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In mammalian females, X-chromosome inactivation (XCI) acts as a dosage compensation
mechanism that equalizes X-linked genes expression between homo- and heterogametic
sexes. However, approximately 12–23% of X-linked genes escape from XCI, being bi-allelic
expressed. Herein, we report on genetic and functional data from an asymptomatic female of
a Fragile X syndrome family, who harbors a large deletion on the X-chromosome. Array-CGH
uncovered that the de novo, terminal, paternally originated 32 Mb deletion on Xq25-q28
spans 598 RefSeq genes, including escape and variable escape genes. Androgen receptor
(AR) and retinitis pigmentosa 2 (RP2) methylation assays showed extreme skewed XCI ratios
from both peripheral blood and buccal mucosa, silencing the abnormal X-chromosome.
Surprisingly, transcriptome-wide analysis revealed that escape and variable escape genes
spanning the deletion are mostly upregulated on the active X-chromosome, precluding major
clinical/cognitive phenotypes in the female. Metaphase high count, hemizygosity
concordance for microsatellite markers, and monoallelic expression of genes within the
deletion suggest the absence of mosaicism in both blood and buccal mucosa. Taken
together, our data suggest that an additional protective gene-by-gene mechanism occurs at
the transcriptional level in the active X-chromosome to counterbalance detrimental phenotype
effects of large Xq deletions.

Keywords: AR, escape genes, transcriptome-wide analysis, X-chromosome deletion, X-chromosome inactivation,
RP2, transcriptome-wide analysis

INTRODUCTION

For dosage compensation of X-linked genes expression between hetero- (XY males) and
homogametic (XX females) sexes, mammalian females have evolved a complex epigenetic
mechanism to transcriptionally silence all but one X-chromosome per diploid set, called X-
chromosome inactivation (XCI). In this process, which occurs in early embryogenesis, parental
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X-chromosomes have the same probability for random
inactivation, giving rise to an overall 1:1 ratio of cells that
express either the paternal or the maternal X-chromosome.
Once XCI has occurred, the inactive X-chromosome (Xi) is
stably transmitted through subsequent mitosis. Nonetheless,
non-random or skewing of XCI can arise by chance or due
either to primary nonrandom choice or to secondary stochastic
or genetic processes (Fieremans et al., 2016). In primary skewing,
variants in genes participating from the XCI process itself (i.e.,
XIST) preclude the cell from silencing the X-chromosome
carrying the mutation before the XCI starts. Alternatively,
secondary skewing generally takes place in post-inactivation
cell selection, acting for or against cells carrying the active X-
chromosome (Xa) or the Xi (Morey and Avner, 2011). So,
secondary XCI skewing often occurs in females with a
structurally abnormal X-chromosome, such as large deletions,
duplications, and unbalanced X/autosome translocations, in a
manner that preserves the normal X-chromosome and
autosomal dosage (Schmidt et al., 1991). Conversely, in
balanced X/autosome rearrangements, the normal X-
chromosome is usually inactive, in order to keep functional
euploidy (McMahon and Monk, 1983).

Cumulative evidence also estimates that 12–23% of X-linked
genes in humans escape from XCI, being expressed from both
the Xa and Xi (Carrel and Willard, 2005; Balaton et al., 2015;
Tukiainen et al., 2017). XCI escape genes are distributed in
clusters, mainly located on the short arm of the X-chromosome,
possibly as a reflection of their distance from the XCI center (Xic)
(Disteche, 1999; Tsuchiya et al., 2004; Carrel and Willard, 2005).
Besides, one intrigant cluster of Xi-expressed genes maps in a
gene-rich region at Xq28 (Carrel and Willard, 2005).

It is noteworthy, however, that genes located on the human
X-chromosome seem to be expressed in few tissues or are specific
for a subset of tissues, e.g., brain (Hurst et al., 2015).
Furthermore, there is an excess of XCI escape genes involved
in neurocognitive function (Zhang et al., 2013), which could
explain some of the somatic abnormalities seen in females and
males with sex chromosome aneuploidies like Turner or
Klinefelter syndromes, even in the presence of only one Xa.
Moreover, intellectual disability (ID) is a common phenotypic
component among females harboring mutations on escape genes
and XCI skewing (Fieremans et al., 2015; Snijders Blok et al.,
2015; Fieremans et al., 2016; Reijnders et al., 2016).

