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In this study, a one-degree-of-freedom myoelectric prosthesis system was proposed

using a Parent Wireless Assistive Interface (PWAI) that allowed an external assistant

(e. g., the parent of the user) to immediately adjust the parameters of the prosthetic hand

controller. In the PWAI, the myoelectric potential of use of the upper limb was plotted on

an external terminal in real time. Simultaneously, the assistant adjusted the parameters

of the prosthetic hand control device and manually manipulated the prosthetic hand.

With these functions, children that have difficulty verbally communicating could obtain

properly adjusted prosthetic hands. In addition, non-experts could easily adjust and

manually manipulate the prosthesis; therefore, training for the prosthetic hands could be

performed at home. Two types of hand motion discrimination methods were constructed

in this study of the myoelectric control system: (1) a threshold control based on the

myoelectric potential amplitude information and (2) a pattern recognition of the frequency

domain features. In an evaluation test of the prosthesis threshold control system, child

subjects achieved discrimination rates as high as 89%, compared with 96% achieved by

adult subjects. Furthermore, the high discrimination rate was maintained by sequentially

updating the threshold value. In addition, a discrimination rate of 82% on average was

obtained by recognizing three motions using the pattern recognition method.

Keywords: myoelectric prosthetic hand, EMG, human-machine interface, children, artificial neural network,

threshold

INTRODUCTION

The myoelectric prosthetic hand is a robotic device controlled by the myoelectric potential of the
user, and it functions as the hand of an upper-limb deficient person. A direct control includes
threshold control and proportional control using the myoelectric potential of specific locations
(e.g., the extensor muscle group of the forearm, or the flexor muscle group). This is a typical
prosthetic control method (Otto Bock Healthcare Products GmbH, 2013a; Powell and Thakor,
2013). In recent years, the pattern recognition control method of using a prosthetic device has also
been studied (Nishikawa et al., 1999; Zecca et al., 2002; Micera et al., 2010; You et al., 2010; Hasan
et al., 2014; Jiang et al., 2014; Manea et al., 2015; Ke et al., 2016). The use of myoelectric prosthetic
hands with multiple Degrees Of Freedom (DOF) is simpler in the pattern recognition method than
in the direct control method. In direct and pattern recognition control methods, training by experts,
such as occupational therapists, is important (Lake, 1997; Marcus et al., 2009; Powell and Thakor,
2013).
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Myoelectric prosthetic hands are primarily intended for
adults. They are manufactured and sold as commercial products
(Otto Bock Healthcare Products GmbH, 2013b; RSL STEEPER,
2014) and myoelectric prosthetic hands for children are also
sold by several companies (Fillauer, 2010; VASI, 2012; RSL
STEEPER, 2014; Otto Bock Healthcare Products GmbH, 2016).
For a congenital upper limb amputee, it is desirable to use and
train myoelectric prosthetic hands at an early stage to reduce the
future rejection rate (Routhier et al., 2001; Toda et al., 2015).
Therefore, the development and improvement of the myoelectric
prosthetic hand for children is important. Some studies have
developed prosthetic hands for children (Redman et al., 2011;
Zuniga et al., 2016; Mounika et al., 2017). However, the limitation
of hand size and the difficulty in clinical testing make the
study of prosthetic hands for children difficult. Child users also
require training for the myoelectric prosthetic hands; however, in
general, the length of time that a child can concentrate on training
is less than his or her age plus 1min (The Student Coalition
for Action in Literacy Education, 2014). Therefore, it is difficult
for children to concentrate during long-term training. There is
also a limitation in verbal communication with children, and it
is difficult to obtain efficient training in a short time. Owing to
the above and other factors, the mean rejection rate of electric
prostheses was 35% in pediatric populations (Biddiss and Chau,
2007).

