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Summary 
We investigated the biological role of the human tumor necrosis factor p75 (hTNF-K75), making 
use of the species specificity of TNF responses in murine (m) T cell lines. Several TNF-mediated 
activities on mouse T cells, such as cytokine induction or proliferation, showed a 100-500-fold 
difference in spedfic biological activity between mTNF and hTNF. After transfection of hTNF- 
K75 eDNA in a rat/mouse T cell hybridoma (PC60), however, the 100-fold lower specific biological 
activity of hTNF was converted to the same specific biological activity as mTNF. The TNF- 
mediated induction of granulocyte/macrophage colony-stimulating factor was strongly synergized 
by the addition of interleukin 1. In the presence of the latter cytokine, ligand-competing monodonal 
antibodies against hTNF-K75 (utr-1, utr-2, utr-3) were agonistic on transfected PC60 cells. This 
agonistic activity was further enhanced by crosslinking with sheep anti-murine immunoglobulin 
antibodies. These data provide direct evidence for a functional role of TNF-R75, without ligand- 
dependent TNF-R55 involvement, in the induction of cytokine secretion in T cells. 

T NF is a pleiotropic cytokine, mainly produced by mono- 
cytes, macrophages, and T lymphocyte subsets. Its many 

different activities in inflammatory and immunological reac- 
tions, in septic shock, or in autoimmune diseases have been 
reviewed (1-5). Two distinct TNF receptors of 55-60 kD 
(TNF-R55) and 75-80 kD (TNF-K75) have been identified 
(6-8) and molecularly cloned in mice and humans (9-14). 
The amino acid sequence and a four-domain pattern charac- 
terized by a six-cysteine repeat motif of the extracellular parts 
of TNF-K55 and TNF-R75 are fairly homologous and have 
similarities also with those of other receptors, such as nerve 
growth factor receptor (NGF-R), CD40, CD27, and Fas an- 
tigen (15), and thus define a new receptor gone family (16). 
However, there is a remarkable absence of sequence similarity 
between the intracellular regions of the two TNF-Rs, sug- 
gesting different signal transduction pathways and functions. 

TNF-R55 seems to be ubiquitous and occurs on, among 
others, epithelial cells and fibroblasts. Both polyclonal and 
monoclonal antibodies against human (h)lTNF-K55 have 
been shown to act agonistically and to exert a number of 
TNF activities, such as cytotoxicity, fibroblast proliferation, 

1 Abbreviations used in this paper: h, human; m, murine. 

resistance to chlamydiae, activation of NF-rB, and synthesis 
of prostaglandin (17-19). Using polydonal antibodies binding 
to murine (m)TNF-R55, it was demonstrated that TNF-K55 
triggering is sui~icient to mediate cytotoxicity and to induce 
MnSOD mRNA (20). The expression of TNF-R75 has been 
investigated in cells of hematopoietic origin, such as T cells 
(12, 21) and B cells (22). 

There is little, if any, spedes specificity between mTNF 
and hTNF in TNF-K55-mediated activities. In contrast, 
mTNF-K75 is only triggered by mTNF (13) and not by hTNF, 
which explains the species specificity of, for example, several 
T cell responses to mTNF (23-25). To more specifically in- 
vestigate the role of TNF-K75 and to exclude that a bio- 
chemically undetected, small number of TNF-R55 contributes 
to the cellular response thought to depend on TNF-R75, 
we used the rat/mouse T hybridoma PC60 (26), transfected 
with hTNF-R75 eDNA. In previous studies, the involvement 
of TNF-R75 has been demonstrated indirectly by the use of 
antagonistic anti-hTNF-R75 mAb, which in all cases resulted 
in at most a partial neutralization of the TNF-dependent bi- 
ological response (19, 22, 27). Recently, an agonistic activity 
of a polyclonal anti-mTNF-R75 antiserum in the stimula- 
tion of the proliferation of murine thymocytes and of a cyto- 
toxic T cell line (CT6) has been described (28). Interestingly, 

1015 J. Exp. ivied. �9 The Rockefeller University Press �9 0022-1007/92/10/1015/10 $2.00 
Volume 176 October 1992 1015-1024 



proliferative signals are mediated independently by both TNF- 
R75 and TNF-R55 in human mononudear cells (29). 

We report here that transfection of hTNF-R75 cDNA 
in a rat/mouse T cell hybridoma is sufficient to render these 
cells responsive to hTNF. This specifically hTNF-R75-mediated 
stimulation leads to synthesis of a set of cytokines, such as 
GM-CSF. This activity could also be mimicked by R75 cross- 
linking by means of anti-hTNF-R75 mAb. 

