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Abstract 17 

The human gut contains diverse communities of bacteriophage, whose interactions with 18 

the broader microbiome and potential roles in human health are only beginning to be 19 

uncovered. Here, we combine multiple types of data to quantitatively estimate gut 20 

phage population dynamics and lifestyle characteristics in human subjects. Unifying 21 

results from previous studies, we show that an average human gut contains a low ratio 22 

of phage particles to bacterial cells (~1:100), but a much larger ratio of phage genomes 23 

to bacterial genomes (~4:1), implying that most gut phage are effectively temperate 24 

(e.g., integrated prophage, phage-plasmids, etc.). By integrating imaging and 25 

sequencing data with a generalized model of temperate phage dynamics, we estimate 26 

that phage induction and lysis occurs at a low average rate (~0.001-0.01 per bacterium 27 

per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with 28 

these estimates, we find that the phage composition of a diverse synthetic community in 29 

gnotobiotic mice can be quantitatively predicted from bacterial abundances alone, while 30 

still exhibiting phage diversity comparable to native human microbiomes. These results 31 

provide a foundation for interpreting existing and future studies on links between the gut 32 

virome and human health. 33 

  34 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.614587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.614587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 35 

The human gut harbors a complex community of bacteria, viruses, and microbial 36 

eukaryotes that plays important roles in human health (1–3). Previous studies have 37 

largely focused on the bacterial portion of this community, but in recent years the 38 

bacteriophage (“phage”) that infect these bacteria have started to draw more attention. 39 

Advances in DNA sequencing and anaerobic culturing have led to extensive databases 40 

of gut phage genomes (4,5), as well as increasing numbers of phage isolates that can 41 

be propagated in the lab for mechanistic investigation (6,7). Phage can influence the 42 

microbiome in multiple ways. They can directly kill their bacterial hosts through lytic 43 

infection (7,8) or by inducing lysis from a temperate state (8,9). Temperate phage can 44 

also serve as important vectors of horizontal gene transfer (10), carrying cargo genes 45 

that enhance the metabolic or defense capabilities of their bacterial hosts (11). These 46 

interactions with gut bacterial ecology and evolution have been hypothesized to impact 47 

human health. Cohort studies have revealed numerous associations between the 48 

composition of the gut virome and various health-related states, including cancer 49 

treatment efficacy (2) and lifespan (12). Transplants of sterile phage-containing fecal 50 

filtrates from healthy donors can help resolve and protect against infections (13,14) or 51 

exacerbate disease phenotypes (15), phenomena potentially mediated by bacteria-52 

phage interactions. Phage particles can also interact directly with the human immune 53 

system (16). These results suggest that quantitative characterization of gut phage 54 

communities is likely critical for understanding and engineering the gut microbiome. 55 

 56 
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However, while the individual members of the gut virome are becoming increasingly well 57 

characterized, much less is known about their ecological dynamics within a typical 58 

human and the effects they exert on the surrounding microbial community. In marine 59 

ecosystems, phage particles outnumber bacteria ~10:1 (17,18) and are estimated to kill 60 

~20% of the bacterial population each day (18). Such high rates of lysis generate strong 61 

selection pressures for both bacteria and phage, leading to antagonistic co-evolution 62 

(19) and “kill-the-winner” dynamics of strain turnover (20–22). By contrast, estimates of 63 

the virus-to-microbe ratio (VMR) in the human gut vary widely across studies, from 64 

greater than 1:1 (23,24) to less than 1:10 (25,26). Furthermore, while some studies 65 

have suggested that the gut microbiome is dominated by temperate phage (8,27), little 66 

is known about rates of induction and lysis, and other studies have suggested that 67 

evasion of phage-mediated lysis is a major driver of bacterial evolution within human 68 

hosts (11,28). Inferring these ecological parameters is particularly challenging in the 69 

complex setting of the human gut, as it requires linking existing measurement 70 

approaches with quantitative models of phage population dynamics. 71 

 72 

Here, we address this gap by combining mathematical modeling and publicly available 73 

data to obtain quantitative baseline estimates of gut viral populations sizes and 74 

induction rates in human hosts. Using a meta-analysis of gut viral population size 75 

measurements, we show that existing data can be unified into a coherent quantitative 76 

picture in which the gut microbiome has more phage genomes than bacterial genomes, 77 

but many fewer phage particles than bacterial cells. This suggests that the gut is 78 

dominated by temperate phage (here, “temperate” refers to all phage that reproduce 79 
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with their host genome, including classical lysogens, phage-plasmids, etc.). Building on 80 

this quantification, we develop a modeling framework that enables inference of mean 81 

gut phage induction rates from microscopy and metagenomic measurements. Our 82 

findings suggest that, in typical adults, gut phage are rarely induced and place a low 83 

mean fitness burden on their bacterial hosts. Finally, we show that similar ecological 84 

dynamics arise in gnotobiotic mice colonized with a synthetic community of >100 human 85 

gut bacterial isolates. As expected for a microbiome dominated by temperate phage, we 86 

find that the virome composition of these mice can be quantitatively predicted from the 87 

bacterial composition alone, while still exhibiting viral diversity comparable to a typical 88 

human stool microbiome. These results suggest that existing methods for predicting gut 89 

phage lifestyles drastically overestimate the fraction of lytic phage, indicating that many 90 

gut phage contain yet uncharacterized host-association genes   91 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.614587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.614587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 92 

 93 

The typical human gut microbiome contains fewer phage particles than bacterial 94 

cells 95 

To determine the range of phage population sizes and virus-to-microbe ratios (VMRs) in 96 

the gut, we compiled measurements across multiple methodologies and studies (Table 97 

1). Although the VMRs, initially appeared to vary across studies, we found that they 98 

could be unified into a coherent quantitative picture by employing a consistent 99 

calculation approach that accounts for key differences among existing phage 100 

quantification techniques (Fig. 1A, Methods).  101 

 102 

Many approaches for estimating phage abundance involve the isolation of virus-like 103 

particles (VLPs) as representatives of the free phage particle population within stool 104 

samples. In the most common method, isolated VLPs are enumerated via 105 

epifluorescence microscopy using a DNA-binding dye (23,29). These microscopy-based 106 

methods estimate the concentration of free phage particles in the stool, although their 107 

accuracy is constrained by VLP isolation efficiency (23,30) and the presence of non-108 

phage particles (31). Aggregating VLP enumeration data from multiple studies and age 109 

groups (Fig. 1B), we found that, apart from newborns in which VLP densities are often 110 

below the limit of detection (23), stool VLP density stabilizes after >1 month of age to a 111 

population average of ∼2×109 VLPs/g stool, which is maintained throughout adulthood. 112 

Combining these data with existing estimates of the density of microbial cells in stool in 113 

humans older than >1 month (~1011 cells/g stool; (32)) yields a VLP-to-microbe ratio 114 
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∼10-2. This estimate is three orders of magnitude lower than the VMRs commonly 115 

reported for surface seawater systems (20), hinting qualitatively different viral ecological 116 

dynamics that we will explore in more detail below. We also find that the inter-individual 117 

variation in VLP counts is similar in magnitude to that of bacterial counts, with post-118 

infancy VLP measurements exhibiting a population coefficient of variation (CV) of 0.61 119 

versus 0.46 for bacterial counts (32). This suggests that the total gut phage population 120 

does not undergo dramatic abundance fluctuations across hosts. 121 

 122 

An alternative form of phage particle measurement utilizes a spike-in approach, 123 

involving shotgun sequencing of amplified DNA from the VLP pool after adding a known 124 

amount of a non-gut reference phage (25). The fraction of sequencing reads mapping to 125 

reference versus non-reference phage can then be used to obtain an independent 126 

estimate of absolute phage particle density (Fig. 1A). A recent application of this 127 

approach to longitudinal samples from ~10 healthy adults yielded a ~5-fold higher 128 

concentration than microscopy-based studies (mean of ~1 × 1010 VLPs/g, inter-129 

individual CV of 0.9, Fig. 1B). These data also provided an estimate of the temporal 130 

variation, with monthly VLP estimates within individuals having a mean CV of 0.78, 131 

suggesting that the total phage load in individual hosts does not undergo dramatic 132 

fluctuations. The differences between this study and microscopy-based quantifications 133 

may be due to underestimation of viral counts by imaging-based approaches relative to 134 

sequencing/qPCR-based approaches (33). However, we found that the two 135 

measurements are largely consistent after exclusion of reads mapping to the 136 

Microviridae family of phage (Fig. 1B), which are thought to be disproportionately 137 
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enriched by the multiple displacement amplification (MDA) protocol commonly 138 

employed in VLP sequencing (34). Regardless, even the larger VMR estimates resulting 139 

from sequencing-based approaches including Microviridae reads (~10-1) are still far 140 

lower than the ~10:1 ratios reported for surface seawater (20). 141 

 142 

The typical human gut microbiome contains more phage genomes than phage 143 

particles 144 

A third class of quantification methods estimates VMRs directly from metagenomic 145 

sequencing of stool samples (24). This approach has been enabled by the recent 146 

assembly of large databases of viral and prokaryotic genomes from the human gut 147 

(4,5,35), from which >98% of reads from a typical stool sample can be classified using 148 

taxonomic profilers like Phanta (24). By normalizing the ratio of phage to bacterial reads 149 

with corresponding phage and bacterial genome lengths, one can obtain an 150 

independent estimate of the VMR. Applying this approach to a collection of 255 151 

previously sequenced adult gut metagenomes yields an average VMR of ~4:1 (inter-152 

individual CV = 0.38), corresponding to an absolute density of ~4 × 1011 phage 153 

genomes/g after multiplying by the typical bacterial density in Ref. (32). These values 154 

are two orders of magnitude higher than the VLP-based estimates above. 155 

 156 

The discrepancy between these estimates can be reconciled by the observation that 157 

bulk stool metagenomics measures the total number of viral genomes in a stool sample, 158 

including those encapsulated in bacterial cells (e.g., as prophage), while VLP-based 159 

methods only measure free viral particles. Hence, it is useful to distinguish between two 160 
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distinct abundance measures: the genomic VMR (gVMR), estimated from bulk stool 161 

sequencing, and the particle VMR (pVMR), estimated from VLP-based approaches. The 162 

two measures are roughly equivalent in environments like surface seawater where the 163 

pVMR is much larger than one (and therefore particles dominate the gVMR). However, 164 

they can dramatically diverge in ecosystems like the gut where the pVMR is much less 165 

than one. In this case, the ~100-fold difference between the number of phage particles 166 

and phage genomes in the gut suggests that the vast majority of gut phage are 167 

temperate or otherwise attached to their bacterial hosts. These temperate phage may 168 

not be traditional prophage that are integrated into their host’s genome; many gut phage 169 

do not contain recognizable lysogeny-associated genes and thus may utilize other host-170 

associated lifestyles, such as those of phage-plasmids (36). 171 

 172 

Consistent with this temperate-dominated picture, we found that the ratio of phage 173 

genomes to phage particles is also large for many individual viral species. While MDA 174 

amplification biases make precise quantification difficult (34), comparisons between 175 

