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Abnormal immune responses and cytokine storm are involved in the development of

severe dengue, a life-threatening disease with high mortality. Dengue virus-induced

neutrophil NETosis response is associated with cytokine storm; while the role of viral

factors on the elicitation of excessive inflammation mains unclear. Here we found that

treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety

of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo.

Challenges of EIII in inflammasome Nlrp3−/− and Casp1−/− mutant mice resulted in

less inflammation and NETosis responses, as compared to the wild type controls.

Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective

Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced

NETosis response. These results collectively suggest that Nlrp3 inflammsome is a

molecular target for treating dengue-elicited inflammatory pathogenesis.

Keywords: dengue envelope protein domain III, dengue hemorrhage fever, neutrophil, neutrophil extracellular

traps, NEtosis, Nlrp3 inflammasome, pyroptosis

INTRODUCTION

Dengue is one the most important mosquito borne diseases in the tropical and subtropical areas
of the world (1, 2), while specific treatments and effective vaccines are currently unavailable (3–8).
Infections with dengue viruses (DENV) can lead to a wide range of clinical manifestations and
disease severity. Severe dengue (also known as dengue hemorrhage fever, DHF) is characterized
by plasma leakage and abnormal bleeding that can lead to shock and high mortality. Because
DHF typically occurs during secondary infections with DENVs, abnormal adaptive immune
responses are considered as part of the pathophysiology. For example, reports have suggested that
antibody-dependent enhancement (9), original antigenic sin (10), autoantibody production (11)
may be involved. However, detrimental innate immune responses such as excessive inflammation
and cytokine storm are likely the critical pathological changes that lead to exacerbated disease,
tissue injuries and ultimate death in DHF (9, 10, 12–15).
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The mechanism underlying dengue-induced unregulated
inflammation remains elusive (9, 10, 12, 13). In the innate
immune system, neutrophils are first line of defense against
infection through engulfment of microbes, secretion of anti-
microbials and induction of neutrophil extracellular traps
(NETs)-releasing cell death process termed NETosis (16, 17).
NETs are extracellular DNA-protein complexed networks, which
bind pathogens and modulate inflammation (16, 18). Pathogenic
roles of NETosis have been found in non-infectious diseases, such
as autoimmunity, coagulation, acute injuries and cancer (19). In
addition, NETosis has been reported associating with cytokine
storm in various infectious diseases, including dengue (14, 20,
21). Interleukin (IL)-1β, a potent proinflammatory cytokine
released by DENV-infected leukocytes, has been considered as a
critical component in cytokine storm (22–24). Inflammasomes,
cellular sensors for pathogen associated molecular patterns
(PAMPs) and damage associated molecular patterns (DAMPs),
are critical for IL-1 activation (14, 25), and the cell death process
pyroptosis (26). Reports revealed that the elevated levels of
circulating IL-1β and gene expression in DHF patients suggesting
the involvement of IL-1β in the disease severity (27, 28). IL-1β
enhances the vascular permeability, particularly in association
with other proinflammatory cytokines such as tumor necrosis
factor (TNF)-α and interferon in clinical profiles of DF and DHF
(14, 29–31).

In our previous reports, in the two-hit model, we found
that sequential injections of DENV (32) or DENV-envelope
protein domain III (rEIII) (33) (1st hits) plus anti-DENV
non-structural protein NS1 antibody (anti-NS1 Ig; 2nd hit) to
simulate the disease progression of DHF, induced hemorrhage
pathogenesis recapitulate certain disease-signatures of DHF,
including thrombocytopenia, plasma leakage, vascular injury,
hemorrhage, liver damage, and high mortality (32, 33). In
addition to these manifestations, we also found that circulating
proinflammatory cytokine levels such as TNF, IL-1, and IL-6, are
greatly increased (32, 33). Intriguingly, IL-1 receptor antagonist
(IL-1RA) treatments greatly ameliorated such 2-hit induced
pathogenesis (32, 33). In addition, Nlrp3 deficiencies as observed
in theNlrp3−/− and Casp1−/− mutant mice, also greatly reduced
2-hit induced pathogenesis (32, 33). These results collectively
suggested that Nlrp3 inflammasome-IL-1 axis is involved in
dengue induced pathogenesis in this DENV-, and EIII-induced
hemorrhage mouse models.

The DENV viral factor that contributes to NETosis remains
unclear. Plasma EIII levels could be detected in acute DENV
infection (34). Evidences have shown that EIII treatments
induced inflammasome activation and inflammation of
macrophages (35). Our previous study revealed that challenges
with the DHF-viral-load-equivalent levels of EIII can suppress
megakaryocyte, and endothelial cell function through initiating
cell death (33, 36). Accordingly, EIII may be a cytotoxic
virulence factor of DENV to cause NETosis and initiate
downstream inflammation. As a result, in this present study,
we would like to investigate whether DENV and EIII can
directly initiate NETosis, and whether Nlrp3 inflammasome is
involved. In addition, whether we can ameliorate EIII-mediated
inflammation through suppression of Nlrp3 inflammasome and

NETosis pathways is also addressed. Relevant implications and
applications are discussed.