One training method used a parental switch to train a
child on a myoelectric prosthetic hand that performed direct
control (Muzumdar, 2012; VASI, 2012). By using a switch, an
external assistant intervened in the movement of the myoelectric
prosthetic hands; therefore, if the child could not understand
the verbal explanation, the child could notice the myoelectric
prosthetic hand movement. In the pattern recognition method,
the control method is fundamentally different from the direct
control method; therefore, it is difficult to control the myoelectric
prosthetic hand without the child’s understanding. Training
data, such as measured myoelectricity from the user based
on operation intention, are required. However, there is no
myoelectric prosthetic hand system that uses external assistance
in pattern recognition, such as a parental switch in direct
control.

Therefore, in this study, a system with control parameters that
could be adjusted by external assistance is proposed. This system
can be implemented with the direct and pattern recognition
control methods. Using this system, a myoelectric prosthetic
hand system that could be used by a child was constructed. The
requirements of the proposedmyoelectric prosthetic hand system
are as follows.

À The hand system must be usable by children who cannot
understand verbal communications.

Á The hand system should contain functions of the direct
control and pattern recognition methods.

Â The parental switch should allow an external assistant
to control the myoelectric prosthetic hand at any
time.

Ã The hand system should be easy to use, and it should be usable
by non-specialists (e.g., the parents of the users).

To satisfy the above requirements, a system that allowed the
external assistant to view the myoelectric potential of the user in
real time and to change the control parameters and prosthetic
hand action was developed. The proposed system was referred
to as the Parent Wireless Assistive Interface (PWAI), in which
the myoelectric potential was observed and the parameters of
the controller could be adjusted at any time while the user was
wearing the myoelectric prosthetic hand in direct control. By
adjusting the threshold value according to the myoelectric status
of the user, the prosthetic hand could be used without involving
the user in the adjustment. In addition, in pattern recognition,
real-time monitoring of the myoelectric patterns and selection
of the training data by the assistants were possible. Through this
assistance, the myoelectric prosthetic hand could be used without
the user being conscious of the training data collection step.
For ease of use, an Android terminal and a Windows personal
computer with a popular mobile interface were used.

SYSTEM CONFIGURATION

The child myoelectric prosthetic hand system was divided into
four components: the myoelectric sensor, prosthesis controller,
one-DOF hand, and external terminal. Figures 1A–C show the
transformation of the information between each component. In
addition, Figure 1D shows a photograph of the child myoelectric
prosthetic hand.

EMG Sensor
Figure 2A shows the sensor including an electrode. This sensor
was previously developed by our research group (Jiang et al.,
2017). For the myoelectric sensor, a differential amplifier circuit
with an integrated circuit (AD620, Analog Devices, Japan) was
used. In this system, onemyoelectric sensor and one body ground
were used. The gain of the differential amplifier circuit was set
to 100. Then, a filtering process was performed using a twin-T,
50Hz notch filter, an active low-pass filter with a cutoff frequency
of 100Hz, and an active high-pass filter with a cutoff frequency of
10Hz. The signal was amplified 474 times by the non-inverting
amplifier circuit. Finally, the output was obtained. The signal
was offset by +2.5V with a range of 0–5V. The electrode of the
sensor had a gold-plated wire with a diameter of 1.0mm and a
conductive silicon resin mixed with 3% carbon.

Hand Controller
The controller andBluetooth module are shown in Figure 2B.
The controller of the prosthetic hand was a SH-72544R micro-
controller board (REK-0001, Kyoei Sangyo, Japan and SH-
72544R, Renesas, Japan). The controller used analog to digital
conversion to change the output of the analog value from the
myoelectric sensor with a quantization of 12 bits and a sampling
rate of 2 kHz, and performed the processing for the hand control.
The details of the processing are described in section Proposed
Method of the PWAI. The controller outputted the estimated
handmotion from themyoelectric information and sent a control
signal to the servomotor that was built into the hand. The
feature-extracted myoelectric information was transmitted to the

Frontiers in Neurorobotics | www.frontiersin.org 2 August 2018 | Volume 12 | Article 48

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hiyoshi et al. Wireless Interface for Prosthetic Hands

FIGURE 1 | Schematic of the information flow between the components. (A) Shows the flow of information from the EMG measurement to the myoelectric

characteristic feature presentation for the assistant. (B) Shows the parameter adjustment of the prosthesis controller by an assistant via an external terminal. (C)

Shows the control of the prosthetic hand by user EMG. (D) Shows the developed myoelectric prosthetic hand for children after assembly.

external terminal and was used for controlling the hand. The
communication between the external terminal and the controller
was performed at 115,200 bps via a Bluetooth module (Bluetooth
Mate Silver WRL-12576, SparkFun, USA).