matched VLP and bulk sequencing in infants and adults revealed three broad classes of 176 

behavior. Some viral species are observed in the bulk metagenome but not in the 177 

associated VLP pool (Fig. 1C, bottom). These species account for about half of the 178 

total phage abundance in bulk stool samples (Fig. 1D) and could represent cryptic (37) 179 

or inactive (27) prophage, as well as phage that are poorly amplified by MDA (34). A 180 

second set of viral species are observed in VLP sequencing but not in the associated 181 

bulk metagenome (Fig. 1C, left). These species account for about half of the total 182 

phage abundance in the VLP pool, and could reflect both MDA amplification biases (34) 183 
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as well as phage that are poorly captured by bulk metagenomics. Finally, a third class of 184 

viral species is present in both the VLP and bulk metagenomes. Their abundances are 185 

broadly consistent with the aggregate particle to genome ratio above, with ~80% of 186 

phage-sample pairs having a ratio below 1:100 (Fig. 1C, Fig. S1), and contain a mixture 187 

of phage species classified as temperate and purely lytic (Fig. S2). These species 188 

account for the other half of the VLP and bulk phage populations (Fig. 1D). These data 189 

suggest that even with limitations imposed by MDA biases, a large fraction of gut phage 190 

exhibit a generalized form of temperance, with a small population of viral particles 191 

maintained by a much larger number of host-associated viral genomes. 192 

 193 

The phage particle to phage genome ratio provides a lower bound on the rate of 194 

phage induction 195 

While population sizes and lifestyles are important aspects of gut ecology, they provide 196 

only a static picture of the gut virome and its potential interactions with gut bacteria. To 197 

interpret these data and estimate the rates of phage induction and lysis in the human 198 

gut, we utilized mechanistic models of phage population dynamics over time (38–40). 199 

 200 

We begin by considering a simplified model of phage ecology, which approximates each 201 

host gut as a well-mixed ecosystem with mass-action kinetics (Fig. 2A, Methods). For a 202 

single pair of bacteria and phage, this model can be described by a system of three 203 

differential equations for the concentrations of uninfected susceptible bacteria (𝑆), 204 

infected bacteria or prophage (𝑃), and free phage particles (𝑉): 205 

𝑑𝑆
𝑑𝑡 = 𝜇!(𝑆, 𝑃) ∙ 𝑆-../..0

Growth

− 𝜅𝑆𝑉3
Infection

− 𝛿𝑆5
Dilution

, (1) 206 
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𝑑𝑃
𝑑𝑡 = 𝜇1(𝑆, 𝑃) ∙ 𝑃-../..0

Growth

+ 𝜅𝑓2𝑆𝑉-/0
Infection

− 𝜉𝑃5
Induction

− 𝛿𝑃5
Dilution

, (2) 207 

𝑑𝑉
𝑑𝑡

= 𝐵𝜉𝑃<
Induction

+ 𝐵(1 − 𝑓2)𝜅𝑆𝑉-.../...0
Direct	lysis

− 𝜅𝑆𝑉3
Infection

− 𝑟7𝜅𝑃𝑉-/0
Failed	infection

− 𝛿𝑉5
Dilution

. (3) 208 

Here, 𝜇!(𝑆, 𝑃) and 𝜇1(𝑆, 𝑃) are the growth rates of susceptible and infected bacteria, 𝛿 209 

is the overall dilution rate, and 𝜅 is the infection rate. We assume that a fraction 𝑓2 of 210 

infections result in the formation of prophage, while the remaining infections result in 211 

direct lysis of the cell with burst size 𝐵. Phage particles are also produced by induction 212 

of prophage at rate 𝜉. We assume that infected cells are immune to further infection by 213 

phage particles, with these failed infections resulting in loss of the infecting phage 214 

particle (e.g., to superinfection inhibition mechanisms (41)) with rate 𝑟7𝜅. We also 215 

consider extensions of this model that account for dead cells, dead phage, and actively 216 

lysing cells (Methods). 217 

 218 

Depending on the induction rate and lysogeny fraction, this minimal model can 219 

interpolate between a classic lytic lifestyle and a purely temperate phase in which phage 220 

primarily reproduce via lysogeny (38,42). In the latter case, the spontaneous induction 221 

of prophage can maintain a small population of phage particles (pVMR ≪ 1) while the 222 

ratio of phage to microbial genomes (gVMR) remains near one, similar to the 223 

distributions seen in Fig. 1. This prophage-dominated regime emerges for a broad 224 

range of model parameters, particularly when the cost of prophage carriage is low 225 

(Methods). 226 

 227 
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We can extend this basic model to larger numbers of phage and bacterial species, 228 

except that we must now allow for multiple prophage states in each bacterium 229 

(representing simultaneous infection by different combinations of prophage). By 230 

summing Eq. 3 over phage species and integrating over time, one can derive an 231 

approximate equation relating the aggregate prophage and phage particle 232 

concentrations:  233 

0 ≈ 𝜉̅∗𝐵D∗ E
𝑃∗

𝑉∗F − 𝜓
D∗−	𝛿∗, (4) 234 

where �̅� and 𝑥∗ denote community- and time-weighted averages of the quantity 𝑥, 235 

respectively (Methods), and 𝜓 is the residual phage adsorption rate (e.g., due to failed 236 

infections of lysogens). Eq. 4 assumes that over sufficiently long timescales, the fluxes 237 

controlling phage population sizes within an individual (induction, degradation, infection, 238 

etc.) are approximately balanced, even though day-to-day fluctuations could still be 239 

substantial (we discuss further details of our calculation assumptions in Methods). 240 

Based on the stability and moderate variance of the distribution of phage population 241 

densities (Fig. 1B), this assumption appears to hold in healthy humans >1 month of 242 

age. 243 

 244 

Rearranging Eq. 4 yields a relation for the average induction rate as a function of the 245 

other key model parameters: 246 

𝜉̅∗ = E
1
𝐵D∗
F E
𝑉∗

𝑃∗F
(𝜓D∗ + 𝛿∗). (5) 247 

Consistent with intuition, Eq. 5 predicts that the average induction rate is linearly 248 

proportional to the phage particle to genome ratio, 𝑉∗/𝑃∗. It also increases with the 249 
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combined rate of particle removal (dilution rate 𝛿∗ and adsorption rate 𝜓D∗, Fig. 2C), and 250 

decreases with average burst size 𝐵D∗, since a smaller number of induction events are 251 

required to maintain the same density of phage particles. By combining Eq. 5 with 252 

order-of-magnitude estimates of the other parameters, we can estimate the underlying 253 

induction rate. The ratio of phage particle and phage genome densities can be 254 

estimated from the population distribution in Fig. 1 as (𝑉∗/𝑃∗) ≈ 10;<. The mean 255 

dilution rate 𝛿∗ is determined by the inverse of gut transit time, which can vary across 256 

humans but is approximately 1 day−1 (43). The burst size 𝐵 can vary substantially 257 

across phage, with the model Escherichia coli phage λ having a burst size 𝐵 ≈ 100 (44),  258 

ΦCrAss001 having 𝐵 ≈ 2.5 (45), and crAssBcn isolates having 𝐵 ≈ 50 (46). Thus, we 259 

estimate the order of magnitude of 𝐵D∗ ≈ 10. The residual adsorption rate 𝜓D∗ is more 260 

difficult to estimate due to our limited understanding of infection rates and host ranges 261 

of gut phage in vivo. Nonetheless, setting this quantity to zero yields a lower bound on 262 

the induction rate, 263 

𝜉̅∗ ≥ E
1
𝐵D∗
F E
𝑉∗

𝑃∗F 𝛿
∗ ≈ 10;=	day;>. (6) 264 

This lower bound increases to 𝜉̅∗ ≥ 10;< day-1 when using the estimate of 𝑉∗/𝑃∗ = 10;> 265 

from VLP spike-in sequencing but is still two orders of magnitude lower than the dilution 266 

rate 𝛿∗. The bound is also relatively tight, with substantial deviations only possible if 𝜓D∗ 267 

is larger than 𝛿∗ (Fig. 2C). These results suggest that the gut phage particle pool, 268 

despite having ~1,000-fold higher density than the highly lytic surface seawater virome 269 

(47), can be maintained by a very low rate of induction per infected bacterium. 270 

 271 
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The relative coverage of integrated prophage provides an upper bound on the 272 

rate of phage induction 273 

Prophage induction can be identified from metagenomic data by comparing the relative 274 

coverage of an integrated prophage genome and nearby regions of its bacterial host 275 

genome (48). Such methods have thus far been used to make binary determinations of 276 

prophage induction for individual phage-bacteria pairs (48), but they also provide 277 

information about the underlying induction rate. To extract this information, we use a 278 

generalized version of our model in Eq. 1 to explicitly model activated prophage, 279 

representing the state between the start of induction and lysis (Methods). These 280 

activated lysogens contain 𝐵? ≈ 𝐵 additional copies of the phage genome that 281 

correspond to nascent phage particles. The relative coverage 𝑅 of the prophage and 282 

host genomes in metagenomic sequencing data is given by 283 

𝑅 = 1 + 𝐵?𝑓? , (7) 284 

where 𝑓? is the fraction of currently activated cells. If activated cells are produced from 285 

lysogens at rate 𝜉 and have a mean lysis time of 1/𝛾, then the ratio of activated to non-286 

activated cells will approach a steady-state value of ~𝜉/(𝛾 + 𝛿) (Methods). This result 287 

can be combined with Eq. 7 to relate the mean induction rate to the mean relative 288 

coverage: 289 

𝜉∗ ≤
(𝛾∗ + 𝛿∗)(𝑅∗ − 1)
(𝐵∗ − 1) − (𝑅∗ − 1)

. (8) 290 

This estimate is robust to the confounding impact of dead cells and viruses contributing 291 

to 𝑅 (Methods). The relationship between the induction rate and the relative coverage 292 

critically depends on the characteristic lysis time of activated infected cell, 1/𝛾. Prior 293 

studies suggest that lysis time scales with the bacterial host division time (49–51). This 294 
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scaling is consistent with estimates of phage burst energetics: a phage burst consumes 295 

a large fraction of the host bacterial energy budget (52), implying that production of a 296 

phage burst is limited by similar factors as host replication. The mean growth rate 297 

roughly matches the dilution rate 𝛿∗ in the parameter regime implied by Fig. 2C. Thus, 298 

for the following calculations we assume that 𝛾∗ is of the same order of magnitude as 299 

𝛿∗. 300 

 301 

Eq. 8 applies to the subset of phage that are detected within a contig of an assembled 302 

bacterial genome. While it in principle enables measurements of arbitrarily low induction 303 

rates (Fig. 2D), but in practice it is difficult to distinguish small values of 𝑅 from 1 due to 304 

noise and biases in sequencing. Indeed, in a previously published analysis of positive 305 

and negative controls, induction of individual prophage could only be reliably 306 

determined for 𝑅 > 2, and the median number of such events across fecal 307 

metagenomes was zero (49). To establish a tighter upper bound of the induction rate, 308 

we take the “clipped” average of 𝑅 (i.e., setting values of 𝑅 < 1 to 1) across all adult 309 

samples analyzed in (48), yielding 𝑅∗ − 1 ≈ 10;>. Substituting this value into Eq. 8 with 310 