MATERIALS AND METHODS

DENV, Recombinant Protein, and
Antibodies
Mosquito C6/36 cell line (ATCC CRL-1660) and DENV-
2 (PL046) were maintained and amplified using standard
cell culture methods (36–38). Soluble recombinant proteins
glutathione-S transferase (rGST), and EIII (rEIII) were obtained
from cultured bacteria (Escherichia coli) (39), after isopropyl
β-D-1-thiogalactopyranoside induction, and were purified as
previously described (32, 33, 36). To reduce endotoxin
(lipopolysaccharide; LPS) contamination to a desired level (<1
EU/mg protein), the lysate- and resin-packed column was
washed with a buffer (8M urea, 100mM NaH2PO4, and 10mM
Tris-HCl; pH = 6.3) with the addition of 1% Triton X-114
(Sigma–Aldrich, St. Louis,MO, USA). The rEIII was eluted with a
buffer (8M urea, 100mMNaH2PO4, and 10mMTris-HCl; pH=

4.5) and refolded using a linear 4–0M urea gradient in a dialysis
buffer (2mM reduced glutathione, 0.2mM oxidized glutathione,
80mM glycine, 1mM EDTA, 50mM Tris-HCl, 50mM NaCl,
and 0.1mM phenylmethylsulfonyl fluoride) at 4◦C for 2–3 h,
as previously described (36). The purity of the rEIII protein
can reach ∼90%. The LPS contamination was monitored with a
Limulus Amoebocyte Lysate QCL-1000 kit (Lonza, Walkersville,
MD, USA) (36, 37, 40). Batches of purified recombinant proteins
with an LPS contamination level of <1 EU/mg of protein were
used. The pre-immune control Ig, anti-NS1 Ig, and anti-EIII
Ig from experimental rabbits (New Zealand White; Oryctolagus
cuniculus) were obtained before and after rNS1- and rEIII-
immunizations according to previously described methods (41).
According to previously described methods (33), recombinant
proteins (50µg/mL) were used to block rEIII-cell (neutrophil)
binding, including recombinant mouse dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN; CD209), DC-SIGNR, C-type lectin domain family 5
member A (CLEC5A) and CLEC2 (R&D Systems, Indianapolis,
IN, USA). To analyze the binding properties of rEIII proteins
on protein-coated beads (latex, 1.1µm, Sigma-Aldrich) and
mouse neutrophils, rEIII protein were conjugated with biotin
by using an EZ-LinkTM Sulfo-NHS-Biotinylation kit (Thermo
Fisher Scientific). The rEIII-beads binding experiments were
performed using biotin-labeled rEIII proteins (300µg/mL, 20
µL) incubated with protein-precoated beads [2 µg protein
coating with 1 mg/mL beads 1 h in total 50 µL phosphate
buffered saline PBS, blocking with 1% bovine serum albumin
(BSA, Sigma-Aldrich)/PBS, 30min, resuspended in 20 µL PBS
after wash]. The levels of biotin-labeled rEIII proteins bound
to beads or neutrophils [50µg/mL competing protein + (2 ×

105) cells/mL in culture medium for 30min] were determined
through flow cytometry by PE/Cy5 avidin (Biolegend, San Diego,
CA, USA) staining. DENV-2 envelope protein fragment (32 kDa,
domain I + domain II; ProSpec-Tany TechnoGene, Ness-Ziona,
Israel) was used as a control protein. The rEIII-competitive
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inhibitor chondroitin sulfate B (CSB, 10µg/mL; Sigma-Aldrich)
was used to suppress rEIII-induced neutrophil binding and cell
death. Anti-citrullinated histone H3 (CitH3; citrulline R8), anti-
histone H2A family member X (H2AX), and anti-gasdermin D
(GSDMD) antibodies (Abcam, Cambridge, UK) were used for
flow cytometry NETosis analysis.

Experimental Mice
Wild-typemice of ages 8–12 weeks in C57BL/6J background were
purchased from the National Laboratory Animal Center (Taipei,
Taiwan) (38, 42–46). Gene knockout mice with a C57BL/6J
background, including Nlrp3−/− and Casp1−/− (32), were
obtained from the Center National de Recherche Scientifique
(Orléans, France) (32, 33, 47). All experimental animals were
housed in the Animal Center of Tzu-Chi University in a
specific-pathogen-free, temperature-, and lighting-controlled
environment with free access to filtered water and food. All
genetic knockout strains were backcrossed with the wild-type
C57Bl/6J mice for at least 6 generations. After challenged with
vehicle (saline), BSA (a control protein, 2 mg/kg), DENV (1.2
× 107 PFU /kg; DHF viral load) and rEIII (2 mg/kg; a dosage
equivalent to 1.2 × 107 PFU/kg), experimental mice were
immediately rescued with or without Nlrp3 inhibitor OLT1177
treatments (50 mg/kg). Plasma levels of IL-1β, TNF-α, and CitH3
of the experimental mice were determined through enzyme-
linked immunosorbent assay (ELISA) (IL-1β, TNF-α, Biolegend;
CitH3, Cayman Chemical, Ann Arbor, MI, USA) 1 d after rEIII
treatments; neutrophils were isolated and analyzed (see following
“Analyses of neutrophils”).

