
Mucosal Delivery of Human Papillomavirus Pseudovirus-
Encapsidated Plasmids Improves Potency of DNA Vaccination

Barney S. Graham1,*, Rhonda Kines2,*, Kizzmekia S. Corbett1, John Nicewonger1, Teresa R. 
Johnson1, Man Chen1, Daaimah LaVigne1, Jeffrey N. Roberts3, Nicolas Cuburu2, John T. 
Schiller2, and Christopher B. Buck2

1 Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and 
Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

2 Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, 
Bethesda, MD 20892

3 Food and Drug Administration, Bethesda, MD

Abstract

Mucosal immunization may be important for protection against pathogens whose transmission and 

pathogenesis target mucosal tissue. The capsid proteins of human papillomavirus (HPV) confer 

tropism for basal epithelium and can encapsidate DNA during self-assembly to form 

pseudovirions (PsV). Therefore, we produced mucosal vaccine vectors by HPV PsV-encapsidation 

of DNA plasmids expressing an experimental antigen derived from the M and M2 proteins of 

respiratory syncytial virus. Intravaginal (IVag) delivery elicited local and systemic M/M2-specific 

CD8+ T-cell and antibody responses in mice comparable to a 10,000-fold higher dose of naked 

DNA. A single HPV PsV IVag immunization primed for M/M2-specific-IgA in nasal and vaginal 

secretions. Based on light emission and immunofluorescent microscopy, immunization with HPV 

PsV-encapsidated luciferase- and red fluorescent protein (RFP)-expressing plasmids resulted in 

transient antigen expression (<5 days) restricted to the vaginal epithelium. HPV PsV encapsidation 

of plasmid DNA is a novel strategy for mucosal immunization that may provide new vaccine 

options for selected mucosal pathogens.
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INTRODUCTION

Vaccination by gene delivery is an important immunization strategy for viral diseases. 

Expression of viral proteins from the host cell can authentically mimic the native structure 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Barney S. Graham, MD, PhD, Senior Investigator, VRC/NIAID/NIH, 40 Convent Drive, MSC-3017, Building 
40, Room 2502, Bethesda, MD 20892-3017, Phone: 301 594-8468, FAX: 301 480-2771, bgraham@nih.gov.
*Contributed equally to the manuscript

HHS Public Access
Author manuscript
Mucosal Immunol. Author manuscript; available in PMC 2011 March 01.

Published in final edited form as:
Mucosal Immunol. 2010 September ; 3(5): 475–486. doi:10.1038/mi.2010.31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


and antigenicity of viral proteins and provides a platform for the induction of both humoral 

and cellular immunity. There are many potential gene-based vectors that can deliver the 

genes encoding vaccine antigens, and each has a unique set of properties that determine its 

utility. These include manufacturing feasibility, cost, stability, ease of storage and 

administration, replication competence, vector-specific toxicity, pre-existing vector 

immunity in target host, immune competition between vector antigens and vaccine 

antigen(s), nuclear or cytoplasmic transcription of transgene, tissue tropism, host range, and 

potential routes of administration. Naked DNA is the simplest platform for gene delivery. It 

avoids vector-related concerns, is easy to make and temperature-stable. The major detraction 

of DNA is that it does not efficiently enter cells, and has low potency relative to the number 

of gene copies per dose. Immunogenicity has been improved by using various formulations, 

vehicles, and devices that improve gene expression after parenteral administration, but 

methods to immunize mucosal surfaces have not advanced (1).

Vaccines for some viral pathogens that typically invade mucosal surfaces like human 

immunodeficiency virus type 1 (HIV-1), herpes simplex virus (HSV), or respiratory 

syncytial virus (RSV) have been difficult to develop in part because of the potential need for 

mucosal immunity. While passively acquired antibody can protect against these types of 

diseases (2–4), induction of immune responses locally at the site of infection may provide an 

advantage. Replication competent viral vectors have typically been more immunogenic 

when delivered to mucosal surfaces than inactivated virus or replication-defective vaccine 

vectors, but safety concerns involving biodistribution, integration, and virulence complicate 

their development.

Despite the immunogenicity of replication-defective gene-based vaccine vectors 

administered parenterally, delivery systems specifically designed for induction of mucosal 

immunity have been slow to advance. Only recombinant canarypox expressing HIV-1 and 

rabies virus antigens delivered by multiple mucosal routes, and nasal delivery of replication-

defective recombinant adenovirus vector expressing influenza antigen, have advanced to 

clinical trials (5, 6). Identifying approaches that effectively deliver replication-defective 

gene-based vaccine vectors to mucosal surfaces would add an important option for 

development of future vaccines.

Sexually-transmitted human papillomavirus (HPV) types are prototypic mucosal pathogens 

that infect stratified squamous epithelium, particularly when microtrauma provides access to 

the basal epithelial layer (7). The papillomavirus major capsid protein, L1, can self-assemble 

into virus-like particles (VLP) with or without the minor capsid protein, L2 (8–11). HPV L1 

VLPs are able to bind and activate dendritic cells in vitro (12–14). Furthermore, parenteral 

immunization with HPV L1 VLPs induces T cell responses (15), and type-specific 

neutralizing antibodies, and is the basis for licensed vaccines (16, 17).

HPV capsids can pseudotype the ~8 Kb genome of other papillomaviruses. L1 and L2 

produced by Semliki Forest virus (18) or recombinant vaccinia (19) can encapsidate 

episomal genomes of alternative papillomavirus serotypes. HPV capsids have also been used 

as a carrier for plasmid DNA by utilizing a cell free system in which VLPs are disassembled 

and reassembled in the presence of plasmid DNA (20, 21) or by direct interaction of the 
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assembled VLPs with the DNA (22). A more efficient strategy for producing high titer 

L1/L2 HPV particles encapsidating DNA plasmids in human cell lines (HPV pseudovirions, 

PsV) involves co-transfecting the L1 and L2 genes on a large plasmid >8 Kb with a smaller 

plasmid (<8 Kb) expressing the genes of interest. In this setting, the reporter plasmid is 

preferentially packaged, together with cellular histone proteins, within the self-assembled 

recombinant capsid (23, 24).