𝐵∗ = 10, and 𝛾∗ ≈ 𝛿∗ = 1	day;> yields an upper bound on the induction rate of 311 

𝜉∗ ≤ 10;<	day;>. (9) 312 

The clipped mean is larger in infants (𝑅∗ − 1 ≈ 0.4), even after excluding infants 313 

exposed to antibiotics (Table 2), suggesting that the induction rate may be higher in 314 

infants. Combined with our other estimates, we can thus bound the average induction 315 

rate within the range 10;= − 10;<	day;> for adults (Fig. 2B), with a somewhat higher 316 

upper bound for infants. Importantly, both estimates are substantially lower than the rate 317 
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of microbial growth and dilution from the gut, suggesting that gut phage impose a low 318 

mean fitness burden on their bacterial hosts.  319 

 320 

Similar virome properties arise in gnotobiotic mice colonized with a diverse 321 

synthetic community of human gut bacterial isolates 322 

We next examined the implications of our results for a synthetic gut community 323 

designed to mimic the complexity of a native human microbiome (53). This synthetic 324 

community is composed of 119 bacterial isolates from 48 prevalent genera and stably 325 

colonizes gnotobiotic mice for ≥2 months. We reasoned that the virome of hCom2 would 326 

be exclusively composed of temperate phage (at least initially), since it was constructed 327 

from axenic bacterial cultures (54). Our finding that the human gut is dominated by 328 

rarely inducing temperate phage makes two major predictions about the properties of 329 

the hCom2 virome and its relation to the human data above. 330 

 331 

First, if the induction rates in hCom2 are as low as our model predicts (Fig. 2), we 332 

expect its viral composition in bulk metagenomic sequencing to be entirely predictable 333 

from the abundances of its bacterial members (since 𝑅 ≈ 1).	It is usually difficult to test 334 

such a prediction in natural communities like the human gut, in which only a subset of 335 

phage can be directly linked to their bacterial hosts (48). Synthetic communities like 336 

hCom2 provide a unique opportunity to test this prediction, since their initial phage-337 

bacteria associations can be inferred from the sequenced bacterial isolate genomes. To 338 

carry out this test, we generated in silico hCom2 metagenomes based on data from a 339 

recent experiment (53) using the sequenced genome of each bacterial strain in 340 
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proportion to their measured abundance in each sample (Methods). By construction, 341 

these in silico datasets only contain phage sequences that were present within the 342 

original bacterial genomes. We then compared the taxonomic composition of these in 343 

silico datasets with their corresponding mouse metagenomes using the same pipeline 344 

as above (Fig. 3A,B, Methods).  345 

 346 

Consistent with previous observations in a smaller 15-member community (8), we found 347 

that the abundances of individual phage species were highly correlated across the in 348 

silico and in vivo datasets, with the representative sample in Fig. 3A,B having a 349 

Spearman correlation of 𝜌 = 0.9 for mutually detected phage, compared to 𝜌 = 0.97 for 350 

bacteria (as expected by construction). Similar results were obtained for other 351 

compositional similarity metrics, like the Jaccard index or the total abundance of shared 352 

species (Fig. S3). The similarity between the in vivo and in silico metagenomes was 353 

maintained over time, and even after challenge with an undefined fecal sample (Fig. 354 

3C,D, Fig. S3). These strong correlations confirm that the hCom2 virome is dominated 355 

by temperate phage, and that the induction rates are consistent with our inferences from 356 

the human data above.  357 

 358 

A second – and much stronger – prediction of our prophage-dominated human gut 359 

model is that the hCom2 stool virome should qualitatively resemble the stool virome of a 360 

typical human. We tested this prediction by comparing the taxonomic composition of 361 

hCom2-colonized mouse fecal samples (53) with that of a cohort of 245 healthy human 362 

stool metagenomes (55). We reasoned that if hCom2, a synthetic community composed 363 
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of axenic bacterial cultures, was missing a large portion of the normal gut virome, then 364 

feces from hCom2-colonized mice would have substantially lower virome diversity than 365 

a typical human stool sample. However, we found that hCom2-colonized mouse feces 366 

exhibited similar phage Shannon diversity as human stool samples, with the hCom2 367 

samples falling between the 13th and 53rd percentiles of the observed human distribution 368 

(Fig. 4A). We obtained a similar correspondence between hCom2 and human stool 369 

using a metric of species richness (Fig. 4B, Fig. S4), as well as the overall ratio of 370 

phage-to-bacterial genomes (Fig. 4C, Fig. S4). This similarity between hCom2 and 371 

human stool viromes also holds at finer taxonomic levels, with 16 of the 20 most 372 

prevalent phage genera within the human cohort found at >0.1% abundance in hCom2 373 

samples (Methods). Thus, consistent with our estimates above, we find that human-like 374 

levels of viral diversity can be achieved by a synthetic community of exclusively 375 

prophage.  376 

 377 

The striking similarities between the viromes of hCom2-colonized mouse feces and 378 

human stool can shed light on other coarse-grained features of the human gut virome. 379 

For example, computational tools have been developed to predict the lifestyles of phage 380 

species from their genomes (56,57), enabling estimation of the ratio of virulent phage 381 

(those that cannot stably replicate within their hosts) to temperate phage (24,57). We 382 

used predictions from widely used tools to estimate the virulent to temperate ratio (VTR) 383 

in hCom2-colonized mouse fecal samples (Methods). Since hCom2 was constructed 384 

entirely from axenic bacterial cultures, it might be expected to provide a negative control 385 

with a VTR of ~0. However, hCom2-colonized mouse feces metagenomes yielded a 386 
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VTR of ~0.5, similar to the typical values observed in human stool samples (Fig. 4D, 387 

Fig. S4, Fig. S5). This result suggests that existing methods of phage lifestyle prediction 388 

methods underestimate the number of phage that are capable of stable replication 389 

within their bacterial hosts, consistent with previous observations from human stool 390 

samples (Fig. S2) (25).  391 
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Discussion 392 

Our results complement existing surveys of gut phage diversity (4,23,25,58) by 393 

providing a quantitative assessment of phage population dynamics in typical human 394 

hosts. Our updated estimates of the virus-to-microbe ratio show that the small number 395 

of gut phage particles (pVMR ~ 10-2–10-1) is accompanied by a much larger number of 396 

phage genomes (gVMR ~ 4), implying that the vast majority of gut phage genomes are 397 

replicating within their bacterial hosts. These results support the emerging view that 398 

temperate phage lifestyles play a dominant role in the human gut (8,25,36,59,60), even 399 

if they do not contain recognizable integrase genes (e.g. owing to utilization of novel 400 

integrases or having non-integrative lifestyles) (25,36) (Fig. 4D). Our quantitative 401 

framework extends this picture by providing new insights into the corresponding phage 402 

induction rates. By integrating imaging and sequencing measurements with a 403 

generalized model of temperate phage dynamics, we estimated that the average 404 

induction rate in adults lies in the relatively low range of 10-3–10-2 per bacterium per day, 405 

imposing only a modest fitness burden on gut bacteria. 406 

 407 

These results starkly contrast with well-studied examples like surface seawater, which 408 

possesses a larger ratio of phage particles (pVMR ≈ gVMR~10) and a higher average 409 

lysis rate (20). The reasons for this difference remain uncertain, but they may partially 410 

stem from the distinct physical structures of the two ecosystems. Previous theoretical 411 

and experimental studies have shown that increased spatial structure can select for 412 

lower virulence and increased lysogeny (61,62), consistent with the dominance of 413 

temperate phage in the more spatially structured gut ecosystem, although more work is 414 
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needed to quantify the strength of this effect in the gut. Regardless, our results establish 415 

baseline expectations for the co-variation between phage and bacterial abundances 416 

within the microbiome of a typical human. They imply that tight associations between 417 

the bacterial and phage communities may not be driven by active predator-prey 418 

interactions, but may instead be a simple consequence of their synchronized replication 419 

within the same cells, in line with the “piggyback-the-winner” model (60,63,64). This 420 

latter scenario suggests that phage may impact the gut microbiome primarily by acting 421 

as genetic cargo, altering the behavior of their bacterial hosts in certain conditions 422 

(11,65). 423 

 424 

These results have substantial implications for future studies of the gut virome’s role in 425 

human health. Many studies have sought to identify biomarkers and characterize 426 

possible mechanistic links between gut virome composition and health states such as 427 

lifespan (12), cancer treatment response (2), diabetes (66), metabolic syndrome (67), 428 

and alcoholic hepatitis (68). Importantly, our results highlight confounding factors that 429 

complicate such analyses of virome-health associations, particularly for studies focused 430 

on bulk stool sequencing in which a high abundance of prophage will likely result in 431 

strong statistical links between phage and bacterial composition if the number of VLPs 432 

is low. In studies focused on VLP sequencing, similar correlations could emerge if the 433 

VLP pool is largely a product of relatively uniformly induced prophage, a scenario 434 

hypothesized by prior work (23) and supported by the substantial overlap between bulk 435 

and VLP virome compositions (Fig. 1C) (24). These results suggest that methods 436 
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similar to phylogenetic regression (69) may be useful for dealing with these confounding 437 

factors.  438 

 439 

The quantities in our modeling framework represent averages over time, space, and 440 

hosts that may mask important behaviors that are transient or localized to a particular 441 

host microniche. In particular, averages over longer timescales may not capture shorter-442 

term variation in induction rates. While the VLP population appears to be broadly stable 443 

over long timescales, the monthly CV of VLP abundances within individuals has a mean 444 

of 0.77 (25). One explanation for such variation is phage induction driven by 445 

environmental changes within the host, a hypothesis consistent with prior studies 446 

showing increased lytic activity in response to perturbations such as bacterial/phage 447 

invasion (8,11), inflammation (70), or exposure to certain dietary or pharmaceutical 448 

compounds (71,72). In addition to such temporal and host variation, phage population 449 

sizes and induction rates may also vary spatially within an individual gut (60,73–75), as 450 

environmental conditions and bacterial densities change substantially along the 451 

gastrointestinal tract (76). It remains possible that the low pVMRs observed in stool 452 

could be produced by a very high induction rate in a smaller population of bacteria in the 453 

proximal colon or small intestine. In the future, spatial variation could be investigated 454 

using recently developed methods for spatially resolved sampling of the microbiome 455 

(77) to measure population sizes and prophage copy numbers across the intestines. 456 

Our modeling framework can be readily applied to such data to estimate local virome 457 

induction rates. 458 

 459 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.614587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.614587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Variation in lifestyle characteristics across phage is also expected, with some phage 460 

effectively existing as mobile genetic elements that rarely lyse their host and others 461 

being primarily lytic. While our current estimates average over multiple phage taxa, our 462 

modeling framework can also be applied to measurements of individual phage species 463 

to estimate species-specific properties. For example, if the particle-to-genome ratios of 464 

an individual phage species can be more accurately measured (Fig. 1C), a species-465 

specific estimate of the induction rate can be obtained from Eq. 5. Applications of this 466 

approach are currently limited by the known amplification biases of existing VLP 467 

sequencing methods (34), but the adoption of sequencing protocols that do not involve 468 