Materials and Methods 
Cytokines, Assays, and Antibodies. Purified Escherichia coli-de- 

rived hTNF and mTNF were prepared in our laboratory and had 
a specific biological activity of 0.94 and 2.24 x 108 IU/mg, 
respectively, in a standardized cytotoxic assay on WEHI-164 c113 
cells (30). Recombinant mGM-CSF was generously provided by 
Dr. J. DeLamarter (Glaxo IMB, Geneva, Switzerland) and had a 
specific biological activity of ,02.5 x 108 U/mg in the FDCpl 
proliferation assay (31, 32). Recombinant hIb13 (5 x 108 U/rag) 
was provided by Dr. A. Shaw (formerly of Biogen, Geneva, Swit- 
zerland) and was quantified by the RPMI 1788 proliferation assay 
(33). In all assays, 1 U was arbitrarily defined as the amount of 
cytokine required to induce half-maximal proliferation, except for 
the WEHI-164 c113 test in which international standards for TNF 
quantification (IU/ml) were used (obtained from the National In- 
stitute for Biological Standards and Control, Potters Bar, UK). 

Anti-hTNF-R55 (htr-9) and anti-hTNF-R75 mAb (utr-1, utr-2, 
utr-3, utr-4, utr-10) have been described elsewhere (7, 8); they all 
belong to the IgG1 isotype. Sheep anti-mlg (SAM) (Sera-Lab, 
Crawley Down, UK) was freed of NaN3 by dialysis against PBS. 

Cells. The hybridoma PC60.21.14.4 (PC60) is derived from a 
fusion between an IL-2-dependent murine CTL line B6.1SF.1 and 
a rat thymoma (C58.NT)D (26). LBRM-33-1A5, a routine T cell 
lymphoma (34); NOB-l, a murine thymoma (35); CT6, an IIr 
dependent murine cytotoxic T cell line (25); WE17/10, an II~2- 
dependent human T cell line (36); and PC60 cells were cultured 
in RPMI 1640 supplemented with 10% FCS, penicillin G (50 
U/ml), streptomycin sulfate (50/~g/ml), t-glutamine (2 mM), so- 
dium pyruvate (1 mM), and 2-ME (5 x 10 -s M). The factor- 
dependent FDCpl cells were grown in the same medium, but sup- 
plemented with 10% WEHI-3 supernatant as a source of mlb3. 

DNA Transfection. Plasmids were constructed and prepared by 
standard techniques. HTNF-R75 cDNA (12) was cloned as a 
HindlII-Asp718 1,401-bp restriction fragment in pSV25S, a eukary- 
otic expression vector containing the SV40 early promoter, poly- 
adenylation, and splicing signal (pSV25S-HTNFR75). As selec- 
tion plasmid for the PC60 cell transformation, we used pBSAppac 
(37), which contains the gene for N-acetyl puromycin transferase 
under control of the early SV40 promoter. PC60 cells were trans- 
fected by electroporation (Gene Pulser Apparatus; Bio-Rad Labora- 
tories, Richmond, CA). Exponentially growing cells were washed 
once in cold transfection buffer (PBS without MgC12 and CaCI~) 
and 5 x 108 cells were resuspended in 800/~1 of the same buffer. 
EcoRI-linearized pSV25S-HTNFR75 (10/~g/800 #1) and pBSAppac 
(1 ?tg/800/~1) plasmids were added to the cell suspension and kept 
for 5 min on ice. The mixture was aspirated into an ice-cooled 4-mm 
dectroporation chamber (Bio-Rad Laboratories) and exposed to a 
single voltage pulse (1280 V and 25 #F). Cells were kept for an- 
other 10 min on ice, resuspended in 100 ml complete medium at 
room temperature, and put in culture. 3 d later, puromycin (Sigma 
Chemical Co., St. Louis, MO) was added at a final concentration 
of 3/~g/ml. 18 d later, ceils were screened for expression of hTNF- 

R75 by flow fluorocytometric analysis (25-42% of the pool of 
cotransfeeted and antibiotic-selected PC60 cells were positive). Next, 
cells were subdoned by limiting dilution. Even after 2 mo of cul- 
turing in the absence of further selection for puromycin resistance, 
most of the transfected PC60 clones showed stable expression of 
hTNF-R75. 

Flow Fluorocytometry. Transfectants were stained for 30 min at 
4~ with mAb against hTNF-R75 (0.4/zg utr-1/5 x 10 s cells 
in 200 #1), followed by fluorescein-conjugated SAM (Sera-Lab), and 
analyzed with an Epics 753 equipped with an argon-ion laser 
(Coulter Immunology, Hialeah, FL). 