Herein, we report a female with a de novo heterozygous
deletion at Xq25-q28 associated with an extreme XCI skewing
pattern against the deleted X-chromosome. The patient was
evaluated due to the presence of Fragile X syndrome (FXS;
MIM# 300624) in her nephew. Surprisingly, transcriptome
analysis revealed an upregulation compensatory mechanism of
X-linked genes within the deleted region that escape or variable
escape XCI, including ID genes, preventing her from having ID
and/or other major clinical features, but premature ovarian
failure (POF). Altogether, our data suggest that, at least for
some XCI escape genes, structural hemizygosis caused by large
X-chromosome delet ions may be transcr ipt ional ly
counterbalanced, avoiding functional haploinsufficiency.
Frontiers in Genetics | www.frontiersin.org 2
MATERIALS AND METHODS

Study Participants
The research protocols adhered to the ethical principles for
medical research involving human subjects and received
approval from the Institutional Ethics Committee. The index
family was referred to the Human Genetics Laboratory at the
State University of Rio de Janeiro (Rio de Janeiro, Brazil) in 2016,
because of an idiopathic history of ID and autism in the
propositus, compatible with FXS. The three-generation family
comprised five members available for testing (individuals I.1, I.2,
II.2, II.3, III.1), including the asymptomatic aunt of the proband
(individual II.3), who was tested as part of a routine genetic
counseling procedure for FXS (Figure 1A).

FMR1 Analysis
For molecular analysis, genomic DNA was isolated from
peripheral blood samples from available family members.
High-resolution methylation PCR (mPCR) on the proband
(III.1) was performed using AmplideX FMR1 mPCR kit
(Asuragen Inc., Austin, TX, USA). For FMR1 expansion
segregation analysis, the mother (II.2), the maternal aunt (II.3)
and the maternal grandparents (I.1 and I.2) were also evaluated
by AmplideX FMR1mPCR kit (Asuragen Inc., Austin, TX, USA)
(Gonçalves et al., 2016).

Karyotype and Array-Comparative
Genomic Hybridization (array-CGH)
In parallel to FXS interrogation, cytogenetic evaluation was
performed on cultured peripheral blood lymphocytes from the
proband, by standard methods to exclude chromosome
aberrations linked to ID. As the proband's aunt (II.3) expressed
the intention of becoming pregnant, standard karyotype analysis
was also performed in her peripheral blood cells.

With the purpose of delineating an Xq deletion detected in
individual II.3 karyotype (Figures 1B, C), array-CGH was
conducted in gDNA extracted from her peripheral blood using
a 180 K whole-genome platform (Agilent Technologies, Santa
Clara, CA, USA). Samples were labeled with Cy3- and Cy5-
deoxycytidine triphosphates by random priming. Purification,
hybridization, washing, image scanning, and data analysis were
carried out as previously reported (Santos-Rebouças et al., 2015).

Microsatellite Genotyping and X-
Chromosome Inactivation Assay
To assess the parental origin of the Xq deletion, six polymorphic
microsatellite repeat markers along the X-chromosome were
interrogated in all family members available by quantitative
fluorescence PCR using fluorochrome-labeled primers and
separating the amplimers by high-resolution capillary
electrophoresis, as previously described (Ogilvie et al., 2005).
Both blood and buccal mucosa DNA samples were genotyped.
Three heterozygous microsatellites within the Xq deletion were
informative to confirm the parental origin of the deletion.

Besides, the extent of XCI was estimated by determining the
Xa/Xi ratios in DNA from blood, and buccal mucosa of
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individual II.3 using the methylation-sensitive restriction
enzyme indirect AR/RP2 biplex assay previously reported
(Machado et al., 2014). Allele profiles and areas under the
curve for each allele were determined on an ABI3130 Genetic
Analyzer (Thermo Fisher Scientific Inc., MA, USA) and data
were analyzed by GeneScan Analysis 3.7 and Genotyper 3.7
software (Thermo Fisher Scientific Inc.). Fluorescent peak areas
representing true alleles were normalized for the existence of
stutter products, and the XCI ratios were estimated as previously
described (Busque et al., 2009; Machado et al., 2014).

RNA-Seq
Blood RNA samples from individual II.3 and an age and sex-
matched control were subsequently analyzed by RNA-Seq in
Illumina platform (Genone Biotechnologies, Rio de Janeiro,
Brazil). Total RNA was purified using poly-T oligo-attached
Frontiers in Genetics | www.frontiersin.org 3
magnetic beads with rRNA removal. The resulting directional
RNA-Seq NEB libraries were sequenced in paired-end format.
Image analysis and per-cycle base calling were performed with
Illumina Real-Time Analysis software (RTA1.9) (Illumina).
Conversion to FastQ read format was obtained by CASAVA-
1.8 (Illumina) and sequenced reads were quality-checked with
FastQC (Andrews, 2010). Sequence adaptors were removed with
cutadapt v1.2.1 (Martin, 2011), and reads were aligned to the
human reference genome (GRCh37/hg19) with STAR (Dobin
et al., 2013). BAM files were visualized by using the Integrative
Genomics Viewer (IGV) (Robinson et al., 2011).