MDA (78) may enable such species-specific resolution in the future. 469 

 470 

Beyond our modeling assumptions, there are also limitations in the phage quantification 471 

methods used for experimental measurements. The process of VLP isolation may lead 472 

to substantial loss of phage particles, particularly given the spatially structured nature of 473 

stool and the potential for phage particles to adhere to large particulates. Additionally, 474 

imaging-based quantification methods can both underestimate phage densities due to 475 

loss of material during preparation (33), and overestimate due to the presence of cell 476 

debris or other DNA-containing particles (31). Similarly, RNA phage cannot be 477 

visualized using DNA-staining-based microscopy (23,29). Underestimation of phage 478 

particle densities would imply a higher true pVMR, which would increase the 479 

corresponding induction rate estimate from Eq. 5. Note, however, that for our pVMR 480 

estimates to be comparable to that of surface seawater would require very large 481 

differential loss rates (>99%), which could potentially be measured with appropriate 482 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.614587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.614587
http://creativecommons.org/licenses/by-nc-nd/4.0/


spike-ins. Our analysis framework can easily be applied to updated density estimates as 483 

they become available. 484 

 485 

Overall, our work motivates future experimental directions for the gut virome field. While 486 

informative, our estimates of the mean induction rate still encompass 1-2 orders of 487 

magnitude owing to limitations of current data. Given the noise intrinsic to metagenomic 488 

sequencing, we expect that deeper bulk sequencing will have limited benefits for 489 

estimating of the mean induction rate in the parameter regimes suggested by our 490 

analysis. More accurate and direct estimation will likely be dependent on measurement 491 

of rare induced cells. Single-cell bacterial sequencing (79) is a promising avenue to 492 

achieve the needed detection power. Alternatively, measurement of in vivo phage 493 

adsorption rates or the degradation rates of lysed cells (Methods) would enable 494 

improved estimation of induction rates that we derived in Fig. 2. Our results also provide 495 

guidance for the design of virome perturbation experiments, which should focus on 496 

measuring increases in induction and horizontal gene transfer – a major avenue through 497 

which prophage influence their hosts. Finally, the similarities between the estimated 498 

VTR in hCom2-colonized mouse feces (Fig. 4D) and human stool metagenomes 499 

highlights the current lack of knowledge regarding the genetic mechanisms enabling 500 

bacterial host-association of gut phage. These results imply that many gut phage 501 

currently computationally identified as virulent in fact contain unidentified and 502 

uncharacterized host-association genes. This pool of genes represents a rich ground for 503 

future phage molecular biology work.  504 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.614587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.614587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 505 

The authors thank the Huang and Good labs, Ami Bhatt, Danica Schmidtke, Gabriel 506 

Birzu, Colin Hill, and Andrey Shkoporov for helpful discussions. The authors 507 

acknowledge support from NIH RM1 Award GM135102 and R01 AI147023 (to K.C.H.), 508 

NSF Awards EF-2125383 and IOS-2032985 (to K.C.H.), NIH R35 GM146949 (to 509 

B.H.G.), Alfred P. Sloan Foundation grant FG-2021-15708 (to B.H.G.), Human Frontier 510 

Science Program grant RGEC33/2023 (to B.H.G.), and a Friedrich Wilhelm Bessel 511 

Award from the Humboldt Foundation (to K.C.H.). B.H.G. and K.C.H. are Chan 512 

Zuckerberg Biohub Investigators. J.L. was supported by a Stanford PRISM Baker 513 

Fellowship. This work was also supported in part by the National Science Foundation 514 

under Grant PHYS-1066293 and the hospitality of the Aspen Center for Physics. We 515 

thank the Stanford Research Computing Center for use of computational resources on 516 

the Sherlock cluster.  517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.614587doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.614587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 518 

 519 

Figure 1: Comparisons of absolute population densities suggest that the human 520 

gut virome is numerically dominated by prophage. (A) Schematic overview of 521 

common gut viral population quantification methods. Metagenomic classification of bulk 522 

fecal samples yields phage-to-bacteria genome ratios, which can be combined with 523 

absolute bacterial densities to estimate the absolute density of phage genomes. 524 

Alternatively, virus-like particles (VLPs) can be extracted from the stool and quantified 525 

by epifluorescence microscopy or spike-in sequencing. (B) Gut virome population 526 

densities are approximately maintained across human life stages. Each violin plot 527 

represents quantification of one population using one measurement method in one 528 
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study (Table 1), with individual dots representing subjects. The gray line denotes the 529 

average stool bacterial density reported in (32) (0.92×1011 bacteria/g stool). (C) 530 

Species-level absolute abundance analysis of the overlap of phage communities found 531 

using VLP- and stool-based quantification approaches. Data represent one healthy 532 

adult population (25) (n = 10, VLP WGS absolute quantification) and one population of 533 

4-month-old infants (23) (n = 19, VLP microscopy absolute quantification). Each point is 534 

the absolute abundance of one phage species in a matched pair of VLP and stool 535 

samples from one subject (Methods). Triangle markers denote species classified as 536 

virulent and circle markers denote species classified as temperate (Methods). 537 

Histograms show the distribution of absolute abundances of phage species found 538 

exclusively in either the VLP or stool samples. (D) Relative distribution of phage 539 

genomes or particles between VLP and stool WGS. Each violin plot represents the total 540 

absolute abundances of phage genomes or particles found within only VLP samples, 541 

only stool samples, or shared between VLP and stool. Individual points correspond to a 542 

single subject. Underlying data are the same as in (C).  543 
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 544 

Figure 2: Mathematical modeling of phage population dynamics enables 545 

estimation of the average phage induction rate in the human gut. (A) Schematic of 546 

the minimal model of temperate phage dynamics represented by Eq. 1-3. Infection of 547 

susceptible bacteria produces prophage, which induce at rate 𝜉, lysing their host and 548 
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producing a burst of 𝐵 free phage particles. (B) Schematic representation of induction 549 

rate estimates. We combine measurements of phage particle to genome ratio and 550 

relative prophage copy number with the model in (A) to estimate upper and lower 551 

bounds on the phage induction rate. Note that given the uncertainty in parameter 552 

values, these estimates are only reported as approximate orders-of-magnitude, with the 553 

combined bound illustrated in grey. (C) Estimated induction rate as a function of total 554 

phage adsorption rate 𝜓 (i.e., all non-dilution phage particle removal mechanisms). The 555 

solid line corresponds to Eq. 5, using the phage genome to particle ratio inferred from 556 

Fig. 1. (D) Estimated induction rate as a function of the relative coverage of prophage, 557 

𝑅. The solid line corresponds to Eq. 8 with 𝛾 ≈ 𝛿. The solid circle is the mean relative 558 

coverage in adults (𝑅 − 1 ≈ 10;>), using measurements from (48).  559 
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 560 

Figure 3: Phage abundance dynamics in a diverse synthetic gut community can 561 

be predicted from bacterial abundances alone. (A,B) Relative read abundances of 562 

bacterial (A) and phage species (B) in fecal samples from hCom2-colonized gnotobiotic 563 

mice, compared to in silico metagenomes (“hMock”) generated from their corresponding 564 

bacterial genomes weighted according to the fecal bacterial microbiota composition 565 

(Methods). The example shown is for a single representative sample (mouse 3, week 566 

1). JSS is the Jensen-Shannon similarity and shared 𝜌 denotes the Spearman 567 
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correlation computed from species observed in both samples. (C,D) Bacterial and 568 

phage JSS between in vivo and in silico metagenomes over time and in response to 569 

human stool challenge perturbation. Lines show mean JSS in either unchallenged mice 570 

(n = 5) or mice challenged with a human stool perturbation after week 4 (n = 15) over 571 

time. Shaded areas represent 1 standard deviation computed across mice at each time 572 

point, and the dashed line denotes the time of fecal challenge.  573 
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 574 

Figure 4: Large-scale features of human stool viromes are recapitulated in a 575 

community constructed only of bacterial isolates. (A-D) Comparison of Shannon 576 

diversity (A), weighted species richness (B), virus to microbe ratio (C), and virulent to 577 

temperate ratio (D) in fecal samples from hCom2-colonized gnotobiotic mice (53) 578 

compared to human stool samples. Violin plots labelled “stool” represent distributions of 579 

microbiome properties across n = 245 healthy adults studied in (55). Violin plots labelled 580 

“hCom2” represent samples from 20 gnotobiotic mice colonized with the synthetic 581 

community hCom2 (n = 77 total samples, all from unchallenged mice or pre-challenge). 582 
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Virulent to temperate ratios (VTRs) were estimated using the UHGV database phage 583 

species virulence predictions (Methods). Dashed black line denotes the null 584 

expectation of VTR = 0 for a community constructed from axenic bacterial cultures.   585 
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Methods 586 

 587 

Meta-analysis of gut phage quantifications 588 

Table 1 summarizes the studies used in our meta-analysis of gut phage abundances. 589 

Each row corresponds to a single violin plot in Fig. 1A, with the order of the table rows 590 

matching the order in which the datasets appear in the figure. 591 

 592 

Data origin Secondary 
quantification Method Population 

Liang et al. 2020 (23) N/A VLP EFM Newborns 

Liang et al. 2020 (23) N/A VLP EFM 1-month-old 
infants 

Liang et al. 2020 (23) This study Stool WGS 1-month-old 
infants 

Liang et al. 2020 (23) N/A VLP EFM 4-month-old 
infants 

Liang et al. 2020 (23) This study Stool WGS 4-month-old 
infants 

Bikel et al. 2021 (80) N/A VLP EFM 7–10-year-old 
children 

Kim et al. 2011 (26) N/A VLP EFM Healthy adults 

Hoyles et al. 2014 (29) N/A VLP EFM Healthy adults 

Shkoporov et al. 2019 (25) N/A VLP WGS Healthy adults 

Shkoporov et al. 2019 (25) This study Stool WGS Healthy adults 

Yachida et al. 2019 (55) This study Stool WGS Healthy adults 

Table 1: Studies represented in the quantification meta-analysis in Fig. 1A. “Data 593 

origin” column indicates the study that produced the original data, and “Secondary 594 

analysis” denotes studies that performed additional bioinformatic analyses represented 595 

in Fig. 1A. For all stool WGS quantifications, Phanta was used to estimate the genomic 596 
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virus-to-microbe ratio (gVMR) which was then multiplied by an estimate of gut microbial 597 

abundance (32). For studies in which a table of quantifications was not explicitly 598 

provided, counts were digitally extracted from figures using WebPlotDigitizer. 599 

 600 

We now briefly describe the different measurement methodologies applied by the 601 

studies analyzed here. The measurement methodologies for gut phage abundance fall 602 

into three classes (Fig. 1A), which quantify different subsets of the gut phage 603 

population. One method (labeled “Stool WGS” in Table 1) is based on metagenomic 604 

sequencing of whole stool samples, from which the ratio of the abundance of phage 605 