Induction of GM-CSF in PC60 Cells. Previously, we have demon- 
strated that rat GM-CSF is the most abundantly produced cytokine, 
of a series tested, after induction of PC60 cells (32). Induction ex- 
periments were performed in 96-well microtiter plates. 3 x 104 
PC60 cells/well were exposed to a serial dilution of mTNF or hTNF, 
in the absence or presence of a constant amount of synergistically 
acting hlL-l~ (1 ng/ml). When antagonistic or agonistic activities 
of anti-hTNF-R75 mAb (utr-1, utr-2, utr-3, utr-4, utr-10) were 
investigated, 3 x 104 hTNF-R75-expressing PC60 cells/well were 
preincubated for 1 h at 4~ with serial dilutions of the abovemen- 
tioned mAb. Then, serial dilutions of hTNF or crosslinking SAM 
were added. After 24 h of incubation, supernatants were tested 
for GM-CSF activity. 

Radiolabeling of TNE 12SI-mTNF and I~SI-hTNF were prepared 
with Iodogen iodination agent (Pierce Chemical Co., Rockford, 
IL). A specific radioactivity of 10-30 #Ci/#g was routinely achieved 
and its biological activity, normally between 50 and 100% of starting 
material, was assessed in the cytotoxic assay on WEHI-164 c113 
cells (18). The labeled TNF was separated from unincorporated label 
on a G25 column (PD10; Pharmacia LKB Biotechnology, Upp- 
sala, Sweden), equilibrated with PBS-A (PBS without CaC12 or 
MgCI2) containing 0.25% gelatin and 50 #g/ml gentamycin. 

ScatchardAnalysis. Serial dilutions of labeled TNF (10-200 pM 
for mTNF and 10-2,000 pM for hTNF) were added to 2 x 106 
cells in a final vol of 1 ml (PBS-A, 0.5% BSA, 0.02% NAN3) and 
left for 3 h at 4~ Background binding was measured in the pres- 
ence of a 150-fold molar excess of cold ligand. Cells were washed 
once and bound ligand was determined by pelleting the cells through 
a silicon oil/para~n cushion (84:16) and cutting off the tip of the 
tube for counting the radioactivity. 

Results 

TNt~mediated Activities on Murine T Cell Lines Show a Strong 
Species Specificity. We tested a pand of routine T cell lines 
for their responsiveness to mTNF and hTNF. LBRM-33-1A5, 
a murine T cell lymphoma (34), and NOB-l, a murine thy- 
moma (35), were tested for TNF-mediated induction of IL-2; 
PC60 ceils, a rat/mouse T hybridoma (26), were tested for 
TNF-driven GM-CSF secretion, and CT6 cells (25) weTe tested 
for TNF-dependent proliferation. In all four T cell lines the 
specific biological activity of mTNF was between 100- and 
500-fold higher than that of hTNF, whereas the cytotoxic 
activity on L929 cells of the same TNF preparations only 
indicated a three-fold difference. Although we did not detect 
specific binding with lzSI-hTNF in these murine T cells, 
hTNF exerted some minor bioactivity (Table 1). In contrast 
to Ranges et al. (25), we observed some minor biological 
activity of hTNF on CT6 proliferation. These observations 
most probably reflect a very low expression of endogenous 
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Table 1. Specific Biological Activities and Binding of mTNF and hTNF on Several Murine T Cell Lines 

Specific biological activity Binding 

Cells Assay system mTNF hTNF 12SI-mTNF 12SI-hTNF 

U/mg M 
L929 Cytotoxicity 7.7 x 107 2.2 x 107 5.3 x 10 TM (217) 8.0 x 10 -1~ (383) 
WE17/10 - - - 1.6 x 10 -1~ (636) 1.0 x 10 -1~ (757) 
PC60 GM-CSF induction 3.3 x 104 2.5 x 102 5.0 x 10 TM (430) No binding* 
LBRM IL-2 induction 1.0 x 105 1.0 x 103 1.3 x 10 TM (605) No binding* 
NOB-1 IL-2 induction 5.0 x 103 1.0 x 103 3.2 x 10 TM (1,092) No binding* 
CT6 Proliferation 5.0 x 10 s 1.0 x 103 2.0 x 10 TM (1,000)* No binding* 