The immunogenicity of antigens expressed from HPV PsV-delivered plasmids has been 

examined using particles composed of L1 only and produced by the cell-free disassembly/

reassembly method (21, 25–28). Parenteral and oral administration of these pseudovirions 

generated detectable CTL and/or antibody responses to genes expressing HIV-1 Gag, 

LCMV gp33, and CEA. Recently, a potential strategy for IVag HPV-PsV-mediated gene 

delivery was described (29, 30). Although the intact cervicovaginal tract was highly resistant 

to HPV PsV infection, if the epithelium was disrupted physically by cytobrush or chemically 

with nonoxynol-9 (N9), gene transfer and local reporter protein expression was observed.

In the current study, we explore the immunogenicity of HPV-PsV-encapsidated plasmid 

DNA expressing a well characterized RSV model antigen delivered to the vaginal 

epithelium. In particular, we compared the immunogenicity of HPV-PsV delivery of 

encapsidated DNA to immunization with naked DNA alone. We find that HPV PsV-

mediated delivery to vaginal epithelium increases the potency of plasmid DNA for eliciting 

CD8+ T cell responses, increases the induction of antibody to the DNA-expressed antigen, 

and targets the epithelium of the vaginal mucosa resulting in a discrete period of antigen 

exposure. HPV PsV encapsidation facilitates entry of plasmid DNA into host cells to 

complement the other exceptional qualities of DNA as a gene delivery vehicle, and provides 

a technology with the potential for mucosal immunization.

METHODS

Design and construction of the M/M2 fusion gene

With dominant CTL epitopes of RSV M and M2 proteins identified in BALB/c and 

C57BL/6 mice, respectively, (16, 17), a model antigen incorporating both of these target 

proteins was designed. A codon-modified (GeneOptimizer by GeneArt, Regensburg, 

Germany) gene encoding the M protein (NCBI sequence number AAB86677) was 

connected to a codon-modified gene encoding the M2 protein (NCBI sequence number 

AAB86660) by glutamine-alanine linker. The resulting fusion gene is termed “M/M2” 

hereafter.

Construction of DNA plasmid vectors

The RSV M/M2 gene was cloned into plasmid DNA designed for expression in mammalian 

cells (pVRC8400) using 5′ SalI and 3′ BamHI restriction sites as described (31). Plasmid 

inserts were sequenced after cloning to verify sequence conservation.
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Production of HPV pseudovirions (PsV)

293TT cells were grown in Dulbecco’s modified Eagle’s medium (Gibco, Carlsbad CA) 

supplemented with 10% fetal bovine serum (Sigma-Aldrich, St Louis MO). PsV production 

and Optiprep purification method was previously reported (32) and is also available at http://

ccr.cancer.gov/staff/links.asp?profileid=5637. Maps of HPV16 and HPV45 PsV packaging 

plasmids (p16sheLL and p45sheLL, respectively) and expression vectors for luciferase 

(pCLucf), M/M2 (pCMMf) and RFP (pCIR), all driven by the CMV promoter, can also be 

found at this website. Purified PsV was titrated on 293TT cells by flow cytometric 

assessment of the expression of green fluorescent protein, as described in Buck and 

Thompson, 2007 (32) and titer is calculated as infectious units per ml (IU/mL).

Western blotting for expression testing

Each lot of M/M2 fusion proteins in pVRC8400 and from HPV16 and HPV45 pseudovirus 

was tested by Western blotting prior to evaluation in mice. For expression testing, 293T cell 

lysates in Invitrogen NuPAGE LDS sample buffer (Carlsbad, CA) were run on 4–12% Bis 

Tris gels and probed with goat polyclonal (Maine Biotechnology, Portland, ME) or murine 

monoclonal primary antibodies and peroxidase-conjugated rabbit anti-goat or goat anti-

mouse IgG (H+L) secondary antibodies (Jackson ImmunoResearch Labs, West Grove, PA).

Mice and experimental procedures

Female 6–8 week old BALB/c and CB6F1 mice (Jackson Laboratories, Bar Harbor, ME) 

were housed in the NIAID animal care facility under pathogen-freeconditions and 

maintained on standard rodent chow and watersupplied ad libitum, according to current 

ACUC approved documents.

Four days prior to IVag (IVag) immunization mice were treated with 3 mg Depo-Provera in 

100 μL PBS to thin the epithelium. Five hours prior to immunization the vaginal epithelium 

was disrupted by treatment with 50 μL of nonoxynol-9 (40% in distilled H20) diluted to final 

concentration of 4% in 4% carboxymethylcellulose (CMC) (Sigma-Aldrich #C4888) for 

viscosity, as previously described (29). The estrous cycle of the mice was synchronized 

using the Whitten effect (33) prior to Depo-Provera treatment. Mice were immunized IVag 

with 5×107 IU of HPV PsV-M/M2, HPV PsV-luciferase (empty vector) or naked DNA-

M/M2 diluted to a final volume of 20 μL in 4% CMC and introduced with a positive 

displacement pipette. Intramuscular (IM) inoculations were given in the quadriceps. Four 

weeks after primary immunization, mice were boosted with a vector comprised of an 

alternative HPV serotype or challenged intranasally with RSV. Mice that received secondary 

immunizations were challenged four weeks after boost. Anesthetized mice were challenged 

with 107 pfu of A2 strain of RSV IN and evaluated as previously reported (34). BAL was 

performed as previously described in (35) except that 1% bovine serum albumin (BSA) in 

PBS was used. Following BAL procedure, nasal wash was performed by inserting 

endotracheal tube through the incision in the trachea into the nasopharynx. The nasopharynx 

was then flushed with 0.2 ml PBS + 1% BSA, collecting the wash fluid from the nostrils. 

