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BACKGROUND Ischemic heart disease (IHD) caused by the narrow-
ing of coronary arteries is a major cause of morbidity and mortality
worldwide. Clinical diagnosis involves complex, costly, and poten-
tially invasive procedures.

OBJECTIVE To address this problem, we introduce a novel clinical
knowledge-enhanced machine learning (ML) pipeline to assist in
timely and cost-effective IHD prediction.

METHODS Unlike conventional data-driven “black box” ML ap-
proaches, we propose an effective mechanism to engage clinical
expertise and gain insight into the “black box” at each stage of
model development, including data analysis, preprocessing, select-
ing the most clinically discriminative features, and model evalua-
tion. One-hot feature encoding is introduced to expose hidden
bias and highlight the important elements and features.

RESULTS Experimental results on the benchmark Cleveland IHD da-
taset showed that the proposed clinical knowledge–enhanced ML
pipeline overperformed state-of-the-art data-driven ML models, us-
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ing even fewer features. Our model based on one-hot feature encod-
ing and support vector machine achieved the best accuracy of
94.4% and sensitivity 95% by using only 7 discriminative attributes.

CONCLUSION We share insights and discuss the effectiveness of
incorporating clinical input in machine learning to improve model
performance, as well as addressing some practical issues such as
data bias and interpretability. We hope this preliminary study on
engaging clinical expertise to explore the “black box” would
improve the trustworthiness of AI and its potential wider uptake
in the medical field.
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Introduction
Ischemic heart disease (IHD) is considered as a leading cause
of death worldwide.1 More than 126 million people, approx-
imately 1.72% of the world’s population (1655 per 100,000),
are affected by IHD, and 9 million deaths were caused by
IHD every year.2 The current gold-standard diagnostic tool
is invasive coronary angiography, in which the coronary ar-
teries can be directly visualized to give an indication of the
severity and location of narrowing. However, this process
is both clinically time- and cost-intensive, and carries risks
to the patient owing to the invasive nature of the procedure.3

Basic risk factors of IHD are well known in the clinical field;
examples include high blood pressure, high blood choles-
terol, irregular pulse rate, diabetes, eating habits, smoking,
and age.4 Hidden patterns and supportive features from
various clinical tests/records offer enormous potential for
exploration of earlier detection of heart disease risks. This
presents many opportunities for artificial intelligence (AI)
and machine learning (ML) to be applied to target its use to-
ward the most at-risk patient groups, identifying predictive
characteristics and developing patient-tailored therapies in
different pathologic conditions, leading to precision
cardiology.

In recent years, AI and ML have emerged as powerful
tools to produce cost-effective medical diagnoses and more
effective healthcare services. This technology could revolu-
tionize the healthcare sector and empower healthcare profes-
sionals to identify assistive solutions faster and with more
accuracy. A guide for researchers and clinicians on the tech-
nology and applications of AI in cardiology and how cardio-
vascular medicine could incorporate AI in the future was
discussed in a review.5 Cardiology is one of the fields in med-
icine with high demand for ML. Recent advances in ML and
state-of-the-art deep learning for cardiology have been high-
lighted in the literature,6,7 including accurate quantification
of cardiac functions, cardiovascular disease diagnosis, early
risk identification, and detection of cardiovascular events
and anomalies. Data-driven AI and ML models used
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KEY FINDINGS

� The proposed clinical knowledge–embedded machine
learning (ML) pipeline outperforms conventional data-
driven ML models. Experimental results based on the
benchmark Cleveland ischemic heart disease dataset
showed the best model performance based on support
vector machine learning incorporating clinical knowl-
edge achieved 94.4%, outperforming state-of-the-art.

� The novel one-hot feature encoding method is intro-
duced to break down features and allow further incorpo-
ration of clinical knowledge for crucial feature
selection, as well as eliminate feature coding bias in
model learning. Overall model performance improved,
as fewer but more discriminative features were used.

� Unlike conventional data-driven “black box” ML ap-
proaches, we demonstrate an effective mechanism to
engage clinical expertise and gain insight into the
“black box” at each stage of model development,
including data analysis, preprocessing, selecting most
clinically discriminative features, and model evalua-
tion.

� We share insights and discuss the effectiveness of
incorporating clinical input in ML to improve model per-
formance, as well as addressing some practical issues
such as data bias and interpretability. We hope this pre-
liminary study on engaging clinical expertise to explore
the “black box” would improve the trustworthiness of
artificial intelligence and its potential wider uptake in
the medical field.
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multimodal data, such as risk factors,8 electrocardiographic
(ECG) signals,9 and various imaging data (eg, magnetic reso-
nance imaging, computed tomography, ultrasound, and
Doppler7).