DNA to that of bacteria DNA can be computed (24). By normalizing this ratio by typical 606 

phage and bacterial genome lengths, the ratio of phage to bacterial genome copies is 607 

obtained (24), which combined with quantification of absolute bacterial density 608 

generates an estimate of absolute phage genome density. This method captures both 609 

prophage (e.g., lysogens, phage-plasmids, etc.) and the fraction of phage particles that 610 

lyse during DNA extraction. The other two methods involve isolation of virus-like 611 

particles (VLPs) as representatives of the phage particle population present within stool. 612 

Isolation typically involves 0.2- or 0.45-µm filtration and DNAse/RNAse treatment, 613 

among other steps. In one method, VLPs are stained with a DNA-binding dye and 614 

enumerated via epifluorescence microscopy (23) (labeled “VLP EFM” in Table 1), while 615 

in the other method the VLPs are mixed with a known quantity of a non-gut reference 616 

phage and metagenomically sequenced, with the reference phage enabling absolute 617 

quantification (25) (labeled “VLP WGS” in Table 1). In contrast to the method based on 618 

bulk stool metagenomics, these VLP-based methods do not capture prophage by 619 
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design. Given the drastic methodological differences between bulk and VLP-based 620 

approaches, we define two separate VMRs: the genomic VMR (gVMR), based on bulk 621 

stool sequencing, and the particle VMR (pVMR), based on VLP-approaches. 622 

 623 

In our calculations of pVMR and of phage absolute abundance from gVMR, we require 624 

an estimate of the microbial density of the gut microbiome. Note here that we use the 625 

term “microbe” to denote all microorganisms (including archaea, bacteria, and 626 

unicellular eukaryotes); in practice, the vast majority of gut microbes are bacteria (32) 627 

and this is reflected in our taxonomic estimations from Phanta. For all such calculations, 628 

we used a standardized value of 0.92×1011 microbes/g stool obtained from a 629 

comprehensive meta-analysis of stool microbe abundance quantifications from humans 630 

>1 month of age (32). Using a single standardized value is justified by the minimal 631 

variation of total gut microbial density across human populations >1 month of age (32). 632 

Doing so also eliminates the confounding effect of inter-study variability gut microbial 633 

density. Indeed, a few gut virome studies reported bacterial density estimates of ~109 or 634 

~1010 microbes/g stool (23,26), orders of magnitude below well-established values, 635 

which led to inflated values of pVMR. We do not know the origin of these discrepancies, 636 

but we assume based on the weight of evidence that the microbial density is closer to 637 

0.92×1011 microbes/g stool. 638 

 639 

For the direct VLP-stool comparisons in Fig. 1C,D, we used only subjects for which VLP 640 

metagenomes, stool metagenomes, and VLP absolute quantification were available. For 641 

the dataset in (25), matching metagenomes were available for the subjects only at the 642 
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8-month timepoint, and VLP quantification was performed only during months 9-12. 643 

Thus, we used the month 8 metagenomes in combination with the average of month 9-644 

12 measurements of each subject. We found that in both infant and adults these VLP 645 

metagenomic samples had a high gVMR, median ~103 compared a median gVMR of 646 

~3-4 found in the corresponding stool samples (as measured by Phanta). This large 647 

gVMR difference persists even if Microviridae species or all species found only in VLP 648 

sample are removed, indicating that the VLP-stool overlap in Fig. 1C,D is likely not due 649 

to bacterial contamination of the VLP pool. 650 

 651 

Analysis of prophage copy number data 652 

For our estimation of induction rate from prophage copy number, we use results from 653 

Kieft et al. (48), which developed a computational tool, PropagAtE, for estimating 654 

whether an integrated prophage is active. They applied their tool to several 655 

metagenomic sequencing studies and we use the values of 𝑅 estimated by their tool 656 

(available in Table S3B of their manuscript). We use only prophage-sample 657 

combinations detected as present by their tool and perform additional quality filtering 658 

requiring minimum median host and prophage coverage >1, and prophage coverage 659 

breadth >0.5. We show the resulting summary statistics across cohorts in Table 2. 660 

  661 
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Sample set n 
samples 

n 
pairs Mean 𝑹 Median 𝑹 Clipped 

mean 𝑹 

All adults 123 3,459 1.04 1.01 1.09 

CRC 15 474 1.02 0.99 1.07 

HeQ 96 2842 1.05 1.02 1.09 

IjazUZ 12 143 1.04 1.04 1.08 

All infants 79 702 1.27 1.1 1.40 

Infant (non-abx) 22 254 1.33 1.22 1.43 

Infant (abx) 57 448 1.24 1.02 1.39 

Table 2: Summary statistics of prophage copy number 𝑹 across different 662 

metagenomic sequencing cohorts, computed based on results from Kieft et al. 663 

(48). “n samples” denotes the number of metagenomic sequencing samples in the 664 

cohort, “n pairs” denotes the total number of prophage-bacterial host pairs identified as 665 

present and passing the coverage/breadth requirements in those samples. The clipped 666 

mean is the mean computed with values of 𝑅 < 1 set to 𝑅 = 1. The CRC dataset is 667 

composed of adults with colorectal adenoma and healthy adults, HeQ is composed of 668 

adults with Crohn’s disease and healthy adults, IjazUZ is composed of adults with 669 

Crohn’s disease, Infant (non-abx) is composed infants that were not exposed to 670 

antibiotics, Infant (abx) is composed of infants that were exposed to antibiotics.  671 

 672 

Processing and analysis of metagenomic datasets 673 
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All metagenomic datasets analyzed in this manuscript were first subjected to quality 674 

control/filtering and adapter removal using the BBDuk decontamination tool in BBTools 675 

(81). Settings used were kmer length “k = 23”, “hdist = 1”, trim direction “qtrim = rl” (trim 676 

both ends), minimum entropy “entropy = 0.5”, sliding window for entropy calculation 677 

“entropywindow = 50”, kmer length for entropy calculation “entropyk = 5”, minimum 678 

quality “trimq = 25”, and minimum read length “minlen = 50”. Samples were then 679 

deduplicated using the clumplify tool in BBTools. The maximum number of substitutions 680 

between duplicate reads was zero (“subs = 0”). We found that deduplication minimally 681 

influenced the estimated community compositions. 682 

 683 

For taxonomic quantification of samples, we used Phanta, a kmer-based method that 684 

simultaneously profiles phage and bacteria (24). Phanta was run using default settings: 685 

confidence threshold “confidence_threshold 0.1”, viral genome coverage requirement 686 

“cov_thresh_viral 0.1”, viral unique minimizer threshold “minimizer_thresh_viral 0”, 687 

bacterial genome coverage requirement “cov_thresh_bacterial 0.01”, and bacterial 688 

unique minimizer threshold “minimizer_thresh_bacterial 0”. The 689 

“uhggv2_uhgv_mqplus_v1” database was used, which is based on the prokaryotic 690 

UHGG database and viral UHGV database. For taxonomy-based analyses, the 691 

provided UHGV taxonomy was used, except for quantification of Microviridae 692 

abundance, for which we used the provided ICTV taxonomy. 693 

 694 

hCom2 metagenome reconstruction from bacterial genomes 695 
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To generate mock versions of hCom2-colonized mouse fecal metagenomes, we 696 

generated synthetic short-read sequencing datasets using the set of isolate genomes 697 

(53). To determine the relative abundances of genome reads within each sample, we 698 

used the bacterial compositions estimated by NinjaMap (53). NinjaMap is designed to 699 

quantify the composition of synthetic communities in which sequenced genomes are 700 

available for all member strains. For each sample, we specified the relative fraction of 701 

reads from each genome based on that strain’s relative abundance and normalized by 702 

its genome length. For genomes that are not assembled into a single contig, the read 703 

abundance was split among the contigs weighted by the length of each contig. To 704 

generate synthetic shotgun samples, we used Grinder (82) with the following settings: 705 

quality levels “-qual levels 33 31”, insert distance “-insert_dist 800”, read length “-706 

read_dist 140”, forward-reverse mate orientation “-mate_orientation FR”, characters 707 

deleted from reference sequences “-delete_chars ‘-~*NX’”, and distribution of mutations 708 

“-mutation_dist uniform 0”. The total number of reads generated for each sample was 709 

equal to the post-QC read number of the corresponding original mouse fecal sample. 710 

Fecal samples with <105 reads were excluded from the analysis. The resulting samples 711 

were subjected to the standard pre-processing pipeline applied to all other 712 

metagenomic sequencing data in the manuscript. For the comparison of hCom2 stool to 713 

human stool, we exclude human stool samples with <105 reads. 714 

 715 

Computation of community summary statistics in metagenomic samples 716 

For all analyses except the hCom-hMock comparison in Fig. 3 and Fig. S3, we used 717 

relative taxonomic abundances (which are computed in Phanta by normalizing relative 718 
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read abundances to the phage or bacterial genome size). For the hCom-hMock 719 

comparison, relative read abundances were used to better compare reconstruction 720 

fidelity between phage and bacterial communities. To obtain the genomic virus to 721 

microbe ratio (gVMR) of a sample, we calculated the ratio of the total taxonomic 722 

abundance of members within the viral superkingdom to the total taxonomic abundance 723 

of members of the archaeal, bacterial, and non-human eukaryotic superkingdoms. In 724 

practice, the denominator of the gVMR is vastly dominated by the bacterial taxonomic 725 

abundance. To obtain the virulent to temperate ratio (VTR), we calculated the ratio of 726 

total taxonomic abundance of phage classified as virulent to the total taxonomic 727 

abundance of phage classified as temperate. In the main figures, we used the virulence 728 

predictions from the Phanta UHGV database (24), which utilizes a combination of 729 

scores from BACPHLIP (56) along with information from the PHROG database (83) and 730 

geNomad (84). An alternative VTR estimate was performed with scores from PhaTYP 731 

(57) (Fig. S5). PhaTYP was run on the UHGV genomes using default settings. 732 

 733 

Shannon diversity was computed at the species level as 𝐻 = −∑ 𝑥@@ log<(𝑥@), where 𝑥@ 734 

is the relative taxonomic abundance of species 𝑖 within the bacterial or phage 735 

community. Weighted richness was computed such that the richness contribution of 736 

each species is weighted by 1 − exp(−𝑥@/𝑥A), where 𝑥A = 10;=. For the hCom2 737 

reconstruction analysis, the Jensen-Shannon similarity was computed as JSS = 1 −738 

i>
<
j∑ 𝑝@@ log< i

B!
C!
j − i>

<
j∑ 𝑞@@ log< i

D!
C!
j, where 𝑝@ and 𝑞@ are the relative read abundances 739 

of the communities being compared, normalized to sum to 1 within a given taxonomic 740 

grouping (e.g., phage at the species level), and 𝑚@ =
B!ED!
<

. 741 
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 742 

Overview of phage mathematical model 743 

We begin with a mathematical model of a single phage and bacterial species in a well-744 

mixed environment, similar to that of (38). We show here how this model can be 745 

reduced to the model presented in the main text. This model involves the concentration 746 

of a nutrient (𝐶), susceptible cells (𝑆), cells containing quiescent prophage (𝑃), cells in 747 

which the prophage has been activated (𝑃?), viral particles (𝑉), and dead cells/viruses of 748 

various kinds (𝐷@). All populations are diluted at rate 𝛿. All populations also experience 749 

non-dilution mortality/degradation at rate 𝜔@. All bacterial cells experience the same 750 

non-dilution mortality rate 𝜔F. Susceptible cells and cells containing quiescent prophage 751 

grow by consuming the resource. Resource consumption occurs with uptake rate 𝜇(𝐶) 752 

for susceptible cells and 𝜇(𝐶)(1 + 𝑠) for prophage-containing cells, where 𝜇(∙) is the 753 

growth function and 𝑠 is the fitness benefit/cost of carrying a quiescent prophage. 754 