Vaginal washes were performed by rinsing the vaginal vault twice with 50 μL of PBS.
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Blood Tetramer Staining

250 μL of whole blood was lysed in 1 mL ACK lysing buffer (Quality Biologicals, 

Gaithersburg, MD) for seven minutes. Samples were washed with 2 mL PBS and 

centrifuged at 1500 rpm for 5 minutes. Lysing and washing was repeated up to three times 

until the cell pellet was devoid of visible amounts of red blood cells. After final removal of 

supernatant, samples were stained according to the protocol for surface and tetramer staining 

described below.

Surface and tetramer staining of lymphocytes

For all experiments, lungs were harvested from euthanized mice on days 4 and 7 post-

infection. Lymphocytes were isolated with Fico-Lite (Atlanta Biologicals, Atlanta GA), and 

tetramer-stained with KdM282–90 tetramer or DbM187–195 tetramer complexes and antibodies 

to CD3, CD4 and CD8 as previously described and analyzed by nine-color flow cytometry 

as previously described (36) using ViViD (Invitrogen, Carlsbad CA) staining to exclude 

dead cells. Flow Jo version 8.7.3 was used to analyze data.

Measurement of M/M2-specific antibody response by kinetic ELISA

RSV M/M2 fusion protein was produced in E. coli by the Protein Expression Laboratory 

(SAIC, Frederick, MD). M/M2 protein was diluted in carbonate buffer (pH 9.6) and coated 

overnight at 4°C on 96-well flat-bottom ELISA plates (Nunc, Rochester, NY) at a 

concentration of 80 ng/well. Plates were washed four times with wash buffer (0.02% 

Tween-20 in PBS) using an automated plate washer (Bio-Tek Instruments, Winooski, VT), 

and incubated with blocking buffer (2% BSA in PBS) for one hour at 37 °C. 100 μL of 

diluted test sample and positive control were added to each well in triplicate (two coated 

wells and one uncoated well). Plates were incubated for one hour at 37 °C, washed and 

incubated for one hour at 37 °C with HRP-conjugated goat anti-mouse IgG1 (1:18000), 

HRP-conjugated goat anti-IgG2a (1:8000) and HRP-conjugated rabbit anti-mouse IgG+IgM 

(1:20000) (Jackson ImmunoResearch Laboratories), or HRP-conjugated goat anti-mouse 

IgA (1:8000) (Southern Biotech, Birmingham, AL). Plates were washed with wash buffer 

four times followed by distilled water. 100 μL of Super AquaBlue ELISA substrate 

(eBioscience) was added to each well and plates were read immediately using a Dynex 

Technologies microplate reader (Chantilly, VA). The rate of color change in mOD/min was 

read at a wavelength of 405 nm every 9 s for 5 min with the plates shaken before each 

measurement. The mean mOD/min reading of duplicate wells was calculated, and the 

background mOD/min was subtracted from the corresponding well.

Measurement of M/M2-specific IgA and total IgG and IgA in mucosal secretions

M/M2 was coated as described above. For total immunoglobulin (IgG+IgA), anti-kappa + 

anti-lambda purified antibodies (Southern Biotech) were coated at 0.1μg/well each. For total 

IgA, 0.1 μg/well of anti-IgA (Southern Biotech) was used. Plates were washed (PBS/Tween 

0.05%) once with and blocked for 2 h at room temperature (RT) with 0.5% milk and 0.1% 

FBS in PBS. After washing twice, samples were diluted 1:10 for M/M2-specific antibody 

and 1:50 for total immunoglobulin content, in 0.5% milk in PBS and plates were incubated 

for 2 h at RT. After washing 3 times, secondary antibodies (goat anti-IgG or anti-IgA HRP-
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conjugated antibodies) (Southern Biotech) diluted in 0.5% milk in PBS were added for 1 h. 

After washing 3 times, TMB Microwell Peroxidase Substrate System (KPL, Gaithersburg, 

MD) was added for 7 min at RT, stopped with equal volume of 1 N HCL, and absorbance 

was read at 450 nm.

Measurement of HPV-specific antibody response

HPV16 L1 particles produced in SF9 cells (37) were diluted to a concentration of 4 μg/mL 

into 1× PBS and 50 μL was added to each well of a 96-well Immulon 2HB flat bottom 

microtiter plate (Thermo, Pittsburgh, PA). Plates were incubated at 37°C for 2 hours then 

washed three times with 1x PBS followed by the addition of 50 μL blocking buffer (0.5% 

dry milk, 0.1% FBS in 1xPBS) and incubated at 4°C overnight. Plates were washed three 

times with 1× PBS. Experimental samples and controls were diluted 1:100 in dilution buffer 

(0.5% dry milk in 1× PBS). 50 μl of diluted samples were added to the plate in duplicate and 

allowed to incubate for 2.5 hours at RT on a nutator rocker. Plates were washed 5 times with 

1× PBS and incubated 1 hour gently rocking at RT with 50 μL peroxidase conjugated 

donkey anti-mouse IgG in dilution buffer (1:5000) (Jackson ImmunoResearch Laboratories). 

Plates were washed 3 times with 1× PBS and developed in the dark for 45 minutes at RT 

using ABTS substrate (1 mg/mL) (Roche, Indianapolis, IN). Absorbance was read at 405 nm 

with a reference set on 492 nm on a Polarstar Optima plate reader (BMG Labtech, Cary, 

NC). Data points represent the mean of the duplicate values minus the mean of the 

background.

Cytokine detection

Cytokine specific ELISAs were performed on clarified lung supernatants using DuoSet kits 

from R&D Systems (Minneapolis, MN). Levels of IL-4, IL-10, IL-13, IFN-γ, TNF-α, 

MIP-1α, and MIP-1β were measured using the kit protocol. Concentrations of cytokines in 

the lung were calculated by linear regression and expressed as pg/mL.