Ethics Statement
The animal experiments in this report were conducted in
agreement with National (Taiwan Animal Protection Act, 2008)
directive for protection of laboratory animals. All experimental
protocols for examining the experimental animals were approved
by the Animal Care and Use Committee of Tzu-Chi University,
Hualien, Taiwan (approval ID: 101019).

Analyses of Neutrophils
Blood samples of mice were collected via the retro-orbital
venous plexus using plain capillary tubes (Thermo Fisher
Scientific, Waltham, MA, USA), and then transferred into
polypropylene tubes (Eppendorf; Thermo Fisher Scientific)
containing anticoagulant acid-citrate-dextrose solution (ACD;
38mM citric acid, 75mM sodium citrate, 100mM dextrose)
(48, 49). Following previously described methods (50), mouse
neutrophils were purified from mouse blood samples using
Ficoll-Paque (Ficoll-Paque Plus, 1.077 g/mL, GE Healthcare,
Chicago, IL, USA) and dextran (Sigma-Aldrich) sedimentation
(3% w/v) density gradient centrifugation and red blood cell
lysis. To obtain fluorescent NET images, mouse neutrophils (1
× 105) were treated with vehicle (the diluent, normal saline,
0.9 % NaCl), rEIII (50µg/mL or an equivalent dose 0.6µM),
DENV (1 × 105 PFU/mL, an equivalent dose of rEIII is 0.6µM)
or 12-O-tetradecanoylphorbol-13-acetate (TPA, 2 nM, Sigma-
Aldrich) for 2 h at 37C. After fixation by 4% paraformaldehyde
on coverslips, these neutrophils were then stained with rabbit

anti-mouse citrulline Histone H3 antibody (1:1000) and 4’,6-
diamidino-2-phenylindole (DAPI, 5 µl/ml). A fluorescence
microscope (Nikon Eclipse E800; Nikon Taiwan, Taipei, Taiwan)
(51) was used for obtaining the NETosis images. To analyze
mitochondria membrane potential, superoxide, and membrane
potential levels, mitochondria labeling reagents MitoTrackerTM

Green FM (Thermo Fisher Scientific, Waltham, MA, USA),
MitoSOXTM Red mitochondrial superoxide indicator (Thermo
Fisher Scientific), MitoTrackerTM Red CMXRos (Thermo Fisher
Scientific) were used according to themanufacturer’s instructions
(33, 52). A flow cytometer (FACSCalibur; BD Biosciences, San
Jose, CA, USA) (36, 38) was used in this study to analyze RCD,
cell live/death and mitochondria metabolic activities with or
without rEIII challenges and RCD or signaling pathway (e.g.,
PAD4, Nlrp3 inflammasome) inhibitor treatments (33). Levels
of cellular reactive oxygen species (ROS) were analyzed using
2′,7′-dichlorofluorescin diacetate (Sigma-Aldrich) staining-flow
cytometry analysis.

Analyses of Regulated Cell Death
To analyze DENV or rEIII induced neutrophil cell death, mouse
neutrophils were incubated with DENV or rEIII for 1 h and
then subjected to flow cytometry analyses after washed with
PBS. Various regulated cell death (RCD) responses, including
apoptosis (CaspGLOWTM Red Active Caspase-3 Staining Kit,
#K193, BioVision, Milpitas, CA, USA), autophagy (Cyto-IDTM