Robotic Hand
The robotic hand is shown in Figure 2C. Because a child
prosthetic hand should be compact and lightweight, a skeleton
of the hand was made with a 3D printer using ABS resin (Jiang
et al., 2014; Jing et al., 2014; Curline-Wandl and Ali, 2016).
One servo motor (GWSMICRO/2 BBMG/J, GWS, Taiwan) was
incorporated into the palm, and the motor output shaft was
connected to the four-finger root. The thumb was arranged
to face the four fingers, and at the base of the thumb, it was
connected to the four-finger rotational axis with a spur gear. The
thumb was designed to move simultaneously with the movement

of the four fingers. To create a natural appearance and to improve
the gripping performance, a glove made of a styrene elastomer
was attached (Yabuki et al., 2016).

External Terminal
For the external terminal, a Bluetooth communication function
was required. In this study, an Android tablet (MediaPad T1
7.0, Huawei, China) and a Windows laptop PC (Let’s Note
CF-S9, Panasonic, Japan) were used. The terminals used in
this research are shown in Figure 2D. The external terminal
showed the myoelectric feature graph to the assistants in
real time. The myoelectric characteristic level was transmitted
from the prosthesis controller to the external terminal via
Bluetooth. The assistant could also adjust the parameters
of the prosthesis controller via the external terminal. The
detailed contents of the graphs and parameter adjustment
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FIGURE 2 | Appearance of each element of the myoelectric prosthetic hand system for a child. (A) EMG sensors, (B) controller and Bluetooth module, (C) robotic

hand prosthetics, and (D) external terminals.

systems are described in section Proposed Method of the
PWAI.

PROPOSED METHOD OF THE PWAI

The most commonly used myoelectric prosthetics hands
for children perform threshold control using myoelectric
potential amplitude information (Fillauer, 2010; VASI, 2012; RSL
STEEPER, 2014; Otto Bock Healthcare Products GmbH, 2016).
In the conventional method, the assistant initially measures the
user’s myoelectric potential and then adjusts the gain of the
sensor circuit according to the magnitude of the myoelectric
potential. By adjusting the sensor amplitude, the prosthetic hands
can absorb individual differences in myoelectricity. However,
measurement, adjustment, and fitting must be performed in
order, and it is difficult to adjust each time the prosthetic hand
is worn. Therefore, in this study, a system was developed that
used the amplitude information of the EMG for prosthetic
control and allowed the assistant to monitor on an external
terminal and adjust the threshold at any time. In addition,
although a majority of the myoelectric prosthetic hands for
children have only one DOF, this system enables parameter
adjustment in the pattern recognition control method for multi-
DOF prosthetic systems. For adult multi-DOF EMG prosthetic
hands, a method of pattern recognition is more effective than

obtaining a combination of threshold value identifications from
multiple myoelectric sensors (Amsuess et al., 2014). Therefore,
the identification of hand motion by myoelectric potential
pattern recognition has been studied extensively (Nishikawa
et al., 1999; Zecca et al., 2002; Micera et al., 2010; You et al.,
2010; Zhang et al., 2013; Hasan et al., 2014; Kasuya et al., 2015;
Manea et al., 2015; Ke et al., 2016). In this study, we propose
an external assistance method suitable for multi-DOF control
using the pattern recognition technique. To generate the training
data, the user was required to output the EMG information
corresponding to the motion to be identified. Although this
was an easy procedure for adult users, it is extremely difficult
for child users. In the proposed method, the assistant selects
the training data by using the external device. By using the
training data selected by the assistant, it is possible to classify
the intentions of multi-DOF motion even if the user was a
child.