Measurement of luciferase expression in vivo

Mice were inoculated IVag or IM as described above with 2 × 107 IU of HPV PsV 

encapsidating a plasmid expressing the bioluminescent gene, firefly luciferase (Luc) 

(Promega) (30) or 50 μg of plasmid DNA-Luc. Empty vector-treated animals received 

equivalent amounts of an RFP-expressing plasmid, as naked DNA or encapsidated within 

HPV16. After IM injection in quadriceps, luciferase expression was measured on days 1, 2, 

3, 4, 5, 7, and 14 using the IVIS 100 (Xenogen). Mice were imaged prior to application of 

substrate in order to determine if there was any residual background from the previous day’s 

administration. D-Luciferin Potassium Salt (15mg/mL, Caliper Life Sciences, Hopkinton 

MA) diluted in DMEM was delivered IVag (20 μL) or IM (50 μL). Three minutes post-

administration of substrate, images were captured at medium binning with a 60 second 

exposure. Standardized regions of interest were created around the positive signal and 

photons were measured using Living Image 3.0 software. Data is reported as average 

radiance and plots were generated using GraphPad Prism v5.0.
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Microscopic analysis

Mice were inoculated IVag with HPV16 PsV-encapsidated RFP-expressing plasmid DNA or 

50 μg of naked DNA (pCIR). After two days, reproductive tracts were harvested, frozen, and 

sectioned as previously described (29).

Statistics

Flow cytometry, cytokine, and antibody data were analyzed by one-way ANOVA. Pair-wise 

comparisons were made using the Holm-Sidak, Dunn’s method, or Student T-tests. All 

statistical tests were performed using SigmaStat 3.0 for Windows (Systat Software, San 

Jose, CA; www.spss.com/sigmastat).

RESULTS

Characteristics of the HPV-encapsidated M/M2-expressing DNA

Genes encoding the M/M2 fusion protein were effectively expressed in 293T cells 

transduced with HPV-encapsidated plasmids as demonstrated by Western blot (Figure 1a). 

The standard dose of 5 × 107 IU of HPV PsV-M/M2 contains about 5 ng of reporter plasmid 

DNA as determined by agarose gel electrophoresis (http://home.ccr.cancer.gov/lco/

encapsidateddnaanalysis.htm) (data not shown). Western blot analysis using M- and M2-

specific monoclonal antibodies did not detect M/M2 protein contamination in a standard 

dose of the HPV PsV preparations indicating there was not significant M/M2 protein 

contamination in the HPV vector preparations (Figure 1b).

HPV PsV-based induction of RSV-specific T cell responses

BALB/c mice were immunized either IM or IVag with HPV16 PsV encapsidating plasmid 

DNA expressing a gene that encodes a fusion protein of RSV M and M2 (M/M2). This was 

followed 4 weeks later by another immunization by the same route with the plasmid 

expressing M/M2 encapsidated within heterologous HPV45 PsV to circumvent vector-

neutralizing antibody responses elicited by the priming dose (Figure 1c). Four weeks after 

the second immunization, mice were challenged with RSV IN to probe for vaccine-induced 

priming of T cell responses in the lung. Lung lymphocytes were evaluated on days 4 and 7 

post-challenge (gating shown in Figure 2a). Interestingly, IM immunized as well as IVag 

immunized mice showed evidence of primed T cell responses with about 5% of lung CD8+ 

T cells specific for KdM282–90 by day 4 and between 40% and 60% by day 7 (Figure 2b). 

This compares to no detectable tetramer-specific T cell response by day 4 in empty vector-

immunized mice and about 10% at day 7 (Figure 2b). Therefore, both IM and IVag 

immunized mice were primed for RSV-specific memory CD8+ T cell responses that were of 

greater magnitude and more rapid than in primary RSV infection in which the CD8+ T cell 

responses typically peak between days 7 and 10.

HPV PsV induction of RSV- and HPV-specific antibody responses

M/M2-specific antibody was measured by kinetic ELISA in serum prior to challenge and in 

serum, nasal wash, vaginal wash, and bronchoalveolar lavage (BAL) on day 7 post 

challenge (Figure 3). Mice immunized IVag had the greatest serum M/M2-specific antibody 
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response which was biased toward IgG2a rather than IgG1 (Figure 3a). Post-challenge, 

IVag-immunized mice had the greatest boost in antibody response, again strongly IgG2a 

biased. Mock-immunized mice undergoing primary RSV infection did not have a significant 

antibody response detected by day 7 post-challenge. Typically in primary infection, antibody 

is not easily detectable until day 14 and does not plateau until about 6 weeks post-challenge. 

The antibody detected in bronchoalveolar lavage fluid had the same pattern as that in serum 

(Figure 3b), and the nasal wash had only marginally detectable levels of antibody by day 7 

post-challenge in any group (Figure 3c). RSV M/M2-specific vaginal wash antibody was 

only detected in IVag-immunized mice (Figure 3d).

Cytokine production in lungs post-challenge

Cytokines in the supernatants from ground lungs were measured by EIA on days 4 and 7 

post-challenge. Production of cytokines commonly associated with activated CD8+ T cells 

responding to RSV infection including IFN-γ, MIP-1α, and MIP-1β were much higher in 

immunized mice at day 4 and by day 7 were reduced to levels less than or equal to those 

found in empty vector-immunized mice (Figure 4). This suggests vaccination by either the 

IM or IVag route primed T cells for a response that was both activated and regulated earlier 

than mice undergoing primary infection. In addition, none of the cytokines associated with 

Th2 responses including IL-4, IL-10, and IL-13 (data not shown) were detectable in lung 

supernatants indicating the T cell response in lung was composed primarily of Th1 CD4+ 

and CD8+ T cells.