In the category of IHD diagnosis from clinical risk attri-
butes, different data-driven ML methods have been attemp-
ted.10–13 The Cleveland Clinic Foundation dataset8 has
been widely used as a benchmark for IHD ML model devel-
opment. It contains 76 heart risk attributes from more than
300 patients. Based on this dataset, a support vector machine
(SVM) model using radial basis function kernels was pro-
posed.14 A probabilistic principal components analysis was
employed to reduce feature dimension, and the model
achieved 82.2% accuracy using 13 principal components
analysis features. A fuzzy rule-based model using neuro-
fuzzy classifier has also been attempted.15 This model
achieved 84% accuracy using 5 attributes (age, exang, ca,
thal, slope) selected by multiple logistic regression and
sequential feature selection. The main benefit of rule-based
learning is that doctors could compare the learned rules
with clinical rules to gain insight. However, rule-based ML
will struggle with high-dimensional inputs and interpret-
ability in complex medical scenarios. A logistic regression
SVM was reported which achieved an accuracy of 84.9%
in comparison with several other learning algorithms.16 The
importance of effective feature selection was highlighted to
be crucial for model performance improvement.

A hybrid random forest (RF) model was reported on the
Cleveland dataset.17 The model achieved 88.7% accuracy by
using all 13 clinically selected attributes. It stated that combi-
nations of subset combinations of these attributes could not
achieve such accuracy. An ensemble learning combining 4
different learning algorithms (Stochastic Gradient Descent,
k-nearest neighbor [KNN], RF, and logistic regression) under
a majority voting scheme was proposed by Atallah and Al-
Mousa.18 Classification accuracy of this ensemble learning
achieved 90%. A neural network enhanced by hyper-
parameter optimization has also reported and achieved
improved accuracy of 90.8%.19

A main limitation of ML for medical use is the “black
box” problem, which means models learned from data sam-
ples and AI decision-making cannot be fully explained by hu-
mans. Effective methods and pipelines are in high demand to
build reliable ML models as well as to improve the interpret-
ability and trustworthiness of AI.

To address this, our research aims not only to improve cur-
rent data-driven ML models, but, more importantly, to
explore how to embed clinical knowledge within AI develop-
ment to gain insight into the AI models and potential clinical
benefits. To achieve this, we present an ML pipeline
engaging with clinical expertise at each key stage, from
data analysis, preprocessing, and feature selection to model
training and evaluation, to gain an understanding of this
“black box.”A novel one-hot encoding concept is introduced
to better explore feature importance and embed clinical
knowledge in model learning. We highlight the benefits
and discuss issues to be considered toward medical use.
Benefiting from this approach, our model outperforms other
data-driven models in the literature14–19 and achieved the
best performance on the benchmark dataset Cleveland.8
Clinical knowledge–enhanced machine learning
pipeline
The clinical knowledge–enhanced ML pipeline has an end-to-
end construct that codifies and facilitates the workflow to pro-
duce a scalableMLmodel. As shown in Figure 1, it consists of
multiple sequential steps, from real-world clinical data input,
data quality analysis, preprocessing, and feature extraction to
model training, validation, and deployment. The pipeline en-
gages clinical knowledge at each stage in the loop of AI model
development. It is iterative to continuously improve the accu-
racy by selecting the best features and learning algorithms to
build the best model for heart disease diagnosis. The widely
used ML library Scikit-learn and Python were used to imple-
ment the pipeline and carry out the following experiments.
Heart disease dataset
Medical health records usually contain a wealth of informa-
tion; however, only relevant and discriminative attributes



Figure 1 The clinical knowledge–enhanced machine learning pipeline to build a predictive ischemic heart disease model.
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can be used for predictive analysis. The raw dataset consists
of 303 records with 76 attributes and diagnosis labels from
clinical professionals. It is from the Cleveland Clinic Founda-
tion dataset and available online at the University of Califor-
nia, Irvine.8 Of the 76 attributes, medical experts used clinical
knowledge to select the most relevant 13 attributes (index 1–
13) and the target diagnostic IHD status (1-true or 0-false), as
shown in Table 1. IHD positive is considered when the nar-
rowing of at least 1 of the coronary arteries was more than
50%, as shown by coronary angiography. The used IHD data-
set is well balanced with 165 (54.5%) positive IHD and 138
negative instances.
Data visualization and analysis
Data analysis is an important process to validate the quality of
data, inspect data properties, and discover useful information
and features before starting ML. Data visualization is an
effective way to explore vast amounts of data; gain an over-
view of data distribution; check class balance and missing or
Table 1 Clinical most relevant ischemic heart disease risk attributes

Index Attribute Definition

1 Age Age in years
2 Sex Sex
3 cp Chest pain type

4 trestbps Resting blood pressure
5 chol Cholesterol
6 restecg Resting electrocardiographic results

7 thalach Maximum exercise heart rate achieved
8 exang Exercise-induced angina
9 oldpeak ST depression induced by exercise relative to rest
10 slope Slope of the peak exercise ST
11 ca Number of major vessels colored by fluoroscopy
12 thal Thallium-201 stress scintigraphy
13 fbs Fasting blood sugar
14 target Diagnosis of heart disease (angiographic disease sta

IHD 5 ischemic heart disease.
outlier data; and even discover potential patterns, trends, and
clusters.