For single nucleotide polymorphisms (SNPs) and insertions/
deletions (indels) analyses, Samtools and Picard were used to sort
the reads according to the genome coordinates, followed by
screening out repeated reads. Finally, GATK3 (McKenna et al.,
2010) was used to carry out SNP and indel calling. ANNOVAR
FIGURE 1 | Molecular and cytogenetics analysis in the studied family. (A) Family pedigree showing the segregation of the FMR1 CGG repeat expansion that was
ascertained through the proband with ID (individual III.1 indicated by a solid square). Open squares represent unaffected males and open circles represent unaffected
females. Circle or square with a black dot represents an unaffected carrier female or male, respectively. “N” indicates no FMR1 expansion. A heterozygous Xq25-q28
deletion is present in the individual II.3; (B) Partial G banded karyotype from the individual II.3 and ideogram of the Xq deleted region. (C) Pictures of the individual II.3
that harbors the Xq25-q28 deletion; (D) X-chromosome array-CGH analysis plot from the individual II.3. Cy3-labeled DNA of the individual II.3 was co-hybridized with
Cy5-labeled DNA from a control onto the array. The double arrow points to the deletion of subsequent probes. Note that the deletion is seen as an increased Cy5/
Cy3 ratio.
March 2020 | Volume 11 | Article 101

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Santos-Rebouças et al. Compensatory Upregulation of X-Inactivation Escape Genes
(Wang et al., 2010) was applied for annotation and variants were
reported according to the Human Genome Variation Society
(HGVS) guidelines for cDNA sequence variants (GRCh37/hg19).

For differential expression analysis, HTSeq v0.6.1 (Anders et al.,
2015) was used to count the read numbers mapped for each gene
and Fragments Per Kilobase of transcript sequence per Millions
base pairs sequenced (FPKM) were used to estimate gene expression
levels, taking into consideration the effects of both sequencing depth
and gene length on the counting of fragments (Mortazavi et al.,
2008). Subsequently, read counts were adjusted by TMM, then
differential expression analysis was performed by using the EdgeR R
package (Robinson et al., 2010). In the absence of biological
replicates, adjusted p-value or q value < 0.005 and absolute fold
change of 1 were set as the threshold for significant differential
expression. The distribution of the differentially expressed genes was
depicted using Volcano plots.

ClusterProfiler (Yu et al., 2012) and Enrichr software (Chen
et al., 2013; Kuleshov et al., 2016) were used for enrichment
analysis of the differential expressed genes, including Gene
Ontology (GO) Consortium (2004) and Human Disease
Ontology (DO) enrichement (Schriml et al., 2019), and adjusted
p-values < 0.05 were indicative of significant enrichment.

TFCat (Fulton et al., 2009) was used for searching
transcription factors (TF) for the differential expressed genes.
Besides, identification of oncogenes and their annotation was
done by searching the Catalogue Of Somatic Mutations In
Cancer (COSMIC) database (Tate et al., 2019) using the
differentially expressed genes.

Replicate multivariate analysis of transcript splicing (rMATS)
(Shen et al., 2014) was used for detection of differential
alternative splicing from RNA-Seq data, identifying skipped
exon (SE), alternative 5' splice site (A5SS), alternative 3' splice
site (A3SS), mutually exclusive exons (MXE), and retained intron
(RI) events. The threshold of significant difference in alternative
splicing analysis was set at FDR < 0.01.

To evaluate the expression of genes within the Xq deletion, we
performed differential expression (DE) analysis using only genes
that were expressed at a mean level above 10 counts per million
(CPM) at least in one sample (individual II.3 or control). For
comparing more accurately expression levels of blood-expressed
genes within the deletion and minimize transcriptional variance
between individuals, we searched for additional RNA-Seq
experiments from healthy controls on Sequence Read Archive
(SRA; https://www.ncbi.nlm.nih.gov/sra), using “control”,
“blood”, “HiSeq 2500”, “RNA-Seq”, “paired”, as search terms
for type of samples, tissue, instrument, assay-type, and library
layout, respectively. Four female (SRR3745154, SRR3745158,
SRR3745160, SRR3745166) and one male (SRR3745151)
samples from adult individuals residing in the same geographic
area of individual II.3 and control (Rio de Janeiro, Brazil) were
selected [Bioproject: PRJNA327986; (de Araujo et al., 2016);
personal communication]. Besides, we included two RNA-Seq
samples from additional healthy males (SRR3389246,
SRR3390437) described on the Bioproject PRJNA316578 (no
associated publication). Two DE comparisons were performed:
individual II.3 versus males (SRR3745151, SRR3389246,
Frontiers in Genetics | www.frontiersin.org 4
SRR3390437) (group 1) and individual II.3 versus females (our
control, SRR3745154, SRR3745158, SRR3745160, SRR3745166)
(group 2). Only genes within the deletion with a CPM over ten
(individual II.3 or our control) were evaluated in these latter DE
comparisons, using the same pipeline described above.
RESULTS