HPV PsV-encapsidated DNA induces a different pattern of immune response than naked 
DNA

Next we asked whether the HPV PsV-encapsidated plasmid could induce a significant 

immune response after a single immunization and whether IVag-delivered naked DNA was 

immunogenic. In this experiment H-2b/d hybrid CB6F1/J were used so that T cell responses 

could be measured by both KdM282–90 and DbM187–195 tetramers. Mice were immunized 

with a single IVag inoculation and challenged 4 weeks later. Blood tetramer responses for 

the dominant M282–90 response were detected at a low level 10 days after a single IVag 

immunization with HPV16 PsV-M/M2 and DNA-M/M2 (data not shown). HPV16 PsV-

encapsidated DNA primed for high magnitude M282–90 and M187–195-specific T cell 

responses. A single dose of 50 μg naked DNA IVag also primed for a strong T cell response 

in the lung 7 days post-challenge (Figure 5). However, the HPV16 PsV-immunized mice 

had a more balanced response between the dominant M282–90 and the subdominant 

M187–195 epitope relative to DNA-primed mice where the epitope response disparity was 

greater. The ratio of the M282–90 to M187–195-specific tetramer responses for mice 

immunized with naked DNA, HPV PsV-encapsidated DNA, or empty vector was 12+/−3.5, 

4.3+/−0.3, and 4.4+/−0.8, respectively (n=5 per group, p=0. 06). We have previously seen 

this effect associated with the frequency of FoxP3+ T cell responses (38), and indeed the 

frequency of FoxP3+ CD4 T cells in the lungs of HPV PsV-primed mice is greater than in 

DNA-primed mice (data not shown). Another difference in the immune response pattern was 

that naked DNA-immunized mice did not have any detectable M/M2-specific antibody 

response in serum prechallenge, while mice immunized with a single dose of HPV16 PsV-

encapsidated DNA had detectable antibody (Figure 6a). In contrast to BALB/c mice 
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immunized with two doses of HPV PsV vectors (Figure 3a), the relative induction of M/M2-

specific IgG1 and IgG2a after a single dose of HPV PSV M/M2 in the hybrid mice prior to 

challenge was more balanced, although post-challenge the response was predominantly 

IgG2a. In samples derived from mice on day 12 post-challenge M/M2-specific antibody was 

detected in BAL, nasal wash, and vaginal wash only in the HPV16 PsV-immunized mice 

(Figure 6b-d). RSV-specific nasal wash antibody was detected at significantly higher levels 

in HPV16 PsV-immunized mice indicating that prior priming of the vaginal mucosa with 

HPV PsV elicited a RSV-specific recall response in the nasal mucosa post-challenge as well 

as in vaginal mucosa. In both nasal and vaginal wash fluids post-challenge there was a 

greater amount of total IgG that correlated with the M/M2 specific responses in those 

samples (Figure 6). This suggests that IVag immunization resulted in local and systemic 

immunological events that increased transudation in the vagina and nose after RSV infection 

of the airway. This did not occur in DNA-primed mice. M/M2-specific IgA was detected in 

both nasal (Figure 7a) and vaginal wash (Figure 7b) post-challenge in HPV16 PsV-M/M2 

immunized mice, but not in mice immunized with naked DNA. Total IgA was similar in 

samples from both immunized and empty vector-immunized groups, suggesting the M/M2-

specific IgA was more likely to be locally produced and not the result of transudation.

HPV PsV encapsidation improves the potency of DNA immunization

Next we asked how the relative potency of a single immunization with HPV vector 

compared to naked DNA immunization. It is estimated that in a standard dose of HPV PsV 

particles there is about 5 ng of plasmid DNA. Therefore, BALB/c mice were immunized 

once IVag with 5 ng, 500 ng, or 50 μg (50,000 ng) of naked DNA or 5×107 IU HPV PsV-

encapsidated DNA particles. A single dose of both HPV16 and HPV45 PsV vectors were 

evaluated independently. Controls included a empty vector-immunized group and a group 

that received 1 μg of M/M2 protein in combination with a nonexpressing plasmid. This 

group was included to account for the possibility that some M/M2 protein produced during 

transfection might be contaminating the HPV particle preparations, although WB analysis 

could not detect M/M2 present in a single dose of vaccine (Figure 1b). Mice were 

challenged with RSV IN 4 weeks after immunization and KdM282–90 tetramer-specific 

CD8+ T cell responses were measured in lung on day 7. The HPV16 and HPV45 PsV-

immunized mice were the only ones with evidence of significant RSV-specific T cell 

priming (Figure 8a). This pattern of response was also seen in measurements of serum 

antibody, with only HPV PsV-immunized mice having detectable levels of antibody 

prechallenge (Figure 8b). By day 7 post challenge (Figure 8c) it is clear that HPV PsV 

vector primed for a significantly greater antibody response. These data suggest that HPV 

PsV encapsidation of plasmids improved the efficiency of delivery, expression, and 

immunogenicity of the vaccine antigen in target cells.

Intravaginal HPV delivery of plasmids results in high levels of self-limited antigen 
expression

To better understand how the magnitude and duration of antigen expression was affected by 

the delivery approach, plasmids were constructed to express firefly luciferase, and in vivo 

light emission was measured after IM and IVag delivery of HPV PsV or naked DNA. 

Because signal is lost within a few hours of substrate administration, we were able to image 
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the same mice for each of the daily time points. Luciferase expression from IVag-

administered HPV PsV was significantly higher than that observed with naked DNA 

delivery at days 1 and 2 (p < 0.001 by ANOVA) (Figure 9). Expression from HPV PsV IVag 

delivery peaked within two days and returned to background levels by day seven. 

Expression from naked DNA was much lower, despite delivery of ~10,000-fold more copies 

of the same plasmid, peaking on day one and returning to near background levels by day 

three. Although expression from IVag naked DNA was relatively low, it was significantly 

above background (p < .05 by Dunns Method). The initial strong burst of antigen after IVag 

instillation of HPV PsV could account for the differences observed in the immunological 

responses between HPV PsV and naked DNA.