Autophagy Detection Kit, Enzo Life Sciences, #ENZ51031,
Farmingdale, NY, USA), ferroptosis (C11 BODIPY 581/591,
#27086, Cayman Chemical), necroptosis (RIP3/B-2 alexa Fluor
488, Santa Cruz Biotechnology, #sc-374639 AF488, Santa
Cruz, CA, USA), pyroptosis (Caspase-1 Assay, Green, #9146,
ImmunoChemistry Technologies, MI, USA), and live/dead
cell labeling (Zombie NIRTM Fixable Viability Kit, #423105,
Biolegend), were analyzed using respective cell labeling reagents
(30min in PBS). Treatments (1 h) of cell death inducers
were used as positive controls for various type of regulated
cell death (RCD; apoptosis: doxorubicin, 2.5µg/mL, Nang
Kuang Pharmaceutical, Taipei, Taiwan; autophagy: rapamycin,
250 nM, #R0395, Sigma-Aldrich; ferroptosis: erastin, 10µM,
#17754, Cayman Chemical; necroptosis, TNF-α, 2 ng/mL,
#575202, Biolegend; pyroptosis: nigericin, 3.5µM, #6698,
ImmunoChemistry Technologies, Minnesota, USA; NETosis,
TPA, #P8139, 2 nM Sigma-Aldrich) (30min in PBS). Inhibitors
were used to address the involvements of specific RCD pathways
(apoptosis: Z-DEVD-FMK, 10µM, #FMK004, R&D Systems,
Indianapolis, IN, USA; autophagy: Chloroquine diphosphate,
60µM, #C6628, Sigma-Aldrich; ferroptosis: Ferrostatin-1
2.5µM, #17729, Cayman Chemical; necroptosis: Necrostatin-1,
50µM, #11658, Cayman Chemical; pyroptosis: Z-WHED-FMK
10µM, #FMK002, R&D Systems; pyroptosis/GSDMD: dimethyl
fumarate (DMF), 25–100µM, #14714, Sigma–Aldrich; NETosis:
peptidyl arginine deiminase 4 (PAD4) inhibitor GSK484, 10µM,
#17488, Sigma–Aldrich; Nlrp3: OLT1177, 10µM, #24671,
Cayman Chemical; EIII competitive blocker: Chondroitin
sulfate B, CSB, 10µg/mL, #C3788, Sigma–Aldrich; 30min
pretreatments before addition of DENV, rEIII and cell-death
inducers according to the manufacturer’s instructions).
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Statistical Analyses
In this report, the means, standard deviations, and statistics
of the quantifiable data were calculated using the SigmaPlot
10 and SPSS 17 software packages. Significance of the
data was examined using one-way ANOVA, followed by
the post hoc Bonferroni-corrected t-test. The probability of
type-1 error α = 0.05 was recognized as the threshold of
statistical significance.

RESULTS

Nlrp3 Inflammasome Is Involved in rEIII
Induced Neutrophil NETosis
Flow cytometry analysis of NETosis markers citrullinated histone
H3 (CitH3) (53, 54) and histone H2A family member X (H2AX)
(55, 56) revealed that rEIII is sufficient to initiate NETosis
in neutrophils; the potency of rEIII is comparable to the
classical NETosis inducer phorbol ester (18, 57) (Figure 1A,
Supplementary Figure 1, flow cytometry gating; Figure 1B). In
addition, such induction of NETosis can be suppressed by
treatments of inflammasome/caspase 1 inhibitor Z-WHED-
FMK (Figure 1). In agreement with this, we found that, when
compared to the neutrophils from wild type mice, Nlrp3
inflammasome-deficient (Nlrp3−/− and Casp1−/−) neutrophils
displayed relatively low NETosis levels after treated with rEIII
and TPA (Figures 2A–C, cell images; green channels: CitH3,
a NETosis marker; Figure 2D, quantified results). These data
suggest that Nlrp3 inflammasome plays critical role in rEIII-
induced NETosis.

DENV and rEIII Induce Multiple Regulated
Cell Death Pathways of Neutrophils
NETosis is a type of regulated cell death (RCD) (58).
Previous reports suggested that neutrophil RCD exacerbate
pathogenesis in infectious diseases (59, 60). As a result, we
would like to investigate whether various RCD pathways
are also involved in DENV- and rEIII-induced neutrophil
cell death.

We first found that DENV and rEIII induced neutrophil
cell death in a dose dependent manner (Figure 3A). Overall,
various cell death inducers, including doxorubicin (apoptosis)
(61, 62), rapamycin (autophagy) (63), erastin (ferroptosis) (64),
TNF-α (necroptosis) (65, 66), nigericin (pyroptosis) (67), served
as positive control agents to induce respective RCD pathways
of the tested neutrophils (Figures 3B,C, dead cell population
adjusted to 100%; Supplementary Figure 2, flow cytometry
gating and calculation). Notably, when compared with cell
death agonists, DENV and rEIII treatment induced considerable
pyroptosis, necroptosis, autophagy and NETosis responses in the
neutrophils, while only minor or no ferroptosis and apoptosis
levels (Figure 3B, % of total cells; Figure 3C, % of total dead
cell). In addition, the cell type specific RCD patterns/profiles
(CTS-RCDPs) (33) of neutrophil in the DENV-, and rEIII-treated
groups were somewhat similar, with pyroptosis exhibiting the
highest levels in both groups among all tested RCD pathways
(Figure 3B; ∼40%), suggesting that DENV-induced CTS-RCDP
in the neutrophils is likely mediated through EIII on the DENV
virion. In case one dead cell may display multiple RCDs, here we
defined CTS-RCD as a detection ratio of RCDs in 1 cell type at a
specific condition.