Using Matplotlib and Seaborn library with Python, we
created various visualization charts, including histograms,
swarm charts, and violin charts. As shown in Figure 2A, his-
tograms of maximum exercise heart rate achieved (thalach)
and cholesterol (chol) present a largely Gaussian distribution.
The histogram of “oldpeak” presents a high occurrence of
0 ST depression induced by exercise relative to rest. This in-
dicates minimal cardiac stress and is consistent with the large
number of people in the database who do not have IHD, in
whom we would not expect ECG changes in exercise. Cate-
gorical values and occurrence on thallium-201 stress scintig-
raphy (thal 1–3), slope of the peak exercise ST segment (1, 2),
and number of major vessels colored by fluoroscopy (ca 0–3)
are clearly presented. We can easily observe the outlier in
chol above 550 mg/dL, the wrong value “0” in “slope,”
and the out-of-range value “4” in “ca” attribute.

Figure 2B shows the relative distribution of different chest
pain symptoms experienced bymale and female patients with
Data type

Numerical
Categorical 1: male, 0: female
Categorical 1: typical angina, 2: atypical angina, 3: non-
anginal pain,4: asymptomatic

Numerical (mm Hg on admission to the hospital)
Numerical (mg/dL)
Categorical 0: normal, 1: having ST-T wave abnormality,2:
showing probable or definite left ventricular hypertrophy
by Estes’ criteria

Numerical (71–202)
Categorical 1: yes; 0: no
Numerical
Categorical 0: upsloping, 1: flat, 2: downsloping
Categorical 0, 1, 2, 3
Categorical 1: normal; 2: fixed defect; 3: reversible defect
Categorical (.120 mg/dL) 1: true; 0: false

tus) Categorical 0 5 normal; 1 5 IHD (.50% diameter
narrowing)



Figure 2 Data analysis and validation. A: Data distribution of maximum exercise heart rate achieved (thalach), cholesterol (chol), ST depression induced by
exercise relative to rest (oldpeak), thallium-201 stress scintigraphy (thal) (1–3), slope of the peak exercise ST (1,2), and number of major vessels (0–3) colored by
fluoroscopy (ca). B: Chest pain types for males and females with ischemic heart disease (IHD). C: Thallium-201 stress scintigraphy vs IHD.
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diagnosed IHD. There appear to be similar proportions of
men and women who experience typical and atypical angina.

As can be seen in Figure 2C, patients with IHD are more
significantly likely to have a fixed defect on thallium-201
scintigraphy, whereas those without IHD are more likely to
have a reversible defect. In both cases, the values for normal
scintigraphy are low and almost negligible.

A violin plot is a hybrid of a box plot (basic summary sta-
tistics, eg, range and quartiles) and a kernel density plot to
show the probability distribution of numerical data at
different values. It is usually smoothed by a kernel density
estimator. Figure 3 shows violin plots on maximum exercise
heart rate achieved. The middle thick dashed line represents
the median and 2 thin dashed lines indicate the interquartile
range. We observed that people suffering from IHD have a
higher average heart rate with exercise and at a higher prob-
ability (wider sections) than people without IHD.

A swarm chart is a scatterplot visualizing the distribution
of an attribute or the joint distribution of a couple of discrete
attributes. At each x location, the points are jittered based on
the kernel density estimation in y; therefore the outline of
each distinct shape is similar to a violin plot. In Figure 3 right,
we observe that the distribution of serum cholesterol values
in patients with IHD and those without is largely similar,
where patients with IHD are grouped more tightly at a lower
figure of around 240 mg/dL, whereas those without IHD are
more spread out, with mean of around 250.
Data preprocessing using domain knowledge
To ensure the quality of learning, clinical domain knowledge
is applied for preprocessing tasks, including missing data
clean-up, dealing with outliers, and data standardization, as
well as transforming and analyzing the data.
Missing data
Missing data are usually caused by, for example, data collec-
tion mistakes, people declining to give personal information,
or an attribute that may not be applicable to all cases. With
domain knowledge, missing data can be solved by (1) drop-
ping the entire attribute when missing for more than 60% ob-
servations and this attribute is insignificant, (2) dropping
instances, or (3) imputation, such as using median, mean,
or a regression model to predict the missing data.
Outliers
Outliers are odd-one-out observations at an abnormal dis-
tance from the population group. Many learning algorithms
are sensitive to the range and distribution of attribute values.
Outliers should be excluded from the dataset when possible,



Figure 2 Continued.
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since they represent different underlying behaviors or mis-
takes, thus skewing the training process and resulting in
longer training times and less accurate models.

Data visualization is an effective way to identify outliers.
As shown in Figure 4A, interquartile range (IQR) was used to
detect outliers with numerical values. The IQR aims to repre-
sent the spread variability of the dataset. To calculate the
IQR, the dataset is divided into rank-ordered even quartiles,
denoted by Q1 (lower 25%), Q2 (median 50%), and Q3 (up-
per 75% quartile), so IQR is the median 50% (Q32Q1). The
whiskers have an offset length of 1.5 ! IQR; any data
located outside of the whiskers is considered an outlier.