A paternal large deletion was identified in the terminal part of the
long arm of the X-chromosome (Xq25-q28) in the aunt of the
proband with Fragile X syndrome. POF is the unique apparent
phenotype in this female. Using methylation assays in blood and
buccal mucosa, we showed that extreme XCI skewing resulted in
the silencing of the structurally abnormal X-chromosome. Besides,
focusing on the genes located within the deletion, transcriptome
analysis of blood samples from this female in comparison to
matched controls revealed that genes annotated as escape or
variable escape genes are upregulated, preventing major clinical
phenotypes in this individual. The application of different assays
described below excluded the possibility of mosaicism.

FMR1 Analysis
mPCR in the family of the female harboring the Xq deletion
confirmed a fully methylated expansion in the FMR1 gene on her
nephew (proband III.1; > 200 CGG repeats), compatible with the
FXS phenotype. As expected, segregation analysis in the mother
of the proband (individual II.2) showed a FMR1 methylated
premutation (normal allele: 29 CGGs; expanded allele: 71
CGGs), that was inherited from her father, individual I.I, who
has a smaller unmethylated premutated allele (62 CGGs).
Subsequent FMR1 gene CGG repeat number evaluation in the
proband's aunt (individual II.3), the female explored in details in
this study, revealed the presence of only one unmethylated allele
with 29 repeats, suggesting homozygosity for the FMR1 CGG
triplets (Figure 1A; Supplementary Figure S1).

Cytogenetic and Array-CGH Findings
Cytogenetic evaluation in the aunt (individual II.3) for genetic
counseling purposes by standard karyotype revealed a large
terminal deletion on the long arm of X-chromosome (Xq25-
q28) (Figures 1B, C). One hundred metaphases were analyzed,
which excludes the hypothesis of mosaicism. Oligo array-CGH
revealed a hemyzygous deletion of at least 32,450,808 bp
(chrX:122,757,437-155,208,244; hg19), comprising 598 NCBI
RefSeq curated genes, pseudogenes and microRNAs (Figure 1D).
According to the array-CGH, the proximal breakpoint of the
terminal deletion is within the THOC2 gene, and no other potential
pathogenic CNV was found. The rearrangement reported in this
studyhas been submitted toClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/) with accession number SCV000897650.

Individual II.3 Phenotype
Individual II.3 was first evaluated at 34 years old. She is the
second daughter of a nonconsanguineous couple and her
March 2020 | Volume 11 | Article 101
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hallmark developmental milestones did not point to delayed
cognitive functioning or unexpected adaptive skil ls
abnormalities. She holds a Bachelor's degree in Biological
Science, and she currently works in the administrative sector of
a private enterprise, with no apparent mild cognitive impairment
or other major clinical condition (Figure 1C). Cranial Magnetic
Resonance imaging performed in 2016 presented normal results.
After the detection of the Xq25q28 deletion, she searched for an
IVF for reproductive assistance. During the process, she began
having irregular menses, and routine biochemical tests revealed
abnormal anti-Mullerian hormone (<0.001 ng/ml), follicle-
stimulating hormone (73.4 mUI/ml), and luteinizing hormone
(33.6 mUI/ml) levels, compatible with early menopause.
Videohysteroscopy showed endocervical polyps, normal
uterine cavity, and atrophic endometrial. Her family history is
negative for either infertility or premature ovarian insufficiency/
failure (POI/POF). Currently, she is considering in vitro
fertilization with egg donation.

Parental Origin of the Xq Deletion and XCI
Patterns
Parental origin of the abnormal X-chromosome in the family,
assessed with linkage analysis with highly polymorphic
microsatellite loci along this chromosome, showed that the
Xq25-q28 deletion in individual II.3 occurred in the germline
of her father (I.1). Both blood and buccal mucosa DNA samples
showed complete hemizygosity for the DNA markers within the
deletion (Supplementary Table S1).

Methylation-sensitive restriction enzyme typing with the AR/
RP2 biplex assay proxy of XCI revealed extreme skewing (>90%)
for both AR and RP2 gene markers in blood and buccal mucosa
(Supplementary Figure S2 and Table S2). The preferential XCI
turned off the abnormal X-chromosome (236 bp allele for AR
and 374 bp allele for RP2), inherited from his father
(individual I.1).