Threshold Control Method
In the threshold control method, the amplitude information of
the EMGmeasured from one sensor was used as the feature value
Yt[V] at timet[s]. In this method, the threshold for identifying
the muscle tension (higher threshold: θhigh[V]) and the threshold
for determining the muscle weakness (lower threshold: θlow[V])
were set. When the feature value Yt was below θlow, the weakness
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was assigned to the opening motion of the prosthetic hand.
In addition, when the feature value Yt was higher than θhigh
and the muscle tension was applied, the muscle contraction
state was assigned to the grip operation. The section between
the two thresholds was defined as the insensitive area, and the
prosthetic hand did not move. During rest, grasp, and open
motions, the motion identifiers were assigned as shown in
Equation (1), and the hand motion was identified as shown in
Equation (2)

MID =







0 stop
1 open
2 grasp

(1)

motion (Yt) =







0
(

θlow ≤ Yt ≤ θhigh
)

1 (Yt < θlow)

2
(

θhigh < Yt

)

(2)

Myoelectric Potential Amplitude Feature
The myoelectricity feature value was calculated with a cycle
of 10ms, and identification processing was performed using
the latest value. For preprocessing the myoelectric potential, a
second-order IIR high-pass filter with a cutoff frequency of 50Hz
was applied to reduce the noise caused by body movements.

To extract the amplitude information, the exponential
moving average was obtained using the 256 full-wave rectified
sampled data and the feature value of the previous step.
The parameter a was the smoothing coefficient, and b was
(1 − a). The parameter X was the sampling data after
high-pass processing, and Y was the feature level. The
parameter S was the intermediate variable. Then, a new feature
quantity Yt+1 was obtained by Equation (3). In this study,
a = 0.9999 and b = 0.0001.

S0 = Yt (3)

Si+1 = aSi + b |Xi| {i |0 ≤ i ≤ 255 }

Yt+1 = S256

FIGURE 3 | Graph of the threshold control method. The horizontal and vertical

axes denote time and voltage, respectively. The yellow dot indicates the

exponential moving average of the measured electromyogram. The red and

blue horizontal lines are higher and lower thresholds, respectively. The vertical

white line is the update point in the graph.

Graph Drawn on the External Terminal
The myoelectric features were transmitted to the external
terminals at 100ms intervals and plotted as a graph with the
vertical axis as the voltage (Figure 3). To reduce the weight of
the communication data, the feature quantities were quantized
in 256 steps in the range of 0–0.25V when transmitted. The
transmission data were transmitted in order, 5 bytes at a time. The
first byte of data was the signal for the start of communication.
The other 4 bytes of data were transmitted as 1 byte for the
feature quantity, 1 byte for the higher threshold, 1 byte of the
lower threshold, and 1 byte for the sum of the feature quantity
and two threshold values. After the external terminal received the
data, the oldest buffered feature quantity was overwritten with
the newest feature quantity, and the newest feature quantity was
plotted on the graph. When the value of the received threshold
was different from the value stored in the external terminal, the
new threshold value was updated and drawn on the graph. The
red horizontal line indicated the higher threshold, and the blue
horizontal line indicated the lower threshold. The yellow dot
indicated the feature value, and it became a larger value as it

FIGURE 4 | Presentation of the external terminal software program. The upper

part shows information related to threshold control (Figure 3). The middle red

and blue buttons are used to adjust the thresholds and to manually control

hand motion. The bottom light blue buttons are used for the pattern

recognition control method.
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approached the top of the screen. The white vertical line indicated
the updated portion of the graph.

Operation of the External Terminal
In the external terminal, the assistant could adjust the two
threshold values and open and close the prosthetic hand with a
manual operation. The external terminal software presentation
is shown in Figure 4. The values of the threshold were stored
in the prosthetic controller. When the prosthesis could not
be moved as intended by the user, or when the motion of
the prosthesis became unstable owing to a change in the
skin condition, the assistant could re-set the threshold value
θ = (θhigh, θlow).