Using box-and-whisker plots in Figure 4B we observed a
few outliers in the “chol” and “thalach” attributes. In
Figure 2A histograms, we can also easily observe the outlier
in “chol” above 550 mg/dL, the wrong value “0” in “slope”
(which could mean missing data), and 5 records with “ca”
5 4 (number of major vessels colored by fluoroscopy) that
Figure 3 Maximum exercise heart rate achieved (thalach) (violin plot, left) and
diagnosis.
are out the suggested database’s recording range (0,1,2,3).
Based on domain knowledge, we removed some of these
data points, and capped “ca”5 4 to 3 to maintain the dataset
size.

In practice, we could completely remove outlier records,
cap their values, or try to impute a new value. Domain knowl-
edge and factors such as “how many” and “how far” of out-
liers should be considered when handling outliers.

Standardization
Some attributes have larger values and could dominate others
although they are not important. Standardization aims to
transform attributes to be fairly on a similar scale, thus
improving model stability and speeding up training. Com-
mon techniques include min-max normalization, Z-scale,
and log-scale.

For biomedical data, all attributes have a physiological
range and many present as a normal or uniform distribution,
such as blood pressure and heart rate. Therefore, we used Z-
score standardization, since Z-score does not change the type
of distribution. In practice, it is always possible to start by
fitting models to raw, normalized, and standardized data,
and compare the performance for best results.

Data-driven machine learning models
Machine learning–based feature selection
Recording medical data is complex and time-intensive. Irrel-
evant, redundant, or less discriminative variables degrade
model generalization capability and accuracy. Adding more
variables increases the model complexity, leading to high
computational costs and overfitting risks. Feature selection
aims to find the best set of informative features, and it hugely
impacts the model performance.

Feature selection can be supervised or unsupervised. Su-
pervised feature selection uses the target variable (eg,
removing irrelevant variables using intrinsic, wrapper, filter,
or hybrid methods). Intrinsic algorithms automatically learn
serum cholesterol (swarm chart, right), both vs ischemic heart disease (IHD)



Figure 4 Outlier detection using A: interquartile range (IQR) and B: box-and-whisker plots. IHD 5 ischemic heart disease.
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feature importance during training, such as decision tree (DT)
and RF. However, we did not find a consistent ranking result
using such methods on the IHD dataset. Unsupervised feature
selection does not involve the target variable (eg, removing
redundant variables using variance threshold or correlation).

Correlation is one easy-to-implement and effective
method for feature selection. It measures the linear relation-
ship between variables. Discriminative variables should be
highly correlated with the target, but less correlated with
other input variables (reducing redundant information; eg,
removing 1 of body mass index, weight, and height). In our
experiment, Python Matplotlib and Seaborn were used to
generate the correlation heat map among 13 variables, as
shown in Figure 5. The Pearson threshold 0.6 was used to re-
move redundant features.

Meanwhile, Pandas corr() function with Pearson correla-
tion coefficients and Scikit-learn SelectKBest() function with
c2 test were used to rank the importance of 13 variables to
IHD. As shown in Table 2, ranking results are very consis-
tent. However, “fbs” has the lowest correlation to IHD, at
almost 2 orders of magnitude less in c2 to the next attribute,
while other features are largely within the same order of
magnitude. The same applies to “fbs” under Pearson, but to
a slightly lesser extent.

The attribute “fbs”measures fasting blood sugar, and thus
is used to diagnose diabetes in patients. As diabetes is a
known risk factor for IHD, it would be expected for a stronger
correlation. However, patients with diabetes will usually be
on medications/diets to control their blood sugar levels, so
they correspondingly may not have elevated fbs. Only those
who were undiagnosed or had poor control of blood sugars
would have high fbs. Furthermore, fbs uses a binary value
in the dataset through a cut-off value for blood sugar, thus de-
grading its representation and discriminative ability
compared to a true numerical measure. Therefore, it could
be argued that “fbs” could be removed from mode results us-
ing data-driven ML models

After data preprocessing, 282 patient records (70% male,
56% IHD positive) remained out of the original 303 records.
The dataset is randomly split into 75% for training and 25%
“hold-out” for testing. The 25% testing data was not used in
model training.

Twelve selected attributes (excluding “fbs”) were used for
model training. Six widely used learning algorithms, DT, RF,
KNN, naïve Bayesian, SVM, and artificial neural network
(ANN), were well fine-turned and evaluated to determine
the best model.

Table 3 compares the performance of 6 ML models. For
evaluation, 5 clinically important performance matrices were
used, including accuracy, precision, sensitivity (recall), speci-
ficity, and F1 score. The average accuracy of the 6 models was
improved to 85% compared with 83.5% when using the orig-
inal 13 attributes. ANN achieved the best accuracy (88.7%),
precision (85%), specificity (82%), and F1 score (90%), while
SVM achieved the highest sensitivity (97%).

DT-based learning produces a hierarchical tree-like model
with better interpretability. DT predicts a target variable by
learning simple decision rules inferred from the inputs. At
each node, it searches for the best feature and its threshold
that splits the data into 2 subsets, aiming to produce the purest
subsets with maximum information gain. There are different
criteria to maximize information gain at each tree node, such
as Gini and Entropy. As shown in Figure 6, the learned tree
model can be presented graphically, thus visually and explicitly
representing a piecewise constant decision-making process.
Whether this ML DT is consistent with what can be explained
clinically will be addressed in the Discussion section.