RNA-Seq
Blood RNA-Seq data quality summary is found on
Supplementary Table S3 . Reads across four highly
polymorphic and high-quality SNPs within the deletion
demonstrated monoallelic expression, suggesting no detectable
mosaicism and confirming the near to complete XCI skewing
observed in the blood sample of individual II.3 (Supplementary
Table S4). No blood-expressed indels were found from the
proximal array-CGH breakpoint until the end of X-
chromosome (Supplementary Table S5).

Transcriptome-wide analysis in individual II.3 uncovered 1,026
differentially blood-expressed genes, as compared with the matched
control sample (Supplementary Figure S3). From the 598 RefSeq
genes mapping within the X-chromosome deletion, 241 genes were
expressed on blood according to our RNA-Seq analysis. From these,
117 transcripts have more than 10 counts in at least in one of the
samples (individual II.3 or control) (Supplementary Table S6).
Only three genes within the deletion (GPR112, SLC6A8, and
FUNDC2) showed statically significant adjusted p-values and
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| log2(FoldChange)|, for which GPR112 (log2 fold change value =
-7,72; q value = 0,0002), was underexpressed and SLC6A8 (log2 fold
change value = 1,88; q value = 0,001), and FUNDC2 (log2 fold
change value = 1,81; q value = 0,002), were overexpressed in
individual II.3, in comparison to control. No differential
expression was found for THOC2 gene, located on the proximal
breakpoint. Additional analysis of X-linked genes outside the
deletion revealed 15 other genes differentially expressed
(Supplementary Table S7).

Human Disease Ontology analysis showed that the
differentially expressed genes are enriched in auditory system
disease, proteinuria, primary ciliary dyskinesia, and idiopathic
generalized epilepsy. None of these conditions are present in
individual II.3 (Supplementary Figure S4). TFCat and COSMIC
databases did not disclose any oncogene or transcription factor
associated with the differentially expressed genes mapping within
the Xq25-q28 deletion.

Global GO enrichment analysis revealed significant values for
the three classes. The terms with the best scores (adjusted p-value <
0.01 and at least ten genes) for each category scored by p-value were
represented in Supplementary Figure S5. Enriched Biological
Processes were mainly related to homophilic cell adhesion via
plasma membrane adhesion molecules, cell-cell adhesion via
plasma-membrane adhesion molecules, membrane depolarization
during action potential, synapse organization, extracellular matrix
organization, extracellular structure organization, action potential,
multicellular organismal signaling, regulation of membrane
potential, and sensory perception of sound. Molecular Functions
enriched terms encompassed motor activity, extracellular matrix
structural constituent, actin binding, transmembrane receptor
protein tyrosine kinase activity, calmodulin binding, dynein light
chain binding, transmembrane receptor protein kinase activity,
ATP-dependent microtubule motor activity, minus-end-directed,
dynein intermediate chain binding, and actin filament binding,
whereas the main GO terms for cell component category retrieved
were proteinaceous extracellular matrix, extracellular matrix
component, apical part of cell, basement membrane, collagen
trimer, sarcomere, myofibril, contractile fiber part, myosin
complex, and contractile fiber.

Differential alternative splicing in the RNA-Seq data from X-
chromosome identified one significant alternative 5' splice site
(A5SS) involving the HSD17B10 gene and two events of skipped
exon on XIST and IDS genes (Supplementary Table S8). No
other events such as alternative 3' splice site (A3SS), mutually
exclusive exons (MXE) and retained intron (RI) events were
identified on X-chromosome.

For minimizing a possible bias associated with the use of only
one matched control in the DE analysis, we included additional
healthy control RNA-Seq samples obtained from SRA database.
Expression comparison for genes within the deletion on group 1
(individual II.3 versus males) showed significant overexpression
for MCF2, SLC6A8, FUNDC2, and VBP1 genes in the individual
II.3, whereas on group 2 (individual II.3 versus females), only
FUNDC2 gene showed significant values, being also
overexpressed on individual II.3. No gene exhibited a
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significantly decreased value in both comparison groups
(Supplementary Table S9). Besides, 167 from the 1,026 DE-
genes identified in the first transcriptome-wide analysis
(individual II.3 versus our matched control sample) were
replicated (padj < 0.05), when we included more female
controls (group 2) (Supplementary Table S10). The RNA-seq
data (raw and processed files) for the individual II.3 and the
matched contro l was depos i ted on GEO database
(accession GSE141766).
DISCUSSION