Mice inoculated IM with naked DNA exhibited a higher level of luciferase expression than 

those inoculated with HPV PsV luciferase-expressing plasmids during the first 7 days after 

injection (p<0.001 by ANOVA). Luciferase expression after IM delivery of naked DNA 

peaked during the first week and then plateaued at about 50% of peak. In contrast, IM 

delivered HPV PsV resulted in delayed expression that did not reach a similar level of 

expression compared to naked DNA until about day 7. Surprisingly, luciferase expression 

continued to slowly increase over subsequent weeks in animals receiving HPV PsV-

encapsidated DNA IM.

To better understand the basis for improved immune responses from IVag delivery of HPV 

PsV-encapsidated DNA, naked DNA plasmids expressing red fluorescent protein (RFP) or 

the same plasmid encapsidated in HPV PsV were intravaginally instilled into mice. On day 

2, genital tracts were removed, frozen, and sectioned for evaluation of RFP signal as a 

readout for gene transduction by fluorescent microscopy. RFP-positive epithelial cells were 

easily identified in the HPV PsV-encapsidated DNA recipients (Figure 9b). Very rare cells 

could be identified in the naked DNA recipients. However, the morphology of RFP-positive 

cells suggests they are also epithelial cells (Figure 9c). Nevertheless, it is possible that other 

cells such as mobile antigen presenting cells had already left the tissue. These data are 

consistent with the light emission data, and suggest that the higher magnitude of gene 

delivery to and antigen expression in keratinocytes is a major factor in the immunogenicity 

of HPV PsV delivery of DNA.

DISCUSSION

Mucosal immunization may be important for protection against viral pathogens like HIV, 

HSV, or RSV. While parenteral immunization can elicit protective immune responses in 

animal models of these virus infections, effective immunization of humans has been 

difficult. Each of these pathogens has multiple features that make them difficult vaccine 

targets (39), but one feature they share in common is that transmission usually occurs across 

a mucosal surface. Mucosal immunization against viruses has traditionally been 

accomplished by using live attenuated viruses. However, for viruses like HIV or HSV that 

can cause latent or persistent infection, or RSV that infects neonatal airways, the use of 

replication-competent virus presents a number of safety concerns. Gene-based vector 

delivery of vaccine antigens affords an option for eliciting immune responses against 

authentic antigenic structures while avoiding some of the liabilities of the native viral 
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pathogen. However, there have been relatively few options for direct mucosal immunization 

with gene-based vaccine vectors described, and they have primarily been replication-

competent vectors based on adenovirus (40), picornavirus (41), rhinovirus (42), or 

paramyxovirus (43, 44). Replication-defective poxvirus and adenovirus vectors have been 

delivered mucosally to humans, but with limited success (5, 6). Here we describe the 

mucosal delivery of DNA facilitated by HPV PsV encapsidation. IVag delivery of HPV 

PsV-encapsidated DNA induces both T cell and antibody responses to the antigen encoded 

by the plasmid. HPV PsV encapsidation appears to increase the relative potency of the DNA 

vaccine based on gene copies delivered, and induces stronger antibody responses than DNA 

alone.

IVag delivery was more immunogenic than IM. Typically replication-defective gene-based 

vectors have been less potent when delivered mucosally than when delivered parenterally. 

The mucosal advantage observed in this report may be due to the natural tropism of HPVs 

for basal epithelium(7), but may also reflect access to other antigen presenting cells in the 

mucosa that are not present in the muscle. Alternatively, there may be selected cells in the 

mucosa that can recognize the pathogen-associated molecular patterns (PAMPs) in HPV 

resulting in TLR activation and an adjuvant-like effect that does not happen in the muscle 

environment. The higher ratio of IgG1 to IgG2a and the reduced ratio of KdM282–90 to 

DbM187–195 tetramer responses in the IM immunized group compared to the IVag 

immunized group suggests that a different pattern of CD4 T cell response was elicited by the 

two routes. Higher IgG1 is associated with IL-4 production from Th2 responses, and a lower 

disparity in the epitope hierarchy is associated with Treg responses (38), and both suggest 

differences in antigen presentation occurred between IM and IVag administered particles.

Delivery of naked DNA to the disrupted epithelium was also immunogenic, although the 

copy number of the gene encoding the M/M2 antigen was ~10,000-fold higher in the naked 

DNA dose than in a dose of HPV-encapsidated plasmids. This and recent in vivo studies 

showing improved potency of DNA immunization by electroporation(45) suggests that the 

major limitation for DNA vaccination is at the level of delivery into cells and not at one of 

the many downstream points ultimately required for expression of the vaccine antigen.

IVag delivery of naked DNA was unable to elicit M/M2-specific antibody responses. In 

contrast, HPV-encapsidated DNA delivered IVag induced antibody responses in the vaginal 

epithelium and primed for antibody responses in the upper airway. This could involve 

delivery to alternative targets cells and consequently different antigen processing and 

presentation pathways, a different pattern of TLR stimulation, or a different threshold of 

antigen expression needed for T cell vs. antibody induction.

We asked whether the magnitude and kinetics of vaccine antigen availability could explain 

the distinct properties in the immune response elicited by DNA delivered IVag or IM, either 

encapsidated with HPV PsV or not. Using luciferase expression as a surrogate for vaccine 

antigen expression (46), we found that IVag delivery of DNA by HPV PsV resulted in 

significantly higher antigen production, but for a brief circumscribed period of time. This 

transient expression pattern may be attributed to the tropism of HPV targeting basal 

epithelial cells, which would be expected to differentiate and be sloughed off into the 
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vaginal lumen over the course of about five days. Based on the light emission and RFP 

expression data, we favor the explanation that IVag HPV PsV improves gene delivery and 

the magnitude of antigen expression and that antibody is more dose dependent than T cell 

responses.