In our experiments, each model has been fine-tuned for its
best performance to compare with others. For DT learning,
we found that Gini overperformed Entropy to evaluate



Figure 5 Heat map on feature correlation in Pearson coefficients.
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information gain, and achieved 81.6% accuracy. We experi-
mented with different numbers of trees to determine 60
Table 2 Feature correlation with ischemic heart disease using
Pearson and c2 ranking

Index

Pearson

Index

c2

Attribute Score [0,1] Attribute Score

1 oldpeak 0.4349 1 thalach 180.99
2 thalach 0.4337 2 ca 62.23
3 exang 0.4284 3 oldpeak 59.04
4 cp 0.4141 4 cp 51.82
5 ca 0.4112 5 exang 35.41
6 thal 0.3739 6 chol 29.21
7 slope 0.3246 7 age 22.81
8 sex 0.3114 8 sex 8.15
9 age 0.2278 9 slope 7.45
10 restecg 0.1820 10 trestbps 6.72
11 trestbps 0.1143 11 thal 5.72
12 chol 0.1119 12 restecg 4.69
13 fbs* 0.0176 13 fbs* 0.08
estimators for RF at its maximum accuracy of 83.1%. We
found that KNNwith k5 7 achieved smooth decision bound-
aries and the best accuracy (84.5%) compared to all others.
Typical naïve Bayesian probability includes Gaussian, multi-
nomial, and Bernoulli. According to our experiments, Ber-
noulli achieved the best accuracy (84.5%) among the 3
Bayesian models. We experimented with several typical
SVM kernels including linear, radial basis function, Poly,
and Sigmoid. The highest SVM accuracy (87.3%) was
achieved by using Sigmoid.

The neural network model achieved top accuracy of
88.7% among others. The network consists of 1 input layer
with 12 neurons, 1 dense hidden layer with 8 neurons acti-
vated by ReLU, and an output layer using Sigmoid activation
for binary classification. Binary_crossentropy was used for
the loss function with Adam as its optimizer. The network
was trained with 100 epochs at a learning rate of 0.001. We
found adding more hidden layers (deep neural network)
degraded network accuracy, largely because the dataset is
small relative to model complexity with a deep structure.



Table 3 Comparison of learning algorithms on original 12
ischemic heart disease attributes

Models

12 original features (removing fbs)

Accuracy Precision Recall F1 score

DT 0.816 0.80 0.86 0.83
RF 0.831 0.79 0.92 0.85
KNN 0.845 0.80 0.95 0.86
Naïve Bayesian 0.845 0.82 0.89 0.86
SVM 0.873 0.82 0.97* 0.89
ANN 0.887* 0.85* 0.95 0.90*
Average 0.850 0.81 0.92 0.87

*Indicates the highest value in accuracy, precision, recall and FI.
ANN 5 artificial neural network; DT 5 decision tree; KNN 5 k-nearest

neighbor; RF 5 random forest; SVM 5 support vector machine.
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Embedding clinical knowledge into data-driven
model learning
So far we have demonstrated model performance using a
largely data-driven ML approach. This creates a baseline
for us to compare with a more clinically engaged approach.
Although some domain knowledge has been introduced in
data analysis and preprocessing, feature selection has been
generally based on statistical principles. In this section, we
present model improvements by introducing one-hot encod-
ing to break down features and thus allow further incorpora-
tion of clinical knowledge for crucial feature selection.
Meanwhile, we also incorporate clinical input to identify
and eliminate data bias in model learning.
One-hot encoding and improvements in feature
selection
Clinical data attributes often include categorical data with
several conceptual values. For example, thallium-201 stress
scintigraphy contains 3 different conceptual values: thal_1
(normal); thal_2 (fixed defect); thal_3 (reversible defect).
From clinical knowledge, we know that “thal” is very useful
in diagnosing IHD, in particular the fixed and reversible de-
Table 4 Feature ranking on one-hot encoded features using
Pearson and c2 test

Index

Pearson (one-hot)

Index

c2 (one-hot)

Attribute Score [0,1] Attribute Score

1 thal_2 0.5387 1 thalach 180.99
2 cp_0 0.5059 2 ca 62.23
3 thal_3 0.5000 3 oldpeak 59.04
4 oldpeak 0.4349 4 thal_3 44.24
5 thalach 0.4337 5 cp_0 39.16
6 exang 0.4284 6 exang 35.41
7 ca 0.4112 7 thal_2 35.40
8 slope_2 0.3751 8 chol* 29.21
9 slope_1 0.3625 9 Age* 22.81
10 Sex* 0.3114 10 slope_2 20.40
11 cp_2 0.2998 11 slope_1 20.10
12 cp_1* 0.2554 12 cp_2 17.98

*Indicates no overlapping attributes in Pearson and c2.
fects. However, thal ranks relatively low in our statistical
feature ranking in Table 2 (6th in Pearson and 11th in c2).

To explore issues where there is discordance between clin-
ical expectation and ML feature ranking, we introduce one-
hot encoding to break down features into their constituent
parts. This allows the most discriminative categorical values
(ie, thal_2 and thal_3) to stand out and contribute more effec-
tively to model learning.