TNF-mediated L929 cytotoxicity was performed in the presence of 1 #g/ml actinomycin D. 18 h later, viability was measured by staining with 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyhetrazolium bromide (MTT; 53). GM-CSF secretion by PC60 cells was determined as described in Fig. 3. 
IL-2 induction in LBRM of NOB-1 cells was described previously (32). CT6 proliferation was performed as described (25). Specific biological activi- 
ties were calculated on the basis of the half-maximal response induced by mTNF or hTNF. Corresponding amounts on mTNF and hTNF response 
curves are defined as 1 U/ml (see also Fig. 3). Characterization of the TNF-R by binding: Kd-vahes and number of TNF-binding sites (in paren- 
theses) were calculated from Scatchard analyses of specific binding data. 
* Concentrations up to 5 nM lzSI-hTNF were used. 
t Data taken from reference 25. 

mTNF-K55 molecules, which are not detected in the binding 
assays. This conclusion is supported by the fact that long ex- 
posure of Northern blots revealed very low TNF-R55 mRNA 
levels in CT6 cells (38). The strongly reduced bioactivity and 
the apparent absence of spedfic binding of hTNF on these 
murine T cell lines thus can be explained by the species 
specificity of mTNF-K75 (13, 38). The similar binding of 
iodinated mTNF and hTNF on WE17/10 cells, a TNF- 
R55-,  and TNF-K75 + human T cell line (determined by 
flow fluorocytometric analysis with htr-9 and utr-1 mAbs, 
respectively; data not shown) (36), reflects the absence of spe- 
des preference in the human system. 

~ansfection of hTNIZR 75 cDNA in PC60 Cells. PC60 cells 
were cotransfected with pSV25S-HTNF75, coding for the 
hTNF-R75 under the SV40 early promoter control, and 
pBSAppac, a puromycin-based selection system. In Fig. 1, 
we show the binding of utr-1, a mAb directed against an 
extraceUular epitope of hTNF-p75, to a representative trans- 
fected PC60 subdone (PC60 c126). Scatchard plots on trans- 
fected PC60 d26 cells both with 12SI-hTNF and 12SI-mTNF 
reveal the presence of 5,180 and 5,640 receptors/cell, respec- 
tively, and a dissociation constant of 189 and 233 pM (Fig. 
2 B). These results indicate that the affinity of the transfected 
gene product is equal to that of natural hTNF-R75, for ex- 
ample, on WE17/10 cells (see Table 1). Parental PC60 cells 
did not show specific binding with the same 12SI-hTNF 
preparations, while Scatchard plots based on 12SI-mTNF 
binding indicated the presence of 285 high affinity binding 
sites (45 pM) (Fig. 2 A). 

PC60 Cells Transfected with hTNF-R 75 Respond to mTNF 
and hTNF by Secretion of GM-CSE The functionality of the 
transfected hTNF-R75 was studied in the PC60 subclone d26. 
Other subclones had similar responses, although of various 

magnitudes. Rat GM-CSF secretion was assayed, because it 
was identified as a major cytokine produced by PC60 cells 
in response to TNF (or IL-1) stimulation (32). In Fig. 3, the 
capacities of mTNF and hTNF to induce GM-CSF secretion 
in parental PC60 or in transfected PC60 c126 cells are com- 
pared. The specific biological activity of hTNF on parental 
PC60 cells is ~100-fold lower than that of mTNF, but the 
bioactivities of both TNF species are almost equal in PC60 
c126 cells (note that the scales in Fig. 3 are logarithmic). The 
much higher levels of TNF-mediated GM-CSF induction in 
PC60 c126 cells are most probably correlated with the en- 
hanced TNF-R expression (see Fig. 2), since the TNF re- 
sponses in other transfected PC60 clones were also increased 
(data not shown). 

TNF and h i l l  Synergize in the Induction of GM-CSF Secre- 
tion. 11,1 and 11,2 promote the optimal induction of rat GM- 
CSF (32) and differentiation of PC60 calls to CTL (39). We 
therefore investigated whether addition of these cytokines 
might also enhance the TNF-mediated responses illustrated 
in Fig. 3. The induction of GM-CSF secretion by saturating 
concentrations of hIIclB (1 ng/ml) in parental and transfected 
PC60 calls proved to be strongly synergistic with TNF. The 
synergism of TNF/ Ib l  in PC60 d26 cells in most experi- 
ments was not affected by the addition of hlb2 (100 IU/ml) 
(Table 2); parental PC60 cells, however, generally showed a 
twofold enhancement of the TNF/ILd-induced GM-CSF levels 
in the presence of IL,2 (Table 2). None of the stimulation 
conditions of the PC60 cells influenced the subsequent 
quantification of GM-CSF in FDCp1 ceU assays (data not 
shown). 