Resources are supplied at a constant rate Γ. Susceptible cells are exposed to viral 755 

particle infection by mass-action kinetics at rate 𝜅, with a fraction 𝑓2 becoming quiescent 756 

prophage-containing cells and a fraction 1 − 𝑓2 shifting to the activated cell class (𝑓2 757 

models the lysis-lysogeny decision upon initial infection). Prophage-containing cells are 758 

induced at rate 𝜉, shifting to the activated class. Cells in the activated class are 759 

assumed not to grow and lyse at rate 𝛾, producing a burst of 𝐵 viral particles. Viral 760 

particles are lost by infecting susceptible cells, failed infection of prophage-containing 761 

cells (e.g., to superinfection inhibition mechanisms (41)), and non-dilution mortality. 762 

Failed infection occurs at rate 𝑟7𝜅, where 𝑟7 is the ratio of infection coefficients of 763 

prophage-containing and susceptible cells. Dead susceptible, prophage-containing, and 764 
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activated cells, with concentrations 𝐷!, 𝐷1, and 𝐷?, respectively, and dead viruses with 765 

concentration 𝐷G, are produced by non-dilution mortality. Cells that die by phage lysis 766 

are tracked separately with concentration 𝐷2. Non-lysed dead cells are degraded at rate 767 

𝜔H, while lysed cells are degraded at rate 𝜔H2, and dead viruses are degraded at rate 768 

𝜔GH. The dynamics governing this model are thus: 769 

𝑑𝐶
𝑑𝑡

= Γ − 𝜇(𝐶)𝑆 − (1 + 𝑠)𝜇(𝐶)𝑃 − 𝛿𝐶, (S1𝑎) 770 

𝑑𝑆
𝑑𝑡

= 𝜇(𝐶)𝑆 − 𝜅𝑆𝑉 − (𝛿 + 𝜔F)𝑆, (S1𝑏) 771 

𝑑𝑃
𝑑𝑡

= 𝑓2𝜅𝑆𝑉 + (1 + 𝑠)𝜇(𝐶)𝑃 − 𝜉𝑃 − (𝛿 + 𝜔F)𝑃, (S1𝑐) 772 

𝑑𝑃?
𝑑𝑡

= (1 − 𝑓2)𝜅𝑆𝑉 + 𝜉𝑃 − 𝛾𝑃? − (𝛿 + 𝜔F)𝑃? , (S1𝑑) 773 

𝑑𝑉
𝑑𝑡

= 𝛾𝐵𝑃? − 𝜅𝑆𝑉 − 𝑟7𝜅𝑃𝑉 − (𝛿 + 𝜔G)𝑉, (S1𝑒) 774 

𝑑𝐷!
𝑑𝑡

= 𝜔F𝑆 + (𝛿 + 𝜔H)𝐷!, (S1𝑓) 775 

𝑑𝐷1
𝑑𝑡

= 𝜔F𝑃 + (𝛿 + 𝜔H)𝐷1 , (S1𝑔) 776 

𝑑𝐷?
𝑑𝑡

= 𝜔F𝑃? + (𝛿 + 𝜔H)𝐷? , (S1ℎ) 777 

𝑑𝐷2
𝑑𝑡

= 𝛾𝑃? + (𝛿 + 𝜔H2)𝐷2 , (S1𝑖) 778 

𝑑𝐷G
𝑑𝑡

= 𝜔G𝑉 + (𝛿 + 𝜔HG)𝐷G , (S1𝑗) 779 

To recover the model discussed in the main text (Eq. 1-3), we make a separation of 780 

timescales assumption to reduce the number of state variables in the model, assuming 781 

that the nutrient, activated cells, and dead cells are in pseudo-steady-state with the 782 
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remaining state variables (i.e., IJ
IK
= I1"

IK
= IH!

IK
= 0). This assumption yields the following 783 

expressions: 784 

𝑃?∗ =
(1 − 𝑓2)𝜅𝑆𝑉 + 𝜉𝑃

𝛾 + 𝛿 + 𝜔F
, (S2𝑎) 785 

𝐷!∗ =
𝜔F𝑆
𝛿 + 𝜔H

, (S2𝑏) 786 

𝐷1∗ =
𝜔F𝑃
𝛿 + 𝜔H

, (S2𝑐) 787 

𝐷?∗ =
𝜔F𝑃?∗

𝛿 + 𝜔H
, (S2𝑑) 788 

𝐷2∗ =
𝛾𝑃?∗

𝛿 + 𝜔H2
, (S2𝑒) 789 

𝐷G∗ =
𝜔G𝑉

𝛿 + 𝜔HG
, (S2𝑓) 790 

These equations can be used to define a simplified set of equations with only the 791 

sensitive, prophage, and phage particle abundances 792 

𝑑𝑆
𝑑𝑡

= 𝜇(𝐶∗)𝑆 − 𝜅𝑆𝑉 − (𝛿 + 𝜔F)𝑆, (S3𝑎) 793 

𝑑𝑃
𝑑𝑡

= 𝑓2𝜅𝑆𝑉 + (1 + 𝑠)𝜇(𝐶∗)𝑃 − 𝜉𝑃 − (𝛿 + 𝜔F)𝑃, (S3b) 794 

𝑑𝑉
𝑑𝑡

= 𝐵{𝜉𝑃 + 𝐵{(1 − 𝑓2)𝜅𝑆𝑉 − 𝜅𝑆𝑉 − 𝑟7𝜅𝑃𝑉 − (𝛿 + 𝜔G)𝑉, (S3𝑐)	 795 

where 𝐶∗(𝑆, 𝑃)	is defined implicitly by 0 = Γ − 𝜇(𝐶∗)𝑆 − (1 + 𝑠)𝜇(𝐶∗)𝑃 − 𝛿𝐶∗ and 𝐵{ =796 

𝐵𝑓L = 𝐵 i L
LEMEN#

j. 𝑓L can be interpreted as the fraction of activated cells that are not 797 

diluted or die before lysis occurs and thus 𝐵{  can be interpreted as an effective burst 798 

size. 799 

 800 
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Conditions for robust phage invasion 801 

In the following two sections, we will assess invasion and stability of phage populations 802 

in the model defined by Eq. S3. We assume a linear growth function 𝜇(𝐶) = 	𝛼𝐶 for 803 

these derivations, leading to 𝐶∗ = O
P!E(>ER)P1EM

. In the absence of bacteria, the resource 804 

concentration will saturate at a steady-state value of 𝐶A∗ = Γ/𝛿. Bacteria will be able to 805 

invade this ecosystem when their initial growth rate exceeds the death and dilution rate: 806 

PO
M
> 𝛿 + 𝜔F. Given the stable bacterial colonization seen in the human gut, we assume 807 

this condition to be satisfied. More strongly, given that Γ and 𝛿 likely vary substantially 808 

over time even within a single host (corresponding to variation in food intake and 809 

passage time), robust colonization requires PO
M
≫ 𝛿 + 𝜔F. 810 

 811 

In the absence of virus, susceptible bacteria will saturate at an equilibrium abundance  812 

𝑆A∗ =
Γ

𝛿 + 𝜔F
	~1 −

𝛿(𝛿 + 𝜔F)
Γ𝛼 � 	≈

Γ
𝛿 + 𝜔F

, (S4) 813 

where the approximation follows from the robust bacterial colonization assumption 814 

(𝛼Γ ≫ 𝛿(𝛿 + 𝜔F)). In the absence of lysogeny (𝑓2 = 0), viruses will be able to invade this 815 

susceptible population if the initial phage replication is greater than death: �𝐵{ − 1�𝜅𝑆A∗ −816 

(𝛿 + 𝜔G) > 0. Equivalently, the (lytic) basic reproductive number of the virus must be 817 

greater than one: 818 

𝑅A ≡
�𝐵{ − 1�𝜅𝑆A∗

𝛿 + 𝜔G
> 1. (S5) 819 

As above, since Γ and 𝛿 will vary (and thus 𝑆A∗ will vary), robust phage invasion will 820 

require that 𝑅A ≫ 1, and thus this is the regime we are primarily interested in. 821 
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 822 

Stability of the prophage-dominated steady state 823 

Given the estimated abundance of prophage in the gut (Fig. 1B), we are particularly 824 

interested in the properties of the prophage-only steady state of the model. We will 825 

show that under reasonable assumptions this steady state is likely stable in the gut and 826 

thus can be invoked in interpretating our induction rate estimates. The prophage-only 827 

steady state has 𝑆∗ = 0, 𝑃∗ ≈ i MEN#
MEN#ET

j 𝑆A∗, and 𝑉∗ = FUT1∗

V%W1∗EMEN&
, and 𝐶∗ ≈ XE	Y'ET

P(>ER)
. As we 828 

are in the robust bacterial colonization regime, we neglect the contribution of dilution to 829 

nutrient elimination. This steady state is robust to small perturbations of 𝑃, 𝑉, and 𝐶. 830 

From an invasion analysis, it will be robust to small invasion of susceptible bacteria if 831 

the net growth rate of these susceptible bacteria is negative: 832 

𝜇(𝐶∗(0, 𝑃∗)) − 𝜅𝑉∗ − (𝛿 + 𝜔F) < 0. (S6) 833 

Substituting in the definition of 𝐶∗, dividing by 𝛿 + 𝜔F, and rearranging yields 834 

𝜉
𝛿 + 𝜔F

− 𝑠

1 + 𝑠
<

𝜅𝑉∗

𝛿 +	𝜔F
. (S7) 835 

We can express 𝑉∗ in terms of 𝑅A as 836 

𝑉∗ =

𝐵{𝑅A
�𝐵{ − 1�𝜅

(𝛿 + 𝜔F)𝜉

i 𝑟7𝑅A𝐵{ − 1j
(𝛿 + 𝜔F) + 𝛿 +	𝜔F + 𝜉

, (S8) 837 

and substituting this equation into the invasion condition yields 838 

𝜉
𝛿 + 𝜔F

− 𝑠

1 + 𝑠 <

𝐵{𝑅A
�𝐵{ − 1�

i 𝜉
𝛿 +	𝜔F

j

𝑟7𝑅A
𝐵{ − 1 + 1 +

𝜉
𝛿 +	𝜔F

. (S9) 839 
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We are particularly interested in the regime where the direct cost (if negative) of the 840 

prophage 𝑠 is small relative to one, but still potentially large relative to other small 841 

parameters in the system. This limit is consistent with the modest energetic cost of 842 

replicating a phage genome (52) and that non-lytic mobile genetic elements have been 843 

observed to rapidly undergo compensatory adaptation to reach very low fitness costs 844 