FIGURE 1 | Essential role of caspase 1 in DENV rEIII-induced NETosis. The gating of flow cytometry analysis of vehicle, 12-O-tetradecanoylphorbol-13-acetate (TPA,

a positive control NETosis inducer; 2 nM) and DENV rEIII (0.6µM) challenged (1 h) wild mice neutrophils (1 × 105) with or without caspase 1 inhibitor Z-WHED-FMK

pretreatments (30min) (A). The quantified results of flow cytometry analysis, which reveal that TPA and rEIII treatments markedly induced NETosis formation; by

contrast, caspase 1 inhibitor Z-WHED-FMK treatments can only considerably suppress rEIII-induced NETosis, but not TPA-induced NETosis (B). n = 6, **P < 0.01,

vs. untreated controls; ##P < 0.01 vs. vehicle groups.
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FIGURE 2 | Essential role of Nlrp3 inflammasome in DENV rEIII-induced NETosis. After challenged (1 h) by TPA (2 nM) and DENV rEIII (0.6µM), the images of DAPI

(nucleus DNA staining) and citrullinated histone H3 (CitH3; NETosis marker) staining of NETosis formation of neutrophils from wild type (A), Nlrp3 null (Nlrp3−/−) (B),

and caspase 1 null (Casp1−/−) (C) mouse were showed. The quantified results from flow cytometry are also indicted (D). n = 6, ** P < 0.01, vs. vehicle controls; #P

< 0.05, ##P < 0.01 vs. wild type (WT) groups. Scale bars: 5µm.

An unexpected finding is that the DENV and rEIII
induced NETosis only displayed approximately 20% of total
RCDs (Figure 3B); and a classical NETosis inducer TPA (a
phorbol ester) also induced NETosis about only 40% of
total RCDs (Figure 3B, TPA groups). This let us wondered
whether DENV and EIII-mediated induction of such a low
percentage of NETosis in total RCD, could sufficiently lead to
neutrophil dysfunction. In addition, we would like to investigate
whether Nlrp3 inflammasome is involved in rEIII-induced
neutrophil death. Accordingly, Nlrp3 inhibitor OLT1177 and
inflammasome/caspase1 inhibitor Z-WHED-FMK were used to
further characterizations of whether Nlrp3 inflammasome is
involved in respective RCD responses.

We found that treatments with inflammasome inhibitors
OLT1177 and Z-WHED-FMK both suppressed EIII-induced
neutrophil cell death (Figures 4A,B; Supplementary Figure 3,
percentage pie charts of OLT1177 and Z-WHED-FMK
treatments; equivalent to some data in Figures 4A,B,I).
In addition, OLT1177 and Z-WHED-FMK suppressed
pyroptosis (Figures 4C,J), necroptosis (Figures 4D,K),
autophagy (Figures 4G,N), and NETosis (Figures 4H,O),

with (Figures 4I–O) or without (Figures 4B–H) normalization
of dead cell population. These results suggested that pyroptosis
is the major RCD of rEIII-induced neutrophil death, and
which can be rescued by selective inhibitors against Nlrp3
inflammasome. In addition, Nlrp3 likely involved in neutrophil
NETosis as treatments of selective inhibitor OLT1177
rescued total neutrophil death (Figure 4A) and NETosis
(Figures 4H,O). Consistently, treatments of pyroptosis/GSDMD
inhibitor DMF (68) suppressed EIII-induced neutrophil
pyroptosis, NETosis, cellular ROS, surface GSDMD levels
(Supplementary Figure 4, flow cytometry analyses), and
caspase-1 activation (Supplementary Figure 5, colorimetric
assay). Furthermore, despite NETosis displayed only ∼20%
cell death (Figures 4B,I), PAD4 inhibitor GSK484 suppressed
considerable levels of total neutrophil death (Figure 4A)
and RCDs including pyroptosis, necroptosis, autophagy,
and NETosis (Figure 4). These evidences collectively
suggesting that that RCDs pyroptosis, necroptosis, and
autophagy are likely associated to NETosis, and NETosis
is still a critical RCD pathway of neutrophil in response to
rEIII exposure.
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FIGURE 3 | DENV- and rEIII-induced regulated cell death in neutrophils. (A) Wild type mouse neutrophils treated (1 h) with vehicle and various doses of DENV and

rEIII; the live and death cell populations were revealed by Zombie-NIR Kit labeling and flow cytometry analysis. [rEIII 1× = 0.3µM, 2× = 0.6µM, 4× = 1.2µM,; DENV

e(rEIII 1×) is a DENV level equivalent to 0.3µM rEIII, as indicted by the methods described elsewhere (33)]. (B) Treatments (1 h) of regulated cell death (RCD) inducers,

doxorubicin (DOX; apoptosis) (2.5µg/mL), rapamycin (autophagy) (0.5µM), erastin (ferroptosis) (10µM), TNF-α (necroptosis) (2.5 ng/mL), TPA (NETosis) (2 nM), and

nigericin (pyroptosis) (3.5µM) induced relatively simple RCD patterns. By contrast, DENV and rEIII induced multiple RCD pathways, in which pyroptosis is the major

RCD response, counts ∼40% of total RCD and the NETosis response displays only ∼20% total RCD. (C) If the respective RCDs are normalized by the population of

death cells (dead cell population normalized to 100%), we can obtain a more similar RCD pattern in DENV and rEIII groups (flow cytometry gating and calculation

methods described in Supplementary Figure 2). DENV 1 × = 4.2 × 104 PFU/mL, 2 × = 8.4 × 104 PFU/mL, 4 × = 1.7 × 105 PFU/mL; **P < 0.01 vs. vehicle

groups.