When the assistant adjusted the threshold value θ , the
graphically drawn past threshold θold and the myoelectric feature
values Y were used to determine whether to raise or lower the
threshold value θ . This operation, performed by the assistant,
was defined as EquationO(θold,Y) in this study. The reconfigured
threshold θ was overwritten on the prosthesis controller; see
Equations (4–6)

θ = θold +
0.25

100
O(θold,Y) (4)

s.t. 0.25 > θhigh > θlow > 0

O (θold, Y) =

(

1θhigh
1θlow

)

1θj =







1 increase
−1 decrease
0 no change

(5)

j =

{

high
low

(6)

A manual operation was used when the assistant needed to
confirm the prosthetic motion or hold the object securely.

Control Based on Pattern Recognition
In the pattern recognition method, a 3-layer Artificial Neural
Network (ANN) was determined by using the myoelectric
potential frequency domain feature (Nishikawa et al., 1999). The
feature quantity was transmitted to the computer of the external
assistant and was drawn on the screen as a heat map, where the
color varied with the power intensity (Figure 5). The assistant
determined a feature vector that could be used as the training
data and a handmotion label that was associated with the training
data. The assistant used the heat map and the movement of the
user to determine the appropriate training data. The prosthetic
hand controller received the training data transmitted from
the external terminal and learned using the received training
data.

Frequency Domain Feature Quantity of the

Myoelectric Potential
The myoelectric feature value was calculated with a cycle of
10ms, and recognition processing was performed using the latest
feature level. In pattern recognition, the EMG measurements
were performed with two sensors from the user forearm
extensor group and flexor muscle group, and a second-order
IIR high-pass filter with a cutoff frequency of 50Hz was
applied. A Fourier transformation was then carried out with
a window width of 256 points, and power averages were
obtained in the range of ±15.6Hz centered on eight frequencies
of 23.4, 46.9, 70.3, 93.8, 140.6, 187.5, 250.0, and 312.5Hz
(Jiang et al., 2014). Because eight values were obtained for
each sensor, a 16-dimensional feature vector of 2 sensors × 8

FIGURE 5 | Graph of the pattern recognition control method. The right panel shows the time flow of feature levels of each sensor. Each line denotes the power of the

electromyogram at a specific frequency. The color scale is shown at the bottom. The assistant selects the training data when the proper feature level appears within

the central red box.
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FIGURE 6 | Discrimination rate of the threshold control method. (A) Shows the threshold adjustment for each test. (B) Shows the thresholds adjusted once. The

horizontal and vertical axes denote number of experiments and correct answer rate, respectively. The circles are the data from each subject. The horizontal purple line

indicates the results for child subjects.

dimensions could be obtained from one feature extraction. For
the training data, 20 feature vectors for each hand motion were
used.

Configuration of the ANN
The ANN consisted of three layers. The numbers of neurons in
each layer were 16 for the input layer, 32 for the intermediate
layer, and 8 for the output layer. To discriminate the hand
motions, one of the neurons for the output layer was 0.95, and
the other neurons were 0.05. At the time of recognition, when
one of the output layer neurons reached the output value of
0.65 or more, the hand motion associated with the firing neuron
was identified. A sigmoid function was used as the activation
function of each neuron. An input signal was obtained by using
the power of eight frequency bands of the frequency spectrum
obtained by Fast Fourier Transform (FFT) of the myoelectricity
for two sensors. An arbitrary hand movement was assigned as
a label to 20 consecutive datasets, and it was used as training
data. Every time training data was added, the ANN learned by
the error backpropagationmethod together with existing training
data. Iterative calculation was performed so that all training data
was learned 200 times. The learning rate α was set to 0.1.