Different strategies have evolved for equalizing X-chromosome
expression between sexes in different organisms (Gelbart and
Kuroda, 2009). In humans, XCI is characteristically incomplete,
with a subset of 12–23% genes known to be also expressed from
the Xi, called XCI escape genes (Carrel and Willard, 2005;
Talebizadeh et al., 2006; Yasukochi et al., 2010; Cotton et al.,
2013; Lister et al., 2013; Szelinger et al., 2014; Balaton et al., 2015;
Cotton et al., 2015; Wainer-Katsir and Linial, 2016; Tukiainen
et al., 2017). Human genes that escape from XCI tend not to be
expressed to the same levels that are observed from the Xa
(Balaton et al., 2015). Usually, an XCI escape gene shows ≥10%
expression from the Xi allele compared with the Xa allele (Carrel
and Willard, 2005). Some of the XCI escape genes are members
of X-Y gene pairs with a paralogue on the Y chromosome, where
they can have the same function as the X paralogue. Other XCI
escape genes have lost their Y paralogue, or their Y paralogue has
evolved a distinct, often testis-specific, role (Jegalian and Page,
1998; Deng et al., 2014) and highly conserved dosage-sensitive X/
Y paralogs that escape from XCI in females are candidates for
being responsible for embryo survival (Bellott et al., 2014).

Moreover, the number of XCI escape genes is bigger on the
evolutionarily more recent strata of the X-chromosome (Ross
et al., 2005; Balaton and Brown, 2016). Beyond the
pseudoautosomal regions (PARs), one of the gene clusters
expressed from Xi maps to the gene-rich region Xq28, where
the expression level may reach 50% (Carrel and Willard, 2005).
So, irrespective of whether mutations in XCI escape genes are
located on the Xa or Xi, they could be detrimental (Fieremans
et al., 2015).

In our study, we report on a female with a large Xq25-q28
deletion and extreme XCI skewing towards the altered paternal X-
chromosome on blood and buccal mucosa. Regardless of the
skewed XCI, the deletion forces the structural hemizygosis of
XCI escape and variable escape genes. Within the Xq deletion,
there are at least 16 fully XCI escape genes, 27 variable escape genes
and a considerable number of additional genes with unknown XCI
statuses [combined status described on (Tukiainen et al., 2017);
Supplementary Table S6]. However, individual II.3 presented
significant differential gene expression only for three blood-
expressed genes spanning the deletion (GPR112, SLC6A8,
FUNDC2) on transcriptome-wide analysis in comparison to the
matched control. While FUNDC2 is known to be subject to XCI,
Frontiers in Genetics | www.frontiersin.org 6
GPR112 escapes XCI and SLC6A8 has its XCI status yet unknown
(Tukiainen et al., 2017). Surprisingly, SLC6A8, required for the
uptake of creatine in muscles and brain (Fezai et al., 2014), and
FUNDC2, that supports platelet survival via AKT signaling
pathway (Ma et al., 2019), are overexpressed in individual II.3, in
comparison to the matched control. The significant overexpression
for SLC6A8 and FUNDC2 genes were corroborated by an
additional DE analysis with male and female control samples
obtained from the SRA database. Although GPR112 did not
demonstrate significant decreased expression on individual II.3 in
such analysis, it could probably be due to methodological
differences among the studies, concerning mainly RNA isolation
and library preparation procedures. The observed equalized
expression of most XCI escape and variable escape genes on Xa
suggests that in this female occurs transcriptional upregulation of
genes lost in the structurally abnormal X-chromosome, avoiding
their functional haploinsufficiency.

X-chromosome is enriched in genes related to cognitive
function (Zechner et al., 2001), and there is an excess of XCI
escape genes associated with ID (Zhang et al., 2013), which is
consistent with the presence of learning impairment in
phenotypes associated to X-chromosome aneuploidies
(Rooman et al., 2002). Moreover, the Xq25-q28 region is well
known to be a hotspot for ID. Several deletions of the Xq25-q28
region in females with ID partly overlapping that seen in
individual II.3 have been reported on the Decipher database
(Firth et al., 2009). The consequences of such deletions can result
in deregulation of the affected genes and may also reflect trans-
acting effects on other chromosomal loci or even more global
genomic alterations. Usually, the larger the deletion is, the more
phenotypically detrimental it is, pointing to a cumulative effect.
Notwithstanding, the hallmark in this female patient is the great
extension of the deletion, including hotspot regions for ID and
premature ovarian failure.