(85). Expanding to lowest order in 𝑠 leads to 845 

𝜉
𝛿 + 𝜔F

− 𝑠 <

𝐵{𝑅A
�𝐵{ − 1�

i 𝜉
𝛿 +	𝜔F

j

𝑟7𝑅A
𝐵{ − 1 + 1 +

𝜉
𝛿 +	𝜔F

. (S10) 846 

This condition is violated at very high induction rate (𝜉 ≳ 𝑅A(𝛿 + 𝜔F)) and at low 847 

induction rate when 848 

𝜉
𝛿 + 𝜔F

< (−𝑠) ~
𝑟7
𝐵{
+
1 − 𝐵{;>

𝑅A
� . (S11) 849 

The term on the right-hand-side is much smaller than −𝑠 in the empirically relevant 850 

regime where 𝐵{ ≫ 1 and 𝑅A ≫ 1. Thus, as long as the dominant cost of gut prophage is 851 

induction, i.e., 𝜉 > −𝑠, as has been experimentally observed for some phage (86), then 852 

the gut ecosystem likely exists within a regime where the prophage-only state is stable. 853 

 854 

Overview of induction rate estimation approach 855 

In the following sections, we show detailed derivations of the induction rate estimates 856 

presented in the main text, starting from the single phage-bacteria model in Eq. S3. In 857 

addition to the estimations based on phage particle to prophage ratio and prophage 858 

copy number, we also show an estimation based on cell viability. With currently 859 

available data, this estimator is poorly constrained and thus not included in the main 860 
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text, but some results from this derivation are used in the derivation of the estimate 861 

based on prophage copy number. 862 

 863 

In deriving these estimates, we begin with a general form of the calculation that makes 864 

no assumptions about the relative abundance of prophage. This approach leads to 865 

estimates of the total lysis rate, which includes both induction of prophage and lysis of 866 

sensitive cells via non-lysogenic infection. We then simplify these estimates by 867 

assuming that the gut is prophage-dominated, leading to the expressions for the 868 

average induction rate in the main text. This simplification only affects the interpretation 869 

of the resulting estimate: if the prophage-dominated simplification is incorrect and a 870 

substantial amount of phage particle production occurs from sensitive cells, then the 871 

estimates are still valid as total lysis rate estimates. In the final model section, we show 872 

how our framework can be extended to communities with multiple species of bacteria 873 

and phage with explicitly time-varying parameters. 874 

 875 

Total lysis rate and induction rate estimate from phage particle to prophage ratio 876 

Here, we estimate the average lysis rate (including both induction of lysogens and lysis 877 

after non-lysogenic infection) from the phage particle to prophage ratio. We begin with 878 

the viral dynamics from the timescale-separated prophage model (Eq. S3). We define 879 

the population-weighted total lysis rate 𝜂 such that 𝜂(𝑆 + 𝑃) = 𝜉𝑃 + (1 − 𝑓2)𝜅𝑆𝑉. We can 880 

also rewrite this as 𝜂 = 𝜉𝑥1 + (1 − 𝑓2)𝜅𝑉𝑥! where 𝑥@ are the population relative 881 

abundance within the 𝑆 + 𝑃 pool of cells. By rearranging Eq. S3c when IG
IK

 is on average 882 

zero (i.e. >
ZK ∫

IG
IK

ZK
A  𝑑𝑡 ≈ 0), we can obtain an expression for 𝜂∗: 883 
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𝜂∗ =
1
𝐵{
E

𝑉∗

𝑆∗ + 𝑃∗F
(𝜅𝑆∗ + 𝑟7𝜅𝑃∗ + 𝜔G + 𝛿), (S12) 884 

where asterisks denote the time-averaged value 𝑥∗ = >
ZK ∫ 𝑥(𝑡)ZK

A  𝑑𝑡. This approximation 885 

assumes that the microbiome is in a statistical steady state (no net trend in 𝑉) and that 886 

Δ𝑡 is long enough that time averages have converged to their ensemble-averaged 887 

values. At a minimum, this assumption requires that Δ𝑡 ≳ 1/𝛿. The assumption of a 888 

statistical steady state is supported by the results of our absolute abundance meta-889 

analysis (Fig. 1). Given the limited knowledge of 𝜅, 𝑟7, and 𝜔G in the gut, we use Eq. 890 

S12 to construct a lower bound on 𝜂∗: 891 

𝜂∗ ≥
1
𝐵{
E

𝑉∗

𝑆∗ + 𝑃∗F 𝛿.
(S13) 892 

In the prophage-dominated regime (i.e., 𝑆∗ = 0) we recover 𝜂∗ = 𝜉∗ ≥ �1/𝐵{�(𝑉∗/𝑃∗)𝛿, a 893 

bound on the induction rate. 894 

 895 

In practice, measured pVMR may not be G∗

!∗E1∗
 due to the contribution of dead cells and 896 

dead viruses. If all populations are represented in the measurement, the pVMR will 897 

instead be 898 

pVMR	 = 	
𝑉∗ + 𝐷G∗

𝑆∗ + 𝑃∗ + 𝑃?∗ + 𝐷!∗ + 𝐷1∗ + 𝐷?∗ + 𝐷2∗
. (S14) 899 

This is related to G∗

!∗E1∗
 by: 900 

𝑉∗

𝑆∗ + 𝑃∗
= E

𝜈G
𝜈F
F E
𝑆∗ + 𝑃∗ + 𝑃?∗

𝑆∗ + 𝑃∗ F ∙ pVMR, (S15) 901 
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where 𝜈@ is the cell or viral viability fraction (the fraction of cells or viruses that are 902 

viable). We now substitute this expression into Eq. S12 and use the fact that [&
>;[&

=903 

G∗

H&
∗ =

MEN(&
N&

 to yield 904 

𝜂∗ =
pVMR
𝐵{

E
𝑆∗ + 𝑃∗ + 𝑃?∗

𝑆∗ + 𝑃∗ F E
1
𝜈F
F (𝜈G𝜅𝑆∗ + 𝜈G𝑟7𝜅𝑃∗ + (1 − 𝜈G)𝜔HG + 𝛿). (S16) 905 

Thus, utilizing a pVMR including the dead populations still functions as a lower bound 906 

estimate of 𝜂∗: 907 

𝜂∗ ≥ E
pVMR
𝐵{

F 𝛿. (S17) 908 

 909 

Cell death and total lysis rate estimates from live cell fraction 910 

Here, we derive estimates of both the non-lysis cell mortality rate 𝜔F and the total lysis 911 

rate 𝜂 based on the fraction of cells that are living/viable within the microbiome, defined 912 

in our model as 𝜈F∗ =
!∗E1∗E1"∗

!∗E1∗E1"∗EH)
∗EH*

∗EH"∗EH+
∗. We begin by substituting in the steady-state 913 

population abundances to the expression [#
∗

>;[#
∗ =

!∗E1∗E1"∗

H)
∗EH*

∗EH"∗EH+
∗, 914 

𝜈F∗

1 − 𝜈F∗
=

𝑆∗ + 𝑃∗ + 𝑃?∗

(𝑆∗ + 𝑃∗ + 𝑃?∗) i
𝜔F

𝛿 + 𝜔H
j + 𝛾𝑃?∗

𝛿 + 𝜔H2

, (S18) 915 

which when solved for 𝜔F yields 916 

𝜔F = (𝛿 + 𝜔H) ~
1 − 𝜈F∗

𝜈F∗
−

𝛾𝑃?∗

(𝛿 + 𝜔H2)(𝑆∗ + 𝑃∗ + 𝑃?∗)
� . (S19) 917 

This equation provides an upper bound estimate for 𝜔F: 918 

𝜔F ≤ (𝛿 + 𝜔H) ~
1 − 𝜈F∗

𝜈F∗
� , (S20) 919 
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which will be utilized later in deriving the estimate of total lysis rate from prophage copy 920 

number. The value of 𝜈F∗  in stool has been estimated at ~0.5 − 0.8 based on cell 921 

permeability measurements, leading to >;[#
∗

[#
∗ ≈ 1 (87,88). Thus, the bacterial death rate 922 

is at most similar in magnitude to the sum of dilution and cell degradation rate.  923 

 924 

From Eq. S18, we can also derive an estimate for the total lysis rate using the steady-925 

state expression 𝑃?∗ =
\(!∗E1∗)
(LEMEN()

. Solving Eq. S18 for 𝜂 yields: 926 

𝜂
𝛾 + 𝛿 + 𝜔H

=
E1 − 𝜈F

∗

𝜈F∗
− 𝜔F
𝛿 + 𝜔H

F

𝛾
𝛿 + 𝜔H2

− E1 − 𝜈F
∗

𝜈F∗
− 𝜔F
𝛿 + 𝜔H

F
. (S21) 927 

This equation is potentially usable to provide another lysis rate estimate, and in the 928 

prophage-dominated regime becomes an induction rate estimate. However, the values 929 

of 𝜔H, 𝜔F, and 𝜔H2 are currently poorly constrained. For example, one cell viability 930 

measurement method is based on comparing the fraction of 16S rDNA found inside and 931 

outside of intact cells (87) and it is not known how rapidly extracellular DNA is degraded 932 

inside the gut. There are also potential technical issues in the measurement of 𝜈F, as it 933 

is unclear to what extent cells lysed by phage are detected by current cell viability 934 

measurements. If the lysis process degrades the host genome or leads to total 935 

destruction of the cellular structure, the population of cells dying due to lysis would be 936 

underestimated by methods relying on extracellular genomic DNA or permeable cell 937 

remains. 938 

 939 
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Total lysis rate and induction rate estimates from integrated prophage copy 940 

number 941 

Here, we estimate the average total lysis rate using lysogeny copy number 𝑅. We 942 

assume that 𝑅 includes the contribution of viral particles, dead viral particles, and all 943 

dead cells, and we show that the inclusion of these classes does not substantially alter 944 

our induction rate estimation. Each activated cell contributes 𝐵? prophage copies, each 945 

lysogen cell contributes one prophage copy, and lysed cells contribute no prophage 946 

copies. All cells contribute a single bacteria genome copy. We first define 𝑅 in terms of 947 

our steady-state model populations: 948 

𝑅∗ 	≡ gVMR = 	
𝑉∗ + 𝐷G∗ + 𝑃∗ + 𝐵?	𝑃?∗ 	+ 	𝐷1∗ 	+ 	𝐵?	𝐷?∗

𝑆∗ + 𝑃∗ +	𝑃?∗ + 𝐷!∗ + 𝐷1∗ +	𝐷?∗ + 𝐷2∗
. (S22) 949 

As all cells have the same non-lysis mortality rate, Eq. S22 can be rearranged to 950 