Graph Drawing of the Frequency Domain Feature

Quantity
The myoelectric characteristic level was transmitted to the PC
at a cycle of 10ms and plotted with the colors corresponding
to the power intensity for each dimension of the feature vector.
The data were transmitted 66 bytes at a time. The content of
the transmission data was 1 byte for the start signal, a 16-
dimensional feature vector of float type 64 byte, and 1 byte
signaling termination character. After the PC received the data,
the oldest buffered feature quantity was overwritten with the
newest feature quantity. Then, the graph was updated. The
plotted graph is shown in Figure 5. The values of each dimension
were plotted in the vertical direction on the screen, and two bands

FIGURE 7 | Discrimination rate of the pattern recognition method. The

horizontal and vertical axes denote subject and correct answer rate,

respectively. The blue, red, and green bar indicate correct answer rate in the

resting, grasping, and opening conditions, respectively.

composed of 8 × 2 lines represented the feature level of each
channel. Of the eight lines, the power of the lower frequency
band increased toward the top of the screen, and the power of
the higher frequency band increased traveling down the screen.
When a new value was measured, the graph flowed to the left.
The graph at the right end of the screen represented the newest
feature level.

Operation of the External Terminal
The external assistant selected the feature quantity while looking
at the terminal screen and determined the label of the hand
movement associated with the operation. The determined label
and training data were transmitted to the prosthesis controller
and learned by the prosthesis controller. The training data used
for learning were recorded on the external terminal with the
label.
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FIGURE 8 | Distribution of the learning data for each subject. (A) Subject A,

(B) subject B, and (C) subject C. The horizontal and vertical axes denote the

principal components PC1 and PC2, respectively. The blue-, red-, and

green-filled circles indicate PCs in the resting, grasping, and opening

conditions, respectively.

PERFORMANCE TEST AND EVALUATION

Performance testing and evaluation of the discrimination
rate were conducted for the threshold value and pattern
discrimination control methods. In the test, the subjects were
instructed to maintain a specific hand motion in a random order
for 5 s. In addition, each handmotion was performed 10 times for
each test. All experiments were approved by the ethics committee
of The University of Electro-Communications (No. 10006) and
The National Center for Child Health and Development (No.
756). In addition, written informed consent from parents of all
child subjects was received.

TABLE 1 | Defect position of the child subjects and initial age of myoelectric

prosthetics hand use.

Subject Age at first use Amputate position

1 1 Below left elbow

2 2 Below left elbow

3 3 Below left elbow

4 4 Below left elbow

5 4 Below right elbow

6 4 Right elbow

7 5 Below right elbow

TABLE 2 | Cumulative contribution ratio of the feature vectors for each subject

(Figure 8).

Subject Cumulative contribution ratio [%]

A 93.0

B 69.7

C 94.0

Performance Test of the Control Method
Based on the Threshold Value
Three healthy 20-year-old males and one 5-year-old congenital
left upper limb deficient boy were tested. The recognition
operation was tested on two movements: grasping and opening.
The sensors were aimed at the forearm flexor muscle group.

To verify the ability to adjust the threshold value accordingly,
two types of experiments were performed. One was to adjust the
threshold before each test, and the other used the same threshold
after adjusting the threshold for the first test. The tests were
performed six times for eachmethod. The test set used an interval
of 1 h. The first through third tests and the fourth through sixth
tests were performed on different days.

In addition, the boy subject was tested once to collect reference
data, and the experiments were carried out 5 times instead
of 10 times for each manual operation to concentrate on the
experiment. In addition, the boy subject had used the prosthesis
of this system for approximately one year. To calculate the correct
answer rate, an identification result of 4 s, excluding the first
second, was used, taking into consideration the reaction time
of the subject. In addition, when a feature level was in the
interval between the threshold values and the insensitive area, the
operation just before entering the insensitive area was outputted.

Performance Test of the Control Method
Based on Pattern Recognition
Three healthy 20-year-old male subjects performed the
experiments. The identification operation was conducted once
for the rest, grasping, and opening operations. The sensors were
aimed at the forearm flexor muscle group and extensor group.
The training data were selected from the myoelectric patterns
when the subjects performed daily activities, such as holding
daily necessities and playing. The state of motion of the subjects
at the time of the myoelectric feature measurement and the type
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of muscles on which sensors were placed were used as the criteria
for the selection of the training data (e.g., a grip motion if there
was a response to the flexor group side sensor and an opening
action if the extensor group side sensor responded). In addition,
when the identified action was unidentifiable, it was deemed that
the same action as the previously identified action was identified.