Nlrp3 Inflammasome Deficiency and
Inhibitor Treatments Rescue DENV- and
rEIII- Exacerbated Mitochondria Metabolic
Burden and Inflammation of Neutrophils
Because inflammasome-mediated pyroptosis is a major RCD
involving in rEIII-induced neutrophil defect, here we would
like to further investigate whether suppression of neutrophil
Nlrp3 inflammasome through inhibitor treatments is sufficient
to ameliorate DENV rEIII-induced neutrophil defects. Here
we found that treatments of rEIII-increased mitochondria
mass (Figure 5A), membrane potential (Figure 5C) and
superoxide (Figure 5E) levels in a dose dependent manner,
while treatments of Nlrp3 inflammasome inhibitors OLT1177
and Z-WHED-FMK ameliorated such metabolic burden of

neutrophil mitochondria (Figures 5B,D,F). Levels of caspase-1
activation in the neutrophils were analyzed and confirmed in

parallel using colorimetric assay (Supplementary Figure 5).

In agreement with this, mouse experiments further revealed
that, treatments of Nlrp3 inflammasome inhibitors OLT1177

markedly ameliorated rEIII- induced elevation of circulating

soluble CitH3 (Figure 6A), IL-1β (Figure 6B), and TNF-α

(Figure 6C) levels in mice. Consistently, compared to wild
type mice, neutrophils from Nlrp3−/− and Casp1−/− mutant
mice displayed markedly reduced levels of total mitochondria
ROS (Figure 7A), hydrogen peroxide (Figure 7B), superoxide
(Figure 7C) after in vitro treatments of rEIII. Similarly,
rEIII treatments markedly induced circulating CitH3 in wild
type mice, but not in Nlrp3−/− and Casp1−/− mutant mice
(Figure 7D). These results collective suggest that EIII is a
virulence factor to induce neutrophil defects, and Nlrp3

inflammasome is a critical target for DENV and EIII to induce
neutrophil dysfunction, NETosis, and inflammation.

DISCUSSION

Inflammasomes, cellular molecular sensors for PAMPs and
DAMPs, are multimeric protein complexes comprising of
NLRs [nucleotide-binding domain (NBD) and leucine-
rich-repeat-(LRR)-containing], the absent in melanoma-2
(AIM2)-like receptors (ALRs), an adaptor molecule ASC
(apoptosis-associated speck-like protein containing a CARD),
and procaspase-1 (14, 25, 69, 70). Activation of inflammasomes
leads to protein-cleavage processes, turning pro-caspase 1 into
active form caspase 1, which converts pro-IL-1β and pro-IL-18
into respective active forms (IL-1β and IL-18) (69). Uncontrolled
inflammasome activation exacerbates autoimmune and excessive
inflammatory pathogenesis in infectious diseases, despite the
adequate levels of inflammasome activation can help defending
the pathogens (71). As a result, selective inhibitors against
inflammasomes have been developed for treating various
inflammatory and infectious diseases, and have got promising
advancements (70, 72). High circulating levels of IL-1β and
IL-18 have been associated DHF (27, 73), suggesting a critical
role of inflammasomes in DENV-induced pathogenesis. Mouse
experiments further revealed that DENV inducedNET formation
and inflammasome activation was impaired in neutrophils from
CLEC5A−/− and TLR2−/− mutants (74). DENV-induced NET
leads to endothelial cell damage and vascular leakage . Evidences
have suggested that NET formation contributes significantly
in disease pathogenesis, and NET components were more
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FIGURE 4 | Protection of neutrophils from rEIII-induced pyroptosis under treatment with Nlrp3 inflammasome inhibitors. Pre-treatments (30min) with NETosis inhibitor

GSK484 (2 nM), Nlrp3 inhibitor OLT1177 (10µM), and caspase 1 inhibitor Z-WHED-FMK (10µM) on the rescue of rEIII-induced neutrophil total cell death (A).

Pretreatments (30min) with Nlrp3 inflammasome inhibitors OLT1177, Z-WHED-FMK, and NETosis inhibitor GSK484 rescued rEIII-induced (1 h) neutrophil pyroptosis

(B,C), necroptosis (D), autophagy (G) and NETosis (H), but not ferroptosis and apoptosis (E,F). If the respective RCD% was normalized by the population of death

cells [(I): dead cell population normalized to 100%], we found that CSB, OLT1177 and Z-WHED-FMK still display rescue effects on pyroptosis (J), necroptosis (K),

autophagy (N), and NETosis (O), but not ferroptosis and apoptosis (L,M). Chondroitin sulfate B (CSB, 10µg/mL), a competitive inhibitor against rEIII binding (33),

serving as a positive inhibitor control to inhibit cell death. n = 6, *P < 0.05, **P < 0.01, vs. respective vehicle groups. ND, not detected.
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FIGURE 5 | DENV rEIII-induced mitochondria ROS production is ameliorated by Nlrp3 inflammasome and NETosis inhibitor. The rEIII (0.6µM)-induced (1 h) elevations

of neutrophil mitochondria mass (A) membrane potential (C) and superoxide (E) levels in a dose dependent manner. The induction of these mitochondria metabolic

burdens in the neutrophils could be suppressed by treatments of Nlrp3 and caspase 1 inhibitors Z-WHED-FMK (10µM) and OLT1177 (10µM), NETosis inhibitor