At the same time, most learning algorithms require the
conversion of categorical data to integers. The order of
numbers naturally introduces an attribute of significance,
thus adding bias to variables without ordinal relationships.
In contrast, the proposed one-hot encoding converts each cat-
egorical value into a new categorical column feature and as-
signs a binary value of 1 or 0. One-hot encoding thus not only
allows us to break down the data features to be more inter-
pretable, but also removes feature coding bias.

In our study, one-hot encoding was applied to 3 categori-
cal variables, including (1) chest pain cp_0–cp_3 (typical
angina, atypical angina, non-anginal pain, asymptomatic,
respectively); (2) slope of the peak exercise ST segment
slope_0–slope_2 (upsloping, flat and downsloping); and (3)
thallium-201 stress scintigraphy thal_1–thal_3 (normal, fixed
defect, and reversible defect). One-hot feature ranking using
Pearson and c2 test is shown in Table 4.

We can observe that thal_2 and thal_3 are now able to be
ranked a lot higher. The attribute cp_0 can also be differenti-
ated from the lower-ranked cp_1 and cp_2, while cp_3 did
not even rank in the top 12 one-hot features. This largely
fits with clinical observations. Similarly, the importance of
the 3 categorical factors in “slope” can be better demon-
strated. We also observe that there is a significant degree of
83% concordance between c2 and Pearson of the top 12
one-hot ranked features.

For comparison with data-driven ML models using 12 at-
tributes, the top 12 one-hot features were used to train the 6
models. Using 12 one-hot features, average accuracy on c2

ranking achieved 88.7%, as shown in Table 5, and on Pearson
ranking was 87.5%, both higher than 83.8% using original 13
attributes and 85% using selected 12 variables.
Recognizing data bias and model improvement
with clinical input
Medical domain knowledge was applied to identify possible
inaccuracies and biases in the data. In Figure 7, the ages and
IHD status of people in our dataset are visualized using a his-
togram. We observe that non-IHD patients have a normal
Gaussian distribution with a mean age of around 58, while
IHD patients appear to have 2 peaks around 41–44 and 54.
This distribution is at odds with what might be expected clin-
ically, as advancing age is a well-known risk factor for IHD.
This demonstrates an example of data bias that was recog-
nized using clinical expertise. Possible explanations include
a lack of sufficient data points (only 303) to cover the wide
range of ages and sampling errors in the original dataset,
meaning the population in the dataset is not representative



Figure 6 Decision tree of top 5 layers using 12 original attributes. X index order is consistent with the top 12 attributes in Table 1, but starts from 0.
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of the population as a whole. It may also be an artefact of the
database creating a balanced sample of having roughly half of
its patients having IHD and half without. Many learning algo-
rithms are more robust with variables of limited values. For
small datasets, it can thus be particularly beneficial to discre-
tize continuous values into limited categorical values, for
example, converting ages into ordinal-scale variables (eg,
young adults: 29–44, middle-aged adults: 45–60, and older
adults: 601, as shown in Figure 7B).

Figure 3 (right) showed that the distribution of serum
cholesterol values in patients with IHD and those without
was largely similar. Cholesterol values of patients with IHD
appear to be more clustered at a lower figure, around 240
mg/dL, whereas those without IHD is more spread out, with
a mean of around 250. This is not what would be clinically ex-
pected, as blood cholesterol is a major contributor to build-up
of atherosclerotic plaques that cause IHD. Two possible expla-
nations may be the fact that total cholesterol is used, not differ-
entiating between HDL (“good cholesterol”) and LDL (“bad
cholesterol”); and that patients who are diagnosed with IHD
are more likely to be on cholesterol-lowering medications,
which may also explain why the data are more clustered
than the non-IHD group. Overall, these biases in the data could
degrade the consistency and stability of the model. Such biases
may not be identified without clinical domain knowledge.

To combat these examples of data bias, we removed age
and cholesterol from the 12 one-hot features. Furthermore,
from clinical consensus, slope was deemed to be relatively
Table 5 Comparison of learning algorithms on reduced one-hot encode

Models
12 one-hot features

Accuracy Precision Recall Specificity F1 s

DT 0.761 0.83 0.72 0.81 0.77
RF 0.873 0.94 0.82 0.94 0.88
KNN 0.929* 0.95* 0.93* 0.94* 0.94
Naïve Bayesian 0.915 0.95 0.9 0.94 0.92
SVM 0.929* 0.95* 0.93* 0.94* 0.94
ANN 0.915 0.95 0.9 0.94 0.92
Average 0.887 0.93 0.87 0.92 0.90

*Indicates the highest accuracy value for each measurement.
ANN 5 artificial neural network; DT 5 decision tree; KNN 5 k-nearest neighbo
less discriminative. Experiments with this clinical input of
removing slope_1 and slope_2 showed improved model per-
formance. This means a total of 4 features were removed.
Further experiments were conducted with 6, 7, and 8 one-
hot features. It was found the optimal set of 7 one-hot features
improved average model accuracy to 89%, in comparison to
88.7% using 12 one-hot features, as shown in Table 5. The
SVM (linear kernel) and KNN overperformed the other
models. By using only 7 one-hot encoded features, the SVM
achieved the top overall performance with accuracy 94.4%,
precision 95%, sensitivity 95%, specificity 94%, and F1
95%, while the KNN achieved the highest specificity (97%).