We verified whether the training data selected by the external
assistant were training data that could be separated by the hand
motion. A Principal Component Analysis (PCA) was performed
on the training data selected by the same subject, and the mixing
condition of the training data by the handmotion was confirmed.

Application Experiments
Application experiments on the threshold control of the 1-
DOF myoelectric prosthetic hand system using PWAI with child
upper limb amputee subjects were conducted. There were seven
subjects, and the age at the start of the myoelectric prosthetic
hand application and the amputation stump are listed in Table 1.
Before use of the myoelectric prosthetic hand, an explanation
of ∼15min was provided to the parents. After the explanation
and while under the supervision of experts, application training
of ∼1 h was conducted with the parents and young children.
Subsequently, the parents and young children had voluntary
training at each household.

RESULT

Experimental Results of the Control
Method Based on the Threshold
The experimental results using the threshold control are shown
in Figure 6. A high discrimination rate was recorded. The average
discrimination rate was 94% when the threshold value was fixed,
and the average discrimination rate was 96% when the threshold
value was adjusted for each test. A statistical test with one-sample
t-test supported the above results. The average discrimination
rates of both conditions were significantly higher than chance
level (50%) [adjusted each time, p-value: p= 9.83× 10−23 <0.01,
t-value: t(17) = 73.6; adjusted once, p = 6.05 × 10−15 < 0.01,
t(17) = 25.3]. However, when the threshold was fixed, as shown
in Figure 6B, a sharp decline in the discrimination rate (sub.
A) occurred, and in an additional experiment, a drop in the
discrimination rate occurred. For the experiment with the boy
subject, the discrimination rate was 89%.

Result of the Performance Test for the
Control Method Based on Pattern
Recognition
The results of the experiments using pattern recognition control
are shown in Figure 7. The average discrimination rates in the
three motion recognitions were 89, 66, and 90% for each subject,
and the average discrimination rate was 82%. According to the t-
test, the average discrimination rate was statistically higher than
chance level (25%) [p = 5.47 × 10−4 < 0.01, t(8) = 5.54]. The
discrimination rate of the pattern control method was lower than
that of the threshold method. The discrimination rate of subject

TABLE 3 | Actions the subjects were able to perform.

Bimanual operation Assistive motion Zipper opening of the pouch

Decomposition of block toys

Tape cutting

Cotton tearing

Kitchen play

Open a plastic bottle

Object holding Play with swing

Play with push toys

Hold a dish

Hold paper

Object manipulation Embracing heavy objects

(stuffed animals, balls, etc.)

Ball throwing

Unimanual operation Use of tools Writing with a pen

Shaking a hammer

Object holding Have accessories (dolls,

confectionery, building

blocks, etc.)

Object manipulation Removal of goods from

boxes

Transport of holding articles

Building blocks play

B was low. The lower discrimination rate could be because of an
inaccurate selection of the input data.

Although the discrimination rate of grasping for subject B
was abnormally low, the average discrimination rate exceeded
80%. To confirm the separation of the training data, a PCA
was performed on the training data used for learning, and the
figure with the horizontal axis as the first principal component
and the vertical axis as the secondary principal component is
shown in Figure 8. The cumulative contribution rates to the
second principal component for each subject are listed inTable 2.
The training data of subject B were difficult to separate by the
hand motion. The training data of subject B were mixed in
the feature space, and it was difficult to separate the training
data.

Result of Application Experiments
Figure 9 shows the subjects using the myoelectric prosthetic
hands with threshold control. According to Figure 9A, subjects
could perform many kinds of bimanual daily movements,
e.g., playing with a toy, holding a large object, towel
folding, and opening a plastic bottle with the myoelectric
prosthetic hand. Figure 9B also shows that subjects could also
perform unimanual movements with myoelectric prosthetic
hand, e.g., holding an object and reaching to grasp. In
addition, we listed the behaviors that could be performed
by a child subject using a myoelectric prosthetic hand in
Table 3.