GSK484 (10µM), and the cell-binding competitive inhibitor chondroitin sulfate B (CSB, 10µg/mL), respectively (B,D,F). n = 6, *P < 0.05, **P < 0.01, vs. respective

untreated vehicle groups (A,C,E); *P < 0.05, **P < 0.01, vs. respective vehicle groups (B,D,F).
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FIGURE 6 | Nlrp3 inhibitor OLT1177 protects mice from DENV- and rEIII-induced NETosis and IL-1β, TNF-α production in mice. After challenged with vehicle (saline),

BSA (a control protein) 2 mg/kg), DENV (1.2 × 107 PFU /kg; DHF viral load) and rEIII (2 mg/kg; a dosage equivalent to DENV 1.2 × 107 PFU/kg), experimental mice

were immediately rescued with or without Nlrp3 inhibitor OLT1177 treatments (50 mg/kg). The ELISA analyzed plasma levels of circulating soluble citrullinated histone

H3 (CitH3; a NETosis marker) (A), circulating IL-1β levels (B), and TNF-α levels (C) after 1 d treatments were showed. n = 6, ##P < 0.01, vs. respective untreated

groups; *P < 0.05, **P < 0.01, vs. respective vehicle groups.

predominantly displayed in serum samples of DHF patients (75).
Despite of these findings, the mechanism underlining DENV-
induced NETosis formation is not fully understood; particularly,
the viral factor leading to NETosis remains elusive. Here we
found that, the DENV EIII could be a potential virulence fact
that elicits abnormal neutrophil responses and NETosis. Because
DENV and EIII induced similar RCD patterns of neutrophils
(Figure 3B, DENV and rEIII groups), suggesting that, during
the speak viremia stage, high levels of DENV virion conduct
the cytotoxicity to enhance NETosis through EIII moiety. This
is partly consistent with the findings that NET formation is
markedly increased in neutrophils isolated from dengue patients
during the acute phase of the infection (75). Additionally, our
data suggests that such cell-type-specific RCD patterns may be
a useful analysis method on the functional characterization of
biologically drugs and hazardous materials at the cellular levels.

Inflammasomes regulate and interact with various RCDs (72,
76–78). The inhibitors of either Nlrp3 inflammasome/pyroptosis
(inhibitor OLT1177) or NETosis (inhibitor GSK484) can
suppress to each other (Figure 4), suggests there could exist
a cross-talk between these 2 pathways. First, such cross-
talk could be regulated at an intracellular signaling level; for

example, GSDMD, an effector protein of pyroptosis, plays
a critical role in the generation of NET (79). Consistently,
here we found that treatments of GSDMD inhibitor DMF
drastically reduced EIII-induced pyroptosis and NETosis in
neutrophils (Supplementary Figure 4). Accordingly, if Nlrp3
inflammasome-activated GSDMD can further enhance NET
formation, it is reasonable to observe an inhibition of NETosis
using inhibitors from a pyroptosis pathway. Second, the cross-
talk may also explain by a model of intercellular regulations
between macrophage and neutrophil. For example, the NET is
able to prime macrophages to produce IL-1 and IL-18 through
the Nlrp3 inflammasome, thus amplifying the inflammatory
response (80). At the same time, IL-18 effectively stimulated
NET release and caspase-1 activation in primed macrophages
compared to IL-18 alone (80). This suggests a feed-forward
loop that NET increase the production of IL-1β and IL-18 in
macrophages, which in turn can stimulate NET formation in
neutrophils (80). These evidences may explain our observations
that treatments of Nlrp3 inhibitor OLT1177 can markedly
suppressed rEIII-induced neutrophil pyroptosis and NETosis
in vitro (Figure 4), and markedly suppressed rEIII-induced
NETosis and inflammation in mice (Figure 6). However, as these
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FIGURE 7 | Nlrp3 and caspase 1 deficiencies protest rEIII-induced neutrophil ROS production and NETosis. Treatments (1 h) of rEIII (0.6µM)-induced elevations of

neutrophil cellular reactive oxygen species (ROS) (A) hydrogen peroxide (B), superoxide (C) in vitro. Treatments (1 d) of rEIII (2 mg/kg)-induced elevations of circulating

CitH3 (D) levels in wild type mice. By contrast, such rEIII (0.6µM in vitro, 2 mg/kg in mice)-induced stimulations are markedly reduced in Nlrp3−/− and Casp1−/−

gene knockout mice in both in vitro and in vivo experiments (A–D). n = 6, #P < 0.05, ##P < 0.01, vs. respective wild type (WT) groups; *P < 0.05, **P < 0.01, vs.

respective vehicle groups.

regulations still not been clearly demonstrated in dengue, more
detailed mechanism is worth of further investigations.