Among these experiments we found SVM, ANN, and
KNN have better performance in general, eg, SVM 88.7%
and ANN 87.3% on 13 original attributes; ANN 88.7% and
SVM 87.3% on 12 selected features; SVM and KNN keep
top on one-hot encoded reduced features (Tables 3 and 5).
As shown in Figure 8, confusion matrices present how the
6 learning algorithms could be confused with IHD-positive
and IHD-negative classes. Each row of the matrix represents
the instances in an actual class, while each column represents
the instances in a predicted class.

Comparison of clinical knowledge–enhanced ML
pipeline with state-of-the-art data-driven ML
To our knowledge, this is the first study that explores the
mechanism of how to embed clinical expertise in an ML
pipeline, and evaluates its impact on model performance.
d features

7 one-hot features

core Accuracy Precision Recall Specificity F1-score

0.775 0.82 0.78 0.77 0.79
0.873* 0.9 0.88 0.87 0.89

* 0.929 0.97 0.9 0.97* 0.94
0.915 0.97 0.88 0.97* 0.92

* 0.944* 0.95* 0.95* 0.94 0.95*
0.901 0.95 0.88 0.94 0.91
0.890 0.93 0.88 0.91 0.90

r; RF 5 random forest; SVM 5 support vector machine.



Figure 7 Ischemic heart disease (IHD) occurrence with age. A: IHD occurrence at different ages. B: IHD occurrence in 3 age groups.
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We therefore compared the proposed clinical knowledge–
enhanced ML pipeline method with 6 state-of-the-art con-
ventional data-driven ML models without clinical input.
The results, based on the benchmark Cleveland Clinic Foun-
dation dataset, are shown in Table 6. Our clinician-enhanced
SVM model achieved the best accuracy of 94.4%, as well as
competitive performance on precision, recall, specificity, and
F1 score.

Furthermore, our model used only 7 one-hot encoded IHD
attributes, compared with other methods. It demonstrates that
embedding clinical knowledge to select fewer, more discrim-
inative features can improve model performance, even with
fewer total features used.
Figure 8 Confusion matrices for 6 learning algorithms, with 1 indicating
ischemic heart disease (IHD)-positive and 0 IHD-negative classes. A: Using
12 original IHD attributes. B: Using 7 one-hot encoded features. ANN 5
artificial neural network; DT 5 decision tree; KNN 5 k-nearest neighbor;
RF 5 random forest; SVM 5 support vector machine.
Discussion
Performance metrics
Accuracy is a useful measure when false-negative and false-
positive counts are similar and they have similar cost impacts.
Precision indicates the level of certainty regarding true-posi-
tives; it is used when we need to be more confident about
true-positives. It is about how sure we are that we do not
miss any positives. F1 is the harmonic average of the preci-
sion and sensitivity; it is more meaningful if precision and
recall are more balanced. In practice, F1 is a better indicator
when the costs of false-positives and false-negatives are very
different, or if class distribution is very uneven.



Table 6 Comparison with existing machine learning models on
benchmark Cleveland ischemic heart disease dataset

Models Accuracy

RBF kernel-based SVM14 82.18%
Fuzzy rule-based model15 84.00%
Logistic regression SVM16 84.85%
Hybrid random forest17 88.40%
Ensemble model18 90.00%
Neural network with hyper-parameter
optimization19

90.78%

Our clinical knowledge–enhanced ML
model

94.40%

ML5machine learning; RBF5 radial basis function; SVM5 support vec-
tor machine.

Table 7 Model improvement benefited from clinical input at
different stages of the machine learning pipeline

Features Clinical knowledge
Average
accuracy

13 attributes Clinical experts (database
creators) selected 13 most
relevant attributes from 72.

83.5%

12 features Clinical knowledge was used in
data preprocessing to address
outlier and missing data points,
as well as to remove the
statistically and clinically
insignificant attribute “fbs.”

85.0%

12 one-hot
features

Identifying that clinically relevant
features are not fully exposed
(eg, thal). One-hot encoding
was introduced to expand
categorical attributes. The best
feature set can thus be selected.

88.7%

7 one-hot
features

Clinical input was used to
recognize data bias (eg, age),
as well as less significant
features (eg, slope), and
remove them from model
learning.

89.0 % (94.4%
with SVM)

SVM 5 support vector machine.
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In medical tests, sensitivity is the ability of the test to
correctly identify those with the disease, in this case IHD.
On the flip side, specificity is the ability of the test to correctly
identify those without the disease. Often, having a single test
that is both highly sensitive and specific is not possible. In
such cases it becomes desirable to prioritize, balancing the
cost impact of missing a true diagnosis against creating a
false-positive diagnosis. In the case of IHD, it could be
argued that sensitivity is the more important of the two, as
missing a diagnosis and not starting treatment could be
considered worse than preemptively starting treatment in
those without the disease. Clearly, this consideration must
be modulated by the size of the difference in specificity and
sensitivity, and the purpose/population that is being screened.
For example, a test looking for IHD in a small but high-risk
group needs to be highly sensitive, but a screening test for the
whole population would require a higher specificity to pre-
vent masses of false-positive results. Thus often in clinical
medicine, 2 or more tests can be used in sequential order to
produce an overall diagnosis that is more accurate.