IM delivery of the HPV PsV-encapsidated DNA had weak expression in the early days after 

inoculation. Delivery of naked DNA resulted in better expression when delivered IM than 

mucosally and luciferase expression was prolonged. However, the level of luciferase 

expression was much lower than with HPV PsV-encapsidated DNA, and the delayed 

clearance suggested different target cells were transduced. IVag expressed antigen appears 

to be immediately available in basal epithelial cells, and based on its rapid clearance, is 

probably cross-presented by dendritic cells in the mucosa. IM delivered HPV-encapsidated 

plasmid results in slower more cumulative production of antigen, but the target cell for 

infection and method of antigen presentation are unclear.

The demonstration of IgA in both nasal and vaginal wash indicates that HPV PsV delivery 

induced a mucosal antibody response to the antigen encoded by the encapsidated plasmid, 

and that the vaginal mucosa serves as a local inductive site for the response. In addition to 

direct induction of IgA in vaginal mucosa there was evidence that IgA responses in nasal 

secretions were primed by IVag immunization suggesting mobility of the adaptive mucosal 

response. It was also notable that total IgG was increased in nasal and vaginal washes post-

challenge. The evidence of increase transudation at the site of infection and at the site of 

original immunization suggests that immune effectors were activated at both sites during 

infection of the airway, and that HPV PsV vector immunization of the vaginal mucosa can 

induce locally persistent adaptive responses.

HPV PsV-delivered IVag primes for a similar pattern of cytokine response in lung after 

RSV challenge as other parenterally administered gene-based vectors with no evidence of 

Th2 cytokines. For RSV in particular and for viral vaccines in general, it is desirable to 

avoid the induction of Th2 responses. The cells and effector molecules associated with Th2 

responses can lead to diminished CD8 T cell function, altered antibody isotypes, and 

pathology resembling allergic inflammation (47, 48). This pattern of response has been 

associated with reduced efficacy and vaccine-induced immunopathology (49).

The major limitation of this approach is that disruption of the vaginal epithelium is required 

for HPV to access its target cells. Nonoxynol-9 (N9) is a licensed, over the counter, 

spermicide that was used to disrupt the epithelium. It may be clinically acceptable for 

limited use prior to a vaccination, although repeated use would be unacceptable because of 

the increased susceptibility to HIV-1 and perhaps other sexually transmitted diseases (50). In 

this test-of-concept study, mice were also pretreated with Depo-Provera to thin the vaginal 

epithelium prior to N9 treatment, and this would not be a clinically acceptable component of 

a vaccination regimen. Therefore, advancing this concept will require the development of a 

clinically acceptable approach for providing HPV transient access to its target cells in the 

basal epithelium.
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We have described a vaccine delivery approach using HPV PsV-encapsidated plasmid DNA 

that results in significant levels of mucosal antigen expression for a brief period of time and 

is likely to be inducing immune responses primarily through cross-presentation of 

transduced vaginal epithelium. It has the capacity to induce immunity not only against 

antigens expressed from the plasmid, but may also provide immunity against the HPV 

serotype used for the delivery. This is a novel vaccine approach that merits additional 

investigation especially for pathogens that infect across mucosal surfaces, and particularly 

for sexually transmitted diseases in women.
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Figure 1. M/M2 expression and characterization of HPV PsV particles
To confirm the integrity of each vector construct M/M2 expression was tested in vitro in 293 

T cells after 24 hours. p8400 VRC CMV/R plasmid was evaluated using the Invitrogen 

Lipofectamine 2000 (Carlsbad, CA) protocol. Replication-defective recombinant adenovirus 

serotype 5 (rAd5) and HPV-encapsidated DNA were used at an MOI of 5. Cell lysates in 

Invitrogen NuPAGE LDS sample buffer (Carlsbad, CA) were run on 4–12% Bis Tris gels 

and stained with a polyclonal RSV primary antibody (Maine Biotechnology, Portland, ME) 

and peroxidase-conjugated affiniPure Rabbit anti-goat IgG (H+L) secondary antibody 

(Jackson ImmunoResearch Labs, West Grove, PA) (a). To determine the extent of HPV 

particle contamination with M/M2 protein, Western blot analysis was done comparing a 

single dose of the HPV particles with specified amounts of purified recombinant M/M2 

protein. The only difference from the Western blot procedure stated above was the use of 

murine monoclonal antibodies to M and M2 as the primary and peroxidase-conjugated goat 

anti-mouse IgG (H+L) antibody (Jackson ImmunoResearch Labs, West Grove, PA) as the 

secondary label (b). To assess vector-specific immunity induced by the vaccination 

approach, HPV16-specific IgG was measured by standard ELISA (c). HPV-specific 
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antibodies were induced by a single IVag dose of the vaccine vector, HPV PsV-M/M2, and 

the empty vector control, HPV PsV-luciferase.

Graham et al. Page 18

Mucosal Immunol. Author manuscript; available in PMC 2011 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Tetramer responses
The gating strategy for T cell analysis by flow cytometry is shown in panel (a). First, 

lymphocytes were selected by forward and side-scatter. Next, singlets were selected, then 

dead cells that were ViVid positive were excluded. Next, we selected CD8+CD3+ cells, the 

excluded CD4+ cells before gating on tetramer-specific responses. KdM282–90–tetramers 

were conjugated with PE, and DbM187–195–tetramers were conjugated with APC allowing 

them to be analyzed together in mice with both H-2d and H-2b alleles. We first evaluated 

BALB/c (H-2d) mice 4 weeks after immunization with 5×107 IU of HPV16-M/M2 IVag or 

IM. Secondary immunizations of 5×107 pfu HPV45-M/M2 were given at week 4 by the 

same route. Negative control mice received 5×107 IU HPV-luciferase IVag. All mice were 

treated with Depo-Provera (4 days) and N-9 (5 hours) prior to IVag immunization. RSV IN 

challenge occurred at week 8. On days 4 and 7 following challenge with 107 pfu of A2 strain 

of RSV, mice were euthanized; lungs were harvested, and stained for KdM282–90 tetramer-

specific CD8+ T cells. Day 4 (light grey) and 7 (black) post-challenge KdM282–90 tetramer-

specific responses were higher in the immunized mice indicating significant priming. ** 

p≤0.001; *** p≤0.0001 by one-way ANOVA and T-test compared to empty vector-

immunized control. N = five mice per group.
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Figure 3. Antibody responses
Immunization schedule was completed as described for figure 1, and samples were analyzed 

for IgG1 and IgG2a M/M2-specific antibody responses by kinetic ELISA in serum 3 days 

prior to challenge and 7 days following challenge (a). Antibody was measured in mucosal 

secretion 7 days after nasal challenge with RSV. All immunized and empty vector-

immunized mice were infected with RSV. Post-challenge IgG1 and IgG2a M/M2-specific 

antibody responses are shown for bronchoalveolar lavage (b), nasal wash (c) and vaginal 

washes (d).