To examine mutual influence of Ib l  and TNF, serial dilu- 
tions of hTNF and hlL-1B in transfected PC60 cells were 
studied in a checkerboard pattern. Half-maximal GM-CSF 
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Figure 1. Binding of utr-1 to PC60 d26 cells (A). Flow fluorocyto- 
metric analysis of cells stained with utr-1 (2 /xg/ml) and fluorescein- 
conjugated SAM (1:100 diluted). Utr-1 staining is compared with htr-5 
staining and with second antibody alone as negative controls. For com- 
parison, utr-1 and htr-5 binding to U937 cells is also displayed (B). 
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induction in the absence of h lbl3  is reached at ~30 ng/ml 
hTNF (Fig. 4 A). The dose dependence of GM-CSF induc- 
tion at constant hTNF or IL-li3 concentration and increasing 
amounts of hlL-113 or TNF, respectively, is shown in Fig. 4. 

Anti-TNF-R 75 mAbs Inhibit hTNF-mediated GM-CSF Secre- 
tion. To confirm that the transfected hTNF-K75 in PC60 
d26 was functionally active, we tested whether hTNF-mediated 
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Table 2. Synergism between TNF and IL-1 and~or IL-2 to Induce CM-CSF 

GM-CSF activity 

Parental PC60 cells PC60 c126 cells 

TNF Control IL-2 IL-1 IL-1/IL-2 Control IL-2 IL-1 IL-1/IL-2 

ng/ml ng/ml per 10 ~ cells 

0.025 0.04 2.9 4.4 0.04 0.04 19 21 

mTNF 

0.16 0.03 0.06 2.6 4.2 0.04 0.06 18 22 

0.8 0.08 0.12 2.8 4.6 0.14 0.44 20 25 

4 0.16 0.36 3.9 5.1 0.6 2.2 25 50 

20 0.6 2.2 7.5 8.3 9 18 125 110 

100 1.0 3 10 14.0 13 25 140 140 

500 1.1 3 9 16.5 14 23 180 155 

hTNF 

0.16 0.025 0.05 3.0 4.7 0.07 0.16 22 18 

0.8 0.04 0.04 2.8 4.5 0.27 0.88 28 28 

4 0.06 0.08 2.9 4.5 2 3.1 65 90 

20 0.10 0.22 3.8 4.3 5 13 138 156 

100 0.13 0.3 3.3 7.5 9 16 138 156 

500 0.3 0.64 6.5 9.0 8 19 138 156 

3 x 104 cells/well were incubated in the presence of a serial dilution of TNF (500-0.16 ng/ml) with or without IL-1 (1 ng/ml) and/or IL-2 (100 
IU/ml. After 24 h, GM-CSF activity was determined in the supernatant. SD on these induction experiments was <10%. 
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Figure 4. Synergism between IL-1 and TNF on transfected PC60 cells. PC60 d26 cells were incubated for 24 h at 5 • 104 cells/well in the presence 
of a serial dilution of hTNF and constant concentrations of hlL-1B (100 ng/ml [O]; 10 ng/ml [0]; 1 ng/ml [~7]; 100 pg/ml [V]; 10 pg/ml [F1]; 
1 pg/ml [ll]; no Ib l  [A]) (A) and in the presence of a serial dilution of hI1r and constant concentrations of hTNF (500 ng/ml [O]; 100 ng/ml 
[0]; 20 ng/ml [V]; 4 ng/ml [V]; 0.8 ng/ml [D]; 0.16 ng/ml [ I ] ;  no TNF [A]) (B). The amount of GM-CSF secreted in the absence of TNF 
and IL-1 was 0.030 ng/ml. Note that both scales are logarithmic. 
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Figure 5. Inhibition of hTNF-dependent GM-CSF secretion by mAb 
against hTNF-R75. 3 • 104 cells/well were pretreated for 1 h at 40C 
in the presence of utr-1 (V), utr-2 (V), utr-3 ([-1), utr-4 ( i ) ,  utr-10 (A), 
htr-9 (A), and on antibodies (@). Antibodies were used at 5 #g/ml. Serial 
dilutions of hTNF were added in the presence of a constant amount of 
hlL-1/~ (1 ng/ml). 24 h later, the supernatant was tested for GM-CSF ac- 
tivity. The addition of utr-1, utr-2, or utr-3 in the presence of hll~l~ was 
slightly agonistic, as dearly shown in Table 3 (even in the absence of a 
crosslinking second antibody). 