As a glycosaminoglycan (GAG) binding lectin (81), EIII
could have multiple neutrophil surface targets. Recent evidences
have suggested that lectin DC-SIGN mediated DENV infection
in dendritic cells (82); lectins CLEC2 and CLEC5A plays
critical roles on DENV-induced inflammation (24, 74, 83,
84). CLEC5A and DC-SIGN are expressed by leukocyte
subpopulations (82, 84); while their respective isoforms CLEC2
and DC-SIGNR preferentially expressed by the other cell
types (84, 85). Here we used recombinant soluble CLEC2,
CLEC5A, DC-SIGN, DC-SIGNR, to perform EIII competition
experiments. Analysis results revealed that CLEC5A-, and
DC-SIGN-, but not CLEC2-, and DC-SIGNR-coated beads can
bind to rEIII (Supplementary Figure 6). Consistently, CLEC5A

and DC-SIGN, but not CLEC2 and DC-SIGNR can block
rEIII-neutrophil binding (Supplementary Figure 6). In addition,
CLEC5A and DC-SIGN can reduce EIII-induced increased ROS
and NETosis levels in neutrophils (Supplementary Figure 6).
These evidences collectively suggested that CLEC5A and DC-
SIGN are cellular targets of EIII on neutrophils. As a critical
inflammatory regulator, the role of CLEC5A and DC-SIGN in
EIII- mediated pathogenesis is worthy of further investigations.

Cell population is heterogeneous even in one cell line. This
could be a reason that reports have revealed treatments of
pathogens and cytotoxic agents leading to multiple types of
RCDs simultaneously (86–92). For example, when cellular stress
can activate both receptor-induced lysosomal-dependent, and
mitochondrial-mediated cell death pathways, which will lead
to both programmed necrosis and apoptosis (88). Similarly, as
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DENV and EIII been reported to have multiple cellular targets,
it is reasonable to detect multiple RCDs after DENV and EIII
challenges. Here, we found that DENV and EIII but not the other
RCD inducers, induced a similar RCD pattern in neutrophils
(Figures 3B,C). Previous reports have suggested that, upon
stimulation by PAMP, neutrophil activation results in necrotic
RCDs (93, 94); by contrast, neutrophil apoptosis contributes to
the resolution of inflammation (93–96). Consistently, here we
found that DENV and EIII (pathogen, PAMP) preferentially
induced necrotic RCDs with almost no detectable apoptosis
levels in neutrophils (Figure 4). Although further investigations
are needed, our data suggested that the neutrophil CTS-RCDPs
are useful on the characterization of cellular tendency on the
induction of RCDs in particular conditions.

In addition to EIII, DENV membrane protein (M) and non-
structural proteins NS2A, NS2B were also shown to induce
inflammasome activation (14, 97, 98), andNS1 was demonstrated
to enhance inflammation through a toll-like receptor 4 (99, 100).
NS2A, NS2B have shown to serve as viroporins to increase cell-
membrane permeability and activate inflammasome (14, 101,
102). Viroporins primarily affect virus-infected cells (103), and
clinical course of DHF occurs specifically when the viremia
markedly decreased (104, 105); these evidences suggest that
NS2A, NS2B-mediated inflammasome activations may be not
timely associated with the clinical course of DHF. DENV virus
particle-expressed EIII and soluble NS1 are detected at high
levels prior to the acute phase of DHF (104, 105), and may be
considered as two virulence factors for severe dengue. Here we
found that both EIII and NS1 treatments can induce increased
NETosis levels in neutrophils, and EIII has a relative higher
activity (Supplementary Figure 7; DENV envelop domain I,
domain II protein fragment, served as a control protein). Because
the induction of virion-expressed EIII and soluble NS1 are
induced in a similar, but not a same time course (105), the
respective pathogenic role of EIII and NS1 on the elicitation
of DHF-related pathogenesis remains to be further studied.
However, data obtained in the study suggested that virion-
associated EIII is a candidate virulence factor that contributes to
dengue-elicited NET formation.

In this present study, we found that treatments of both
DENV and EIII, a cell-surface-binding and cytotoxic protein, can
induce multiple cell death pathways in neutrophils with a similar
cell-type-specific RCD pattern (Figure 3B). NETosis inhibitor
GSK484 treatments sufficiently suppressed EIII-induced cell
death (Figure 4A), NETosis (Figure 4G), and mitochondria
metabolic burden (Figure 5) of neutrophils. This suggested
that, despite the NETosis seems to be a relatively minor
response that counts approximately 20% of total neutrophil
RCDs, the EIII-stimulated NETosis is sufficiently leading to an

abnormal neutrophil activation and cell death. In addition, our
data revealed that blockage of Nlrp3 inflammasome, through
treatments of inhibitor OLT1177 or gene deficiencies in Nlrp3
and caspase 1 expression, protects neutrophils from rEIII-
induced NETosis (Figures 4, 7) and proinflammatory cytokines
TNF and IL-1 secretion in mice (Figure 6). These results
collectively suggest that Nlrp3 inflammasome is a promising
target for treating DENV-induced inflammation.
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