The proximal breakpoint of the Xq deletion according to
array-CGH resides on THOC2, a gene subject to XCI that was
previously associated to neurodevelopmental disorders in males
(Kumar et al., 2015) and also in a female with a de novomissense
variant (p.Tyr517Cys) and no available XCI status data (Kumar
et al., 2018). The absence of significant differential expression for
this gene suggests that individual II.3 was protected for
presenting THOC2 deleterious effects due to extreme XCI
skewing. As recent transcriptome analysis suggests that XCI is
generally uniform across human tissues (Tukiainen et al., 2017),
we could speculate that the same X-chromosome was
preferentially inactivated in different tissues other than blood
and buccal mucosa.

Among the escape and variable escape genes within the Xq
deletion, there are genes, whose mutations were previously
associated with ID with clinical manifestation also in females,
including NAA10 (Gupta et al., 2019). Moreover, there are
additional genes with fully/variable escape patterns or female bias
profile related to essential biological functions or clinical conditions,
such as IKBKG, associated to Incontinentia Pigmenti
(Supplementary Table S6). Although there is still some
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divergence about the escape statuses of X-chromosome genes on the
literature, our transcriptome results suggest that the individual II.3
compensated the expression, at transcription levels, for some blood-
expressed XCI escape and variable escape genes within the deletion.

The unique apparent phenotype in individual II.3 is the
presentation of POF at 34-years old. Two POF susceptibility
regions have been identified: POF1 extends from Xq21-qter,
including FMR1 gene, whereas POF2 spreads from Xq13.3 to
Xq21.1 (Lacombe et al., 2006). Indeed, terminal deletions at Xq
were reported as part of a workup for infertility or POI and also
in women screening for FMR1 premutation (Yachelevich et al.,
2011). Individual II.3 has no family history for POI/POF, despite
the segregation of FMR1 premutations in her family. Ovarian
function in this female may be impaired by monosomy for genes
required in double amount after X-chromosome reactivation for
germ-cell development (Rossetti et al., 2004). Besides the
deletion involving POF1 region, individual II.3 presented a
significant differential expression for POF1B gene (log2 fold
change value = -7,28; q value = 0,001), which is located at
POF2 region (Xq21.1) and is proposed to escape from XCI.
POF1B may act as an anti-apoptosis factor, slowing down the
process of germ cell loss, so that POF1B loss of function
mutations could lead to exaggerated germ cell apoptosis and
POF (Lacombe et al., 2006). Recent advances have also
demonstrated the importance of XCI escape genes in sexually
dimorphic risk, particularly cancer (Balaton and Brown, 2016;
Arnold and Disteche, 2018). Nonetheless, the COSMIC database
did not disclose any oncogene among the differential expressed
geneswithin theXqdeletion, yet a future clinical outcomecannotbe
eliminated. Besides POF1B, four autosomal differential expressed
genes related to the term “premature ovarian failure” (HP:0008209)
in the Human Phenotype Ontology (HPO) database were found
and could have influenced in the only apparent phenotype of the
patient: CEP290 (log2 fold change value = 1,75; q value = 0,004),
HFM1 (log2 fold change value = -7,34; q value = 0,001), STAG3
(log2 fold change value = -5,26; q value = 0,00001), and NPHP4
(log2 fold change value = -8,65; q value = 0,0000003). Three of these
autosomal genes (CEP290, STAG3,NPHP4) were replicated (padj <
0.05), when we added more female controls (group 2), exhibiting
similar log2 fold change trends (positive or negative)
(Supplementary Table 10). We should remark that although
POF is the unique apparent phenotype in individual II.3, we
cannot discard future clinical outcomes in the patient, mainly
associated to the diseases, biological processes, molecular
functions and cellular component enriched in the GO analysis for
the global differentially expressed genes.

The most viable explanation for the absence of major clinical
symptoms in the individual II.3 would be a post-zygotic
mosaicism event, involving the concomitant presence of 46,
XX, and Xq25-q28 deletion cells. Except for rs572013, all the
other monoallelic blood-expressed SNPs within the deletion
(rs859577, rs8965, rs1059703) are highly polymorphic in
GnomAD Browser (Karczewski et al., 2019) with frequencies
of 0.63, 0.52, and 0.68, respectively. The hemizygosity for these
markers, in addition to the high metaphases, count in karyotype
analysis, as well as blood and buccal mucosa hemizygosity
Frontiers in Genetics | www.frontiersin.org 7
concordance for microsatellite markers within the deletion
argues against of the occurrence of mosaicism, at least in these
different embryonic tissues. Altogether, the data also confirm the
near to complete XCI skewing. Even that the skewed XCI may
occur as a purely stochastic event and can vary between tissues
and with age, XCI patterns in blood and buccal mucosa are
accepted as a representative for the pattern in the brain and other
tissues (Bittel et al., 2008).