GM-CSF induction could be inhibited by mAbs against IffNF- 
R75 (utr-1, utr-2, utr-3, utr-4, utr-10). Since the half-maximal 
induction in the assay system required 20-30 ng/ml TNF 
(,~400-600 nM, based on the Mr of trimeric TNF), the in- 

hibition by the neutralizing mAbs utr-1, utr-2, and utr-3 (8) 
at 5 #g/ml (•50-fold molar excess) was only partial and not 
always reproduced (Fig. 5). However, the nonneutralizing 
antibodies utr-4 and utr-10 never affected the hTNF-dependent 
GM-CSF induction in hTNF-R75-transfected PC60 cells. 

Neutralizing Anti-TNF-R 75 mAbs Gain Agonistic Activity 
After Crosslinking. To demonstrate signal transduction via 
hTNF-R75 in PC60 c126 cells, we explored conditions under 
which anti-hTNF-K75 mAbs gained agonistic activities. None 
of the mAbs were agonistic on their own. However, in the 
presence of hlLl~, utr-1, utr-2, and utr-3 showed minor 
agonistic activity (see Table 3). But crosslinking of these neu- 
tralizing anti-TNF-R75 mAbs by SAM significantly enhanced 
the response, whereas crosslinking of the nonneutralizing 
mAbs utr-4 and utr-10 hardly had any effect (Tables 3 and 
4). However, even under optimal conditions, antibody- 
mediated GM-CSF secretion was always lower than that 
elicited by TNF, even when the three agonistic mAbs were 
combined. These results dearly demonstrate that TNF ac- 
tivity can be mimicked by crosslinking anti-TNF-R75 mAbs, 
indicating that, indeed, transfected TNF-R75 is fully func- 
tional and that clustering plays a key role also in TNF-R75- 
mediated signal transduction. 

Discussion 

The molecular cloning and expression of both mTNF-Ks 
revealed that mTNF, but not hTNF, binds to mTNF-R75 (13). 
This undoubtedly is the reason for the various species-specific 
bioactivities of hTNF observed on murine T cells (23, 24, 

Table  3. Effect of mAbs against TNF-R75 on the Induction of GM-CSF in PC60 c126 Cells 

GM-CSF activity 

No IL-1 1 ng/ml  IL-1 

SAM - + - + 

ng/ml per 106 cells 
Control 0.08 (0.02) 0.11 (0.06) 2.0 (0.4) 2.2 (0.4) 

mTNF 3.63 (0.44) 3.97 (0.57) 1,088 (106) 972 (155) 

hTNF 3.13 (0.61) 3.24 (0.35) 1,004 (86) 966 (79) 

utr-1 0.10 (0.02) 0.39 (0.04) 21 (3.5) 164 (14) 

utr-2 0.08 (0.02) 0.39 (0.04) 12 (5.8) 134 (45) 

utr-3 0.12 (0.02) 0.14 (0.02) 16 (1.8) 96 (14) 

utr-1/2/3 0.10 (0.05) 0.34 (0.03) 28 (59) 154 (13) 

utr-4 0.09 (0.02) 0.10 (0.02) 2.0 (0.4) 13 (2) 

utr-10 0.07 (0.02) 0.09 (0.02) 2.5 (0.2) 4.9 (0.4) 
htr-9 0.09 (0.01) 0.10 (0.01) 1.7 (0.5) 2.2 (0.3) 

5 x 104 cells/wall were preincubated for 1 h at 4~ in the presence of anti-hTNF-R75 mAbs. Then, SAM and hlL-1B (1 ng/ml) were added. 
Optimized ratios between utr and SAM were deduced from data represented in Table 4. Utr-1, 1.25/~g/ml: SAM, 2.5/~g/ml; utr-2, 1.25/~g/ml: 
SAM, 2.5/~g/ml; utr-3, 2.5/~g/ml: SAM, 2.5 #g/ml; utr-4, 5 #g/mh SAM, 2.5/~g/ml; utr-10, 5 #g/mh SAM 2.5/~g/ml; and htr-9, 5 #g/mE 
SAM, 2.5/xg/ml. Combined addition of utr-1, -2, and -3 was performed at 1.25, 1.25, and 2.5 ~g/ml, respectively, in the presence of 5 #g/ml 
SAM. After 24 h, GM-CSF activity was measured. SD is in parentheses. 
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Table 4. Effect of Crosslinleing SAM on Anti-TNF-R75-mediated GM-CSF Production in PC60 c126 Cells 

Utr-1 (/~g/ml) Utr-2 (/zg/ml) Utr-3 (/~g/rnl) 