NS=p>0.05; * p≤0.01; ** p≤0.001; *** p≤0.0001 by one-way ANOVA and T-test compared 

to empty vector-immunized control group. N=5 mice per group at each time point.
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Figure 4. Cytokine detection
Immunization schedule was completed as described for figure 1. On days 4 and 7 following 

challenge, IFN-γ, MIP-1α, and MIP-1β cytokines were detected in lung supernatants by 

EIA. IL-4, IL-10, and IL-13 were below the limit of detection (20 pg/mL). * = p≤0.01 and 

** = p≤0.001 by T-test compared to empty vector-immunized control group. N=5 mice per 

group at each time point from one independent experiment.
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Figure 5. Potency of T cell induction by HPV PsV-encapsidated DNA
CB6F1/J mice were immunized IVag with 5×107 IU HPV16-PsV-M/M2 or 50 μg naked 

M/M2 DNA. Negative control mice received 5×107 IU HPV16 PsV-luciferase. All mice 

were challenged IN with RSV at week 4. DbM187–195 (red) and KdM282–90-specific (blue) 

CD8+ T cells were detected by tetramer staining in lungs on day 7 post-challenge. * = 

p≤0.01 and ** = p≤0.001 by one-way ANOVA and T-test compared to empty vector-

immunized mice. N=5 mice per group from one independent experiment.
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Figure 6. Induction of IgG by HPV-encapsidated DNA
Following immunization with a single dose of HPV16 PsV-encapsidated M/M2-expressing 

DNA, naked M/M2-expressing DNA or empty HPV16 PsV capsids M/M2-specific IgG1 

and IgG2 levels were evaluated by kinetic ELISA in serum 3 days prior to challenge (a). 

RSV M/M2-specific IgG isotypes were also measured in BAL (b), nasal washes (c), and 

vaginal washes (d) on day 12 post-challenge. Total IgG was measured by ELISA in both 

nasal and vaginal washes (c and d, panels on far right). P values are derived from one-way 

ANOVA (NS =p>0.05; + ≤0.05; * ≤0.01; ** ≤0.001; *** ≤0.0001). The data represent each 

individual sample from each animal from one independent experiment.
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Figure 7. Induction of IgA by HPV-encapsidated DNA
Mice immunized with a single dose of HPV16 PsV-encapsidated M/M2-expressing DNA, 

naked M/M2-expressing DNA, or empty HPV16 PsV capsids were challenged with RSV 

intranasally. Nasal washes (a) and vaginal washes (b) were evaluated for M/M2-specific IgA 

or total IgA by ELISA on day 12 post-challenge. P values are derived from one-way 

ANOVA (NS= p>0.05; + ≤0.05; * ≤0.01; ** ≤0.001). N=5 mice per group from a single 

independent experiment.

Graham et al. Page 24

Mucosal Immunol. Author manuscript; available in PMC 2011 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. HPV PsV encapsidation improves delivery of plasmid DNA
BALB/c mice were immunized once IVag with a single 5×107 IU dose of HPV16 PsV-

M/M2, 5×107 IU HPV45 PsV-M/M2, 5 ng 500 ng, or 50 μg naked M/M2 DNA, or 1μg 

M/M2 purified protein. Negative control mice received 5×107 IU HPV-luciferase IVag. All 

mice were challenged IN with RSV at week 4. Seven days after challenge, M and M2-

specific CD8+ T cells in lung were measured by tetramer staining (a) and M/M2-specific 

IgG1 and IgG2 serum responses were measured by kinetic ELISA prechallenge (b) and post-

challenge (c). P values represent one-way ANOVA and selected comparisons by T-test (+ = 

p≤0.05; * ≤0.01; **** ≤0.00001). N=5 mice per group for each postchallenge timepoint 

from one independent experiment.
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Figure 9. Temporal expression of HPV-PsV-delivered antigen
Mice were inoculated IVag (□, △) or IM (■, ▲) with either pClucF (firefly luciferase) 

plasmid DNA (■, □) or HPV16 pseudovirions-encapsidated pClucF (△, ▲). Negative 

control mice received a 1:1 combination of naked and PsV-encapsidated plasmid expressing 

red fluorescent protein (RFP) IVag,○ IM, ●). Luciferin substrate (15 mg/ml) was 

administered IVag (20 μl) or IM (50 μl) and after three minutes mice were imaged for 

bioluminescence in an IVIS 100 for 60s with medium binning. The data was quantified as 

the average radiance within a standardized region of interest using Living Image software. 

Data represent 5 mice per group and are representative of two independent experiments (a). 

In parallel experiments, mice were inoculated with an RFP-expressing plasmid or HPV PsV 

encapsidating the same plasmids. After two days genital tracts were removed and sectioned 

transversely to define the location of RFP expression. Delivery by HPV16 PsV 

encapsidation resulted in a higher frequency of transduction with RFP-expression detected 

in every tissue section examined (between 50–150 infectious events per section) (b), while 

cells transduced by delivery of naked DNA plasmid were rare; only two infected cells in all 

sections from the 4 mice examined (c).
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