated in a
very small interval) and the approximation will be very poor if
the sampled points miss the spike in the integrand. The ra-
tionale behind our transformation is to find a probability
density function (PDF) that has a similar shape to the inte-
grand g(t,w) and then we use its cumulative distribution
function (CDF) to transform the integrand. Note that if the
chosen PDF matches the posterior exactly, the new integrand
will become perfectly flat after the transformation. The logis-
tic distribution is used for that purpose.

Let x;=logt ~ Logistic(it;, 01) and x, = logw ~ Logistic
(i, 05). For any random variable x~ Logistic(i, o) the
CDF is Fi(x) = m Thus, for equation (10), we use
the following transformation (change of variables):

1+z
1}, (12)
1—2z

21 =2R(x))—1 = t:exp{,u1+(f1 log

1+z
2}. (13)
1—22

2 =2FR(x)—1 = o= exp{,uz + 03 log
Thus, equation (10) becomes

1 1
€ = expllmar) / / 21, 22)dzdzs
55 (14)

n
~ expllma) Y Wiljr(z,.2),

ij=1
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2to 200,
1-22 1-23

equations (12) and (13), respectively. We transform all other
integrals in equations (3), (4), and (7)-(9) in the same way.
Thus, we have

where r(z,2,) = h(t, )

and t and w are given by

n
Ew|x) = 5 > wiwjwir(zi,,23),
=1

n
E(t | X) ~ % Z W,’thﬂ’(Z‘]i,sz),
ij=1

n
E(a)2 |X) Q:’ % Z W,‘WjCl)lzl’(Zh,sz), (15)
=

n
E(t [x) ~ 4 > W,-wjtjzr(zh,zz]),
=1

.I n
E(tw | x) ~ a Z wiwjitir(zy,, Zzl),
=1

where A = Cexp(—/na)- Notice that the exponential term
exp(lmax) cancels out during calculations.

Our Bayesian calculation is performed after the MLEs are
obtained. Thus if both t and & are finite, away from 0 and the
observed ps and py (proportion of synonymous differences
per synonymous site and proportion of nonsynonymous
differences per nonsynonymous site, respectively) are

<0.74, we set p,=logt, p,=logd, o3 = (%) \A/(f), and

0y = (;7),/ V(&). The variances V(£) and V(&) are estimated
using the Nei and Gojobori (1986) method. Because the Nei
and Gojobori method uses the Jukes and Cantor (1969)
nucleotide substitution model (JC69) to correct for multiple
hits, the use of 0.74 as an upper limit for the ps and py
guarantees an adequate estimation of V() and V(&).

In all other cases, we find numerically the point (t, @) that
maximizes log{g(t, w)}. We calculate the Hessian matrix at this
point using the second-order difference method and use the
inverse of the Hessian to estimate the variances V(t) and

V(@). Then, we set u,=logt, w,=logw, o7 = (%),/\A/(f),

and 0, = (%),/ V(®). Notice that because of our choice of

the prior, log(g) always has a mode and thus the optimization
algorithm returns a point away from (0, 0).

We use the same number of points n for both parameters
w and t in the Gaussian quadrature. With n =32, each sum
in equation (15) requires 32 X 32 = 1,024 evaluations of the
r(z1, z,) function. Tests suggest that using 32 points achieves
high accuracy. The use of more points increases the
computational time radically since evaluation of r(z,, z,) re-
quires evaluation of the likelihood which is computationally
expensive. Moreover, we use the same techniques
described above to calculate the posterior probability

Pw=>11|x)=¢[ [ fx|t,w,K) f(t, w)dadt, as a Bayesian
01

equivalent of the LRT for positive selection indicated by w > 1.
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Real Data Analysis

Both the new Bayesian method of this article and the ML
method of Goldman and Yang (1994) were applied to com-
pare protein-coding genes from mammalian species and bac-
terial strains. The mammalian data set is a subset of the data
analyzed by dos Reis et al. (2012). There are 14,218 genes from
the human and chimpanzee, with the sequence length rang-
ing from 39 to 8,797 codons; 14,631 genes from the human
and mouse with the sequence length from 13 to 8,787
codons; and 13,371 genes from the mouse and rat with the
sequence length from 14 to 7,798 codons. The protein-coding
sequences from the genomes of E. coli O157:H7, E. coli
K-12, and S. typhimurium LT2 were downloaded from
GenBank (accession numbers: U_00096, NC_002655, and
NC_003197). Orthologous genes among the three genomes
were identified by using the program BLAT (Kent 2002) to
extract the best reciprocal hits. Only orthologs present in all
three genomes are used. This bacterial data set consists of
2,631 genes from each strain, with the sequence length rang-
ing from 20 to 1,485 codons. Codons involving alignment
gaps and ambiguity nucleotides were removed prior to ana-
lyses. Moreover, genes with sequence length of 50 codons
or less were excluded from the analysis. The number of
genes analyzed in each comparison is reported in table 3
and figure 4.
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