SAM - 0 .312  0 .625  1.25 2.5 5 0 . 3 1 2  0 .625 1.25 2.5 5 0 .312  0 .625 1.25 2.5 5 

0 2.4 14 
0.312 2.8 24 
0.625 2.8 50 
1.25 2.2 43 
2.5 2.4 16 
5 3.3 5.6 

15 22 28 26 5 8 14 15 15 3.8 4.8 4.8 19 22 
28 43 31 31 22 20 25 22 28 7.5 15 15 24 24 
59 69 38 38 38 43 38 28 38 6.3 18 24 43 43 
94 88 75 75 50 88 88 50 81 2.0 12 31 75 69 
81 156 109 88 31 94 125 88 94 3.0 3.3 24 109 109 
17.5 188 188 156 5 88 200 141 156 2.0 3.0 5.0 88 141 

Utr-4 (~g/ml) Utr-10 (~g/ml) Htr-9 (~g/ml) 

SAM - 0 .312  0 .625 1.25 2.5 5 0 .312 0.625 1.25 2.5 5 0 .312  0.625 1.25 2.5 5 

0 2.4 1.5 2.0 2.2 2.4 1.2 3.0 2.8 3.2 3.0 3.3 2.4 3.0 2.7 3.3 2.4 
0.312 2.4 1.5 3.0 4.4 7.5 10.0 2.3 3.0 3.5 3.8 3.8 2.4 2.8 2.4 1.7 2.4 
0.625 2.8 2.4 2.0 5.0 11.9 13.8 1.6 2.2 3.8 4.4 5.6 1.6 2.8 1.6 2.0 2.0 
1.25 2.0 1.5 1.9 2.2 10.0 18.8 3.3 2.2 3.8 5.0 6.6 3.0 2.8 2.0 1.5 1.5 
2.5 2.4 1.7 1.8 2.0 3.5 16.3 3.5 2.0 2.0 3.5 6.3 3.3 2.4 2.4 1.7 1.5 
5 3.3 1.6 1.5 2.0 2.0 4.8 3.3 3.0 3.0 3.5 4.8 2.0 2.8 2.4 2.4 2.0 

5 x 104 cells/well were preincubated for 1 h at 4~ in the presence of serial dilutions of anti-hTNF-R75 mAbs (utr-1, 2, 3, 4, 10) and, as a con- 
trol, of an anti-hTNF-R55 mAb (htr-9). A serial dilution of SAM and a constant amount of hlL-1B (1 ng/ml) were added. After 24 h, GM-CSF 
activity was measured. Each value represents the mean of three replicates; SD was <10%. mTNF and hTNF, in the presence of IL-1, induced 916 
and 880 ng/ml GM-CSF, respectively. 

40, 41). It also explains the 100-500-fold lower specific bio- 
logical activity of hTNF, and the lack of binding of 12sI- 
hTNF, on the LBRM-33-1A5, NOB-l, PC60, and CT6 cell 
lines, since TNF-R75 is the predominant or only receptor 
type expressed on these cells (13, 38). 

PC60 cells are derived from a cross between an I1.2- 
dependent murine CTL line and a rat thymoma (26). Previous 
studies have shown that I1.1 combined with Ib2 induce these 
cells to become cytolytic and strongly increase the expres- 
sion of a number of T cell-specific genes, including I1.2Roz 
(39), I1.6, and rat GM-CSF (32). These genes are also induc- 
ible by mTNF, but not by hTNF (23, 32). The finding that 
upon transfection of hTNF-K75 cDNA, hTNF also induces 
GM-CSF secretion in PC60 cells indicates that the human 
receptor is capable of functionally interacting with the PC60 
signal transduction pathways. Remarkably, although hTNF- 
R75+-transfected cells express a 20-fold higher number of 
TNF-K ('-,5,600/ce11) than parental PC60 cells (285/ceU), 
both show similar specific biological activities for mTNF. This 
demonstrates that the sensitivity of the TNF response is not 
altered by the number of TNF-R on the cell surface. How- 
ever, the level of TNF-dependent GM-CSF induction in the 
transfected PC60 cells is ,vl0-fold higher. This is not a prop- 
erty of a particular cell clone, as it has also been observed 
in most other hTNF-K75 transfectants. Hence, the magni- 
tude of the response seems to correlate with the number of 
receptors per cell. 
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The induction of GM-CSF in PC60 cells is an example 
of the many biological activities shared between II:1 and TNF 
(42). However, compared on a molar basis, "~100-fold more 
TNF than II.1 is required to induce similar levels of GM- 
CSF secretion. Analogous differences in specific biological 
activity between I1.1 and TNF have also been observed in 
other I1,1-mediated systems, such as the lymphocyte-activating 
factor (LAF) assay (24, 40), as well as the D10.G4.1 (43), 
E1.4 NOB-l, and LBRM-33-1A5 assays (33). Possibly, TNF- 
dependent T cell responses are only physiologically relevant 
under conditions of fairly high local TNF concentrations, 
such as those obtained in septic shock (44) and in menin- 
gococcal meningitis (45). Although the combination of I1.-1 
and TNF was strongly synergistic for the induction of 
GM-CSF secretion, a constant amount of I1,1 did not in- 
crease the sensitivity for TNF bioactivity; its specific biolog- 
ical activity remained at 3.3-5.0 x 104 U/mg. The augmen- 
tation of TNF-dependent GM-CSF secretion in the presence 
of II.-1 is, most probably, due to synergism between both 
intracellular signal transduction pathways. It is worthwhile 
to note that the combined addition of I1,1 and TNF is able 
to elicit GM-CSF levels of > 1/~g/ml per 106 cells over 24 h. 
A similar response-amplifying mechanism might form the 
basis for the severe in vivo toxicity when low nonlethal doses 
of TNF are administered together with I1.1 (46, 47). 