The presence of an adjustable compensation mechanism on
individual II.3 can demonstrate that gene-by-gene upregulation
likely occurred on X-chromosome to reduce deleterious dosage
imbalance. Indeed, two major types of X-chromosome dosage
compensation can be recognized. One balances X-chromosome
gene expression between sexes (achieved by XCI in mammals),
and the other equalizes gene expression throughout the genome
by changing the relative expression of X-linked genes versus
autosomal genes and vice-versa (Disteche, 2016). While X-
chromosome upregulation relative to autosomes is evident in
flies, resulting from a combination of homeostatic gene-by-gene
regulation and chromosome-wide regulation (Chen and Oliver,
2015), it is still controversial in mammals (Gupta et al., 2006;
Nguyen and Disteche, 2006; Xiong et al., 2010; Deng et al., 2011;
Chen and Zhang, 2015). In general, genes compensatory
responses include (a) buffering or passive absorption of gene
dose perturbation by inherent system properties, (b) feedback or
gene-specific sensing and adjustment of levels, which can result
in overexpression, and (c) feedforward responses representing
systems, such as the male X-chromosome in Drosophila (Zhang
et al., 2010; Disteche, 2016). These mechanisms may act
individually or, more likely, in combination. Exploring
experimentally these hypotheses/mechanisms in depth is,
however, beyond the purpose of our study.

According to the recent literature, dosage upregulation in
individual II.3 is presumably due to positive feedbacks mediated
by enhanced transcription initiation, improved mRNA stability
and epigenetic changes favoring expression, mechanisms already
described in Drosophila, yeast, and mammals (Deng et al., 2013;
Deng et al., 2014; Disteche, 2016). However, we could not exclude
the participation of additional compensatory mechanisms at
posttranscriptional level (e.g., modulation by non-coding RNAs
as miRNAs and lnRNAs) and translational/posttranslational levels
(e.g., increased ribosome density/decreased proteolysis) (Deng
et al., 2014; Disteche, 2016). It should be noted that X-
chromosome is particularly flexible to gene-by-gene dosage
compensation, since increased transcription levels and RNA
stability have independently evolved to upregulate individual X-
linked genes after they lost their Y copy (Deng et al., 2013; Deng
et al., 2014). Thus, X-linked transcripts appear to have a longer
half-life than autosomal transcripts (Yin et al., 2009; Disteche,
2016) and gene-by-gene upregulation is known to differentially
regulate subsets of ancestral and acquired X-linked genes to rich a
balance with autosomes (Deng et al., 2013; Deng et al., 2014).
Similar gene-by-gene compensation mechanisms were also
described for other chromosomes. Imprinted genes in mice
appear to be upregulated, alleviating deleterious effects at
monoallelically expressed genes (Zaitoun et al., 2010). Although
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no imprinted gene has been identified on the human X-
chromosome, there is an important overlap between XCI and
such mechanism, since both are regulated by DNA methylation,
histone modification, long non-coding RNAs and nuclear
positioning. Furthermore, gene-by-gene downregulation was
demonstrated in patients with Down syndrome (DS; MIM#
190685), in which 56% of the chromosome 21 transcripts are
compensated for the gene-dosage effect, having mRNA levels
similar to those of disomic genes (Aït Yahya-Graison et al., 2007).

One significant alternative 5' splice site (A5SS) involving
the HSD17B10 gene and two events of skipped exon on XIST
and IDS genes alternative splicing were also identified in
individual II.3. The role of these events is not clear, since
they involve X-linked genes outside the deletion. Nonetheless,
we cannot exclude that they might be associated with long-
range effects of the aberration. Furthermore, it is worth
mentioning that the presence of two different rare mutations
(meiotic del Xq and FMR1 expansion) in the same family is
very unusual. The same paternal origin of the abnormal
chromosomes led us to suspect that a common mechanism
was responsible for the premutation allele in the mother
(individual II.2) of the proband and the deleted X-
chromosome in his aunt (individual II.3).
CONCLUSIONS

Dosage compensation mechanisms associated with sex
chromosomes demonstrate uncovered intricacies. Altogether,
our data suggest that besides preferential inactivation of the
structurally abnormal X-chromosome, an additional protective
gene-by-gene mechanism occurs at the transcriptional level in
the Xa to counterbalance detrimental effects of large Xq
deletions, which can have high impact in genetic counseling.
Further functional investigations in similar cases of females with
large Xq deletions and no major detrimental phenotypes with
high throughput technologies appraising gene expression
combined to chromatin marks are needed to confirm the
proposed upregulation compensatory mechanism in XCI
escape/variable escape genes.
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