DISCUSSION

Control Method Based on the Threshold
In the threshold control method, the system adequately
controlled the prosthetic hands based on the high discrimination
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FIGURE 9 | Children using the one-DOF prosthesis with the threshold control method. (A) Shows bimanual cooperative action. (B) Shows unimanual action.

Subject’s ID was shown in Table 1. Details of actions that subjects could perform are shown in Table 3.

rate, including the boy subject. In addition, by adjusting for
each discrimination test, and because the discrimination rate
remained high, the proposed system could be appropriately
adjusted by external assistants. The possible causes of the change
in the discrimination rate when the threshold value was fixed
could be a change in the sensor position, a change in the
impedance of the sensor electrode, and the effect of sweat on the
skin.

Control Method Based on Pattern
Recognition
For the motion classification of the hands with pattern
recognition, the average discrimination rate was 82%, which was
lower than the threshold control. In the pattern recognition
method, because the number of recognition operations increased
to three actions, including rest, the recognition difficulty level
was increased. In addition, Figure 7 shows that the difference
between the subjects was large. Based on the results of subject
B in Figure 7, the discrimination rate of the grasping motion
was low. This low discrimination rate could be caused by
the selection error of the training data. The recognition of
the grasping motion was difficult because the grasping motion

training data selected was similar to other motions. From
Figure 8 and Table 2, the training data used for discriminating
the hand motion of subject B did not constitute a sufficiently
separated electromyogram feature vector; however, the data were
duplicated for each hand movement. It was difficult for an
external assistant to choose features in the frequency domain
using hand motion. A system that does not rely on assistant
skill, such as judging feature vectors suitable for hand motion,
is required.

CONCLUSION

In this study, a myoelectric prosthetic hand control system
that could be adjusted instantaneously by external assistants
was proposed and evaluated to construct a usable myoelectric
prosthetic hand system without requiring long-term training
for child users. In the 1-DOF myoelectric prosthetic hand
system that performed an opening or closing operation by
a threshold control, the discrimination rate was 96% on
average in adult subjects with appropriate adjustment of
the threshold value. In addition, the young child subject
recorded a high discrimination rate of 89%. The high
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discrimination rate was maintained by appropriately adjusting
the discriminator based on the state of the user’s myoelectric
potential. In the hand motion recognition system, which enabled
control of the multi-DOF by pattern recognition control, the
discrimination rate of the three actions was 82%. Therefore,
the selection of the training data was a difficult task for
external assistants, and in future developments, automatic
selection by a program and development of an auxiliary
system that facilitates selection should be developed. With this
system, the issues listed in the Introduction were solved as
follows.

À The hand system must be usable by children who cannot
understand verbal communications.

One-DOF myoelectric prosthetic hands, which contract/weaken
the muscles, could be used by young children, ages 1–5 years
(Figure 9).

Á The hand system should contain functions of the direct
control and pattern recognition methods.

In direct control, a system thatmonitors themyoelectric potential
amplitude information and adjusts the threshold value was
developed. In pattern recognition, a system that monitors the
myoelectricity pattern in the frequency domain and selects the
training data was constructed.

Â The parental switch should allow an external assistant to
control the myoelectric prosthetic hand at any time.

A system that allowed assistants to select and execute the
grasping, opening, and resting motions of the myoelectric
prosthetic hand by the PWAI operation was constructed.

Ã The hand system should be easy to use, and it should be usable
by non-specialists (e.g., the parents of the users).

In the one-DOF myoelectric prosthetic hand system using
threshold control, an application for an Android terminal was
developed. Manual manipulation of the myoelectric prosthetic
hands and adjustment of the threshold value was performed by
operating the graphical user interface; therefore, parents could
train the myoelectric prosthetic hands.

In pattern recognition, because the selection of the training
data is difficult, a system for assisting the training data selection
is required.
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