The trimeric structure o f  TNF (48-50), and the iden- 
tification of three receptor-binding sites per native molecule 



(51), already suggested that TNF-R-mediated signal trans- 
duction might result from ligand-dependent crosslinking. In 
the case of TNF-R55-mediated biological activities, this con- 
clusion was supported by the finding of agonistically acting 
anti-hTNF-R55 polyclonal antisera and mAbs (17-19, 28, 29, 
52), demonstrating that aggregation of TNF-R55 by itself 
is already sufficient to initiate intraceUular signal transduc- 
tion. PC60 cells transfected with hTNF-R75 allowed us to 
investigate the specific role of TNF-R75. The absence of a 
contribution from TNF-R55-mediated signals was indicated 
by the agonistic properties of several anti-hTNF-R75 mAbs 
(utr-1, utr-2, utr-3). However, it is intriguing that antibody- 
mediated clustering of TNF-R75 by itself was not sufficient 
to elicit biological response, but required synergistically acting 
I1:1. This suggests that TNF-R75-mediated intracdlular signal 
pathways need the cooperation of other cytokine receptor- 
triggered pathways, such as IL-1R and/or TNF-R55 (see 
below). This might explain the fact that other investigators 
found an involvement of TNF-R75 by neutralization experi- 
ments, but did not observe agonistic activity with the utr-1 
mAb (17, 19, 52). Furthermore, even enhanced crosslinking 
by polyclonal anti-mouse Ig antibodies resulted in only 
10-20% of the response generated in the presence of TNF 
and IL-1. The latter observation might suggest that adequate 
triggering requires a trimeric configuration of TNF-R75 mol- 

ecules, which is less efficiently reached with bivalent anti- 
bodies. Alternatively, TNF, besides its interaction with trans- 
fected hTNF-R75, may also trigger some rare, endogenous, 
and cooperatively acting TNF-R55 molecules. In this respect, 
one may refer to the hypothesis that TNF-R75 somehow facili- 
tates TNF interaction with TNF-R55 (20). It is also quite 
remarkable that only neutralizing mAbs (utr-1, utr-2, utr-3) 
were able to mimic TNF effects. This suggests that neu- 
tralizing epitopes and agonistic epitopes are superimposable 
or topologically correlated. Nonneutralizing mAbs (utr-4, 
utr-10) were not or hardly able to evoke GM-CSF induction. 

The present report provides direct evidence for a functional 
role of the hTNF-K75 in TNF-mediated cytokine produc- 
tion in a rat/mouse hybridoma. Anti-hTNF-K75 mAbs were 
strongly agonistic when crosslinked in the presence of Ibl.  
Our results further demonstrate that transfection of hTNF- 
R75 in PC60 cells is suf~cient to overcome the species 
specificity of hTNF. Cotransfection of hTNF-R55 and hTNF- 
R75 in PC60 cells, and the use of TNF-mimicking mAbs 
against TNF-R55 (htr-1, htr-9; 18) and/or TNF-R75, will 
allow the dissection of intracellular signaling pathways initi- 
ated by either of the two receptors, and their possible inter- 
actions. This may contribute to a better understanding of 
the functional significance of the two intracellular domains, 
which are totally unrelated in sequence (12). 
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