Table 5 shows that SVM using 7 one-hot features
achieved good performance, which means measured by accu-
racy 94.4%, precision 95%, sensitivity 95%, and F1 95%.
These means the following: (1) 94.4% (accuracy) of SVM-
produced IHD diagnosis results are correct; (2) on average,
95% (precision) of patients labeled by the SVM model is
true IHD; and (3) 95% (sensitivity) of IHD patients in reality
are flagged, but 5% IHD patients are missed.
Breaking down the “black box” and embedding
clinical knowledge
Many clinicians remain cautious of AI owing to longstanding
concerns about “black box” models. “Black box,” in a gen-
eral sense, means that models and their operations can be
very complex, not visible, and not straightforwardly inter-
pretable to humans. Understanding how AI models work is
essential to gain trustworthiness in AI decision-making in
the medical domain.

To address this issue, the proposed work introduces a
transparent ML pipeline, thereby breaking down the black
box into its constituent parts. This allows us to identify,
explain, and see if we can intervene using clinical knowledge
and evaluate its impact on model performance.

A summary of how clinical input is applied, as well as the
corresponding improvement in model performance, is shown
in Table 7. The average shown is the average accuracy over 6
ML models in the section on experimental results using data-
driven ML models. It is useful to note that the 12 one-hot en-
coded features contain fewer total values than the original 12
features, which have more categorical values. This allowed
us to explore the impact of individual categorical attributes
and reduce overall features.

An important observation is that at each stage, while the total
number of features is reduced, model performance is increased.
This is generally not easy to gain from standard data-drivenML
processes. This lack of accuracy decay improvement strongly
suggests information gain from the clinical domain knowledge
we are embedding. Furthermore, removing less discriminative
features from can reduce potential clinical test costs and work-
load for recording these measures.

In terms of learning algorithms, DT presents better inter-
pretability among others. As shown in Figure 6, chest pain
(“cp”) is used at the first root split with information gain of
0.489, then “ca,” “thal,” “oldpeak,” etc are used in the
following decision layers. This decision-making hierarchy
is generally consistent with feature ranking (Table 2) as
well as our final 7 one-hot selected features. These features
are also consistent with the clinically most objectively reli-
able features. For example, the most invasive but diagnostic
features, “ca” and “thal,” obtained by invasive imaging, are
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both placed very highly in the DT. On the other hand, less
diagnostic features such as “exang” or “trestbps,” which
require only a clinical history or simple bedside measure-
ments like blood pressure, are placed lower in the tree. Fea-
tures requiring a moderate amount of cost and
corresponding diagnostic ability, such as “oldpeak,” which
looks at ECG changes during exercise, or “thalach,” which
looks at maximum exercise heart rate achieved, are generally
found in the middle of the tree. The one exception is at the top
of the tree, where “cp” (chest pain) is found. This is purely
derived from clinical history and its position matches its po-
sition at the top of a clinician’s DT when deciding the risk of
IHD when taking a clinical history. Overall, the ML DT uses
the most diagnostic features first, but these are often also
invasive and costly. Thus a clinician’s DT, which factors
cost and risk to patients from invasive procedures, will
have to consider the less invasive procedures first, relying
on invasive tests at the end to confirm the diagnosis.
Conclusion
IHD has considerable impact on health, but its impact can be
reduced if the possibility of heart disease occurrence can be
assessed earlier. We presented the first clinical knowledge–
enhanced ML model for predicting IHD. We explored the
mechanisms at different stages of the ML pipeline, allowing
us to incorporate clinical expertise and improve model per-
formance. This included key steps such as data analysis, pre-
processing, feature selection, and model learning evaluation.
We introduced a novel one-hot encoding method, allowing
us to expose hidden bias in categorical attributes and identify
clinically discriminative elements and features.

Experimental results demonstrated improvement in model
accuracy by embedding clinical knowledge. Using the
benchmark Cleveland IHD dataset, the best model based
on SVM achieved an accuracy of 94.4%, precision 95%,
sensitivity 95%, and F1 95% by using 7 one-hot encoded fea-
tures. This result outperforms the state-of-the-art data-driven
ML models. It also represents a 63% reduction in clinical
recording compared with using 13 attributes and more values
for categorical attributes.

The main contribution of our work is to explore the mech-
anism of embedding clinical knowledge in conventional
“black box” ML. Although the benchmark dataset we can
currently access is relatively small, it still demonstrates the
effectiveness of the proposed approach. In the future, we
hope the wider research community can build on our explor-
atory study and adapt this approach on larger datasets, lead-
ing to a fully evaluated predictive IHD model for clinical use.
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