𝑅∗ = pVMR +	
𝑃∗ + 𝐵?	𝑃?∗

𝑆∗ + 𝑃∗ +	𝑃?∗
E1 +

𝐷1∗

𝑃∗F
𝜈F∗ , (S23) 951 

𝑅∗ − pVMR =	
𝑃∗ + 𝐵?	𝑃?∗

𝑆∗ + 𝑃∗ +	𝑃?∗
~1 −

𝐷2∗

𝑆∗ + 𝑃∗ +	𝑃?∗ + 𝐷!∗ + 𝐷1∗ +	𝐷?∗ + 𝐷2∗
� . (S24) 952 

We can then substitute in the steady-state population values to express all dead cell 953 

populations in terms of living cells populations: 954 

𝑅∗ − pVMR =	
𝑃∗ + 𝐵?	𝑃?∗

𝑆∗ + 𝑃∗ +	𝑃?∗
�1 −

𝛾𝑃?∗
𝛿 + 𝜔H2

(𝑆∗ + 𝑃∗ +	𝑃?∗) i1 +
𝜔F

𝛿 +	𝜔H
j + 𝛾𝑃?∗

𝛿 + 𝜔H2

� . (S25) 955 

Rearranging and using the fact that 𝛾 = E ],
>;],

F (𝛿 + 𝜔F) yields 956 

𝑅∗ − pVMR =	

⎝

⎛ 𝑃∗ + 𝐵?	𝑃?∗

𝑆∗ + 𝑃∗ +	𝑃?∗ �1 +	i
𝛿 + 𝜔H
𝛿 + 𝜔H2

j E
𝑓L

1 − 𝑓L
F i 𝛿 + 𝜔F
𝛿 +	𝜔H + 𝜔F

j�⎠

⎞ , (S26) 957 
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which when solved for 𝑃?∗ yields 958 

𝑃?∗ =
(𝑆∗ + 𝑃∗)(𝑅∗ − pVMR) − 𝑃∗

𝐵? − (𝑅∗ − pVMR)Q
, (S27) 959 

where 𝑄 = 	1 +	i MEN(
MEN(+

j E ],
>;],

F i MEN#
ME	N(EN#

j. From our steady-state solution for 𝑃?∗ we 960 

have that 𝜂∗ = 𝑃?∗ i
LEN#EM
!∗E1∗

j, providing an estimate of 𝜂∗: 961 

𝜂∗ = (𝛾 + 𝜔F + 𝛿)
(𝑅∗ − pVMR) − 𝑥1∗

𝐵? − (𝑅∗ − pVMR)Q
. (S28) 962 

The effect of dead cells and viruses enters the expression via the factor Q, which will 963 

inflate the lysis rate. However, this term cannot be greater than 𝑂(1), and thus if 𝐵? is 964 

large, the impact of dead material is minimal. Empirically, the value of 𝜔F is poorly 965 

constrained, but we can use results from the cell viability derivation above (Eq. S20) to 966 

relate this rate to the cell viability fraction 𝜈F and the degradation rate of dead cells 𝜔H: 967 

𝜂∗ ≤ �𝛾 + (𝛿 + 𝜔H) ~
1 − 𝜈F∗

𝜈F∗
� + 𝛿�

(𝑅∗ − pVMR) − 𝑥1∗

𝐵? − (𝑅∗ − pVMR)Q
. (S29) 968 

To reach the order of magnitude bound shown in the main text, we assume prophage 969 

dominance 𝑥1∗ ≈ 1, that the number of prophage copies in activated cells is similar to the 970 

burst size 𝐵? ≈ 𝐵{ , and that dead cells are primarily removed by dilution 𝜔H ≪ 𝛿. Based 971 

on empirical measurements, we also assume that 𝑅∗ ≫ pVMR, 𝐵{ ≫ 1, and >;[#
∗

[#
∗ ≈ 1, 972 

yielding  973 

𝜉∗ ≲
(𝛾 + 𝛿)(𝑅∗ − 1)

(𝐵{ − 1) − (𝑅∗ − 1)
. (S30) 974 

 975 

We now briefly discuss potential bioinformatic/sequencing technical artifacts that could 976 

influence the measurement of 𝑅. One potential factor that could systematically skew the 977 
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above induction rate estimate is sequencing bias between prophage and host (e.g., due 978 

to GC content differences between host bacteria and prophage (89)). However, based 979 

on the negative control analyses performed by (48), these biases do not appear 980 

significant, as non-induced prophage had 𝑅 ≈ 1. If large biases existed, 𝑅 in non-981 

induced phage would differ significantly from 1. Another possible confounding factor in 982 

estimating 𝑅 is the presence of the prophage within only a subpopulation of the bacterial 983 

host, leading to a lower value of 𝑅. However, this is unlikely to affect our current 984 

analyses, as the 𝑅 values we analyze were computed based on metagenomically 985 

assembled contigs containing both prophage and bacterial host sequence. Assembly of 986 

such mixed contigs from a mixed lysogen/sensitive population is highly unlikely due to 987 

degeneracies in the possible assembly paths. In the case of both possible biases, our 988 

framework can readily accommodate improved estimates of 𝑅 as sequencing and 989 

bioinformatic approaches improve.  990 

 991 

Extension of the model to multiple phage and bacterial species in time-varying 992 

environments 993 

We now generalize our model to complex communities in time-varying environments. 994 

For simplicity, we begin with the timescale-separated version of the model and focus on 995 

the prophage-dominated case in which most lysis is due to induction, as for the single 996 

bacteria-phage regime studied above. 997 

 998 

We now track the dynamics of multiple types of phage (indexed by 𝑖) and multiple types 999 

of bacteria (indexed by 𝑗), such that the total number of phage particles is 𝑉(𝑡) ≡1000 
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∑ 𝑉@(𝑡)@  and the total number of bacteria is 𝑁(𝑡) ≡ ∑ 𝑁 (𝑡)^ . The bacterial “type” 𝑗 1001 

encompasses both the taxonomic identity of a bacteria and its infection status (i.e., the 1002 

𝑁  also include bacteria infected by a prophage). To keep track of infection status and 1003 

the phage-bacteria interaction network, we introduce bookkeeping parameters 𝐼@^ and 1004 

𝐴@^_, respectively. The parameter 𝐼@^ is 1 if bacteria 𝑗 is infected with a prophage of 1005 

phage 𝑖 and zero otherwise. Thus, the total number of prophage in this system is 𝑃(𝑡) ≡1006 

∑ 𝑃@(𝑡)@ = ∑ 𝐼@^𝑁 (𝑡)@^ . Note that generally 𝑃(𝑡) ≠ 𝑁(𝑡), as multiple phage can infect a 1007 

single bacteria. The second parameter, 𝐴@^_, is 1 if an infection of bacteria of type 𝑗 by 1008 

phage 𝑖 produces an infected bacterium of type 𝑘, and 0 otherwise. Using this notation, 1009 

we now define the multispecies generalization of Eq. S3: 1010 

𝑑𝑁
𝑑𝑡 = 𝜇^(𝑡)𝑁 − 𝜅@^(𝑡)𝑁 𝑉@

@

+ 𝐴@_^𝜅@^(𝑡)𝑁_𝑉@
@,_

− 𝐼@^𝜉@^(𝑡)𝑁
@

− 𝛿(𝑡)𝑁 − 𝜔F,^(𝑡)𝑁 , (S31𝑎) 1011 

𝑑𝑉@
𝑑𝑡 = 𝐼@^𝐵@^(𝑡)𝜉@^(𝑡)𝑁

^

− 𝜅@^(𝑡)𝑁 𝑉@
^

− 𝑟@^(𝑡)𝜅@^(𝑡)𝑁 𝑉@
^

− 𝛿(𝑡)𝑉@ − 𝜔@(𝑡)𝑉G,@ , (S31b)	 1012 

where we have also allowed the rate parameters to explicitly depend on time. We have 1013 

also approximated 𝑓2 = 1 for simplicity.  1014 

 1015 

To relate these dynamics to the total pVMR, we now sum Eq. S13b over the viral index 𝑖 1016 

and substitute Ia
IK
i>
a
j = I bcd(a)

IK
	, yielding  1017 

𝑑 log 𝑉
𝑑𝑡 =

∑ 𝐼@^𝐵@^(𝑡)𝜉@^(𝑡)𝑁@^

∑ 𝐼@^𝑁@^
⋅ E
𝑃
𝑉F −

∑ 𝜅@^(𝑡)𝑁 𝑉@@^

∑ 𝑉@@
−
∑ 𝑟@^(𝑡)𝜅@^(𝑡)𝑁 𝑉@@^

∑ 𝑉@@
− 𝛿(𝑡) −

∑ 𝜔G,@(𝑡)𝑉@@^

∑ 𝑉@@
. (S32)	 1018 

Eq. S14 can be rewritten in a more compact form as 1019 

𝑑 log 𝑉
𝑑𝑡 = 𝐵(𝑡)ξ(𝑡) E

𝑃
𝑉F − 𝜓e

(𝑡) − 𝜓f(𝑡) − δ(𝑡) − 𝜔G(𝑡), (S33)	 1020 
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where we have defined the microbiome averages 1021 

𝐵(𝑡) ≡
∑ 𝐼@^𝐵@^(𝑡)𝜉@^(𝑡)𝑁@^

∑ 𝐼@^𝜉@^(𝑡)𝑁@^
, (S34𝑎) 1022 

ξ(𝑡) ≡
∑ 𝐼@^ξ@^(𝑡)𝑁@,^

∑ 𝐼@^𝑁@^
, (S34𝑏) 1023 

𝜓e(𝑡) ≡
∑ 𝜅@^(𝑡)𝑁 𝑉@@^

∑ 𝑉@@
, (S34𝑐) 1024 

𝜓f(𝑡) ≡
∑ 𝑟@^(𝑡)𝜅@^(𝑡)𝑁 𝑉@@^

∑ 𝑉@@
. (S34𝑑) 1025 

𝜔G(𝑡) ≡
∑ 𝜔G,@(𝑡)𝑉@@

∑ 𝑉@@
(S34𝑒) 1026 

Integrating Eq. S15 over long times yields 1027 

0 ≈ 𝐵D∗ξ̅∗ E
𝑃
𝑉F

∗

− 𝜓e
∗
− 𝜓f

∗
− δ∗ − 𝜔G

∗ , (S35) 1028 

where the asterisks again denote the time-averaged value 𝑥∗ = >
ZK ∫ 𝑥(𝑡)ZK

A  𝑑𝑡. Since the 1029 

microbiome is in a statistical steady state over long times (Fig. 1B), we can estimate the 1030 

averages over time by taking an average over independent hosts. This procedure yields 1031 

a connection between the rate parameters and the VLP-to-prophage ratio from Fig. 1 1032 

and thus a lower bound similar to the one estimated from the single phage-bacteria 1033 

model: 1034 

𝜉̅∗ ≳
1
𝐵D∗
E
𝑉∗

𝑃∗F 𝛿
∗. (S36) 1035 

This bound assumes that the burst size, induction rate, and particle-to-prophage ratio 1036 

are largely uncorrelated in time. If this assumption is violated, the estimate represents a 1037 

particular weighted average of the induction rate bound: 1038 
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1
𝐵D∗
E
𝑉∗

𝑃∗F 𝛿
∗ = E

1
Δ𝑡F

∫ 𝜉ZK
A 𝐵 i𝑃𝑉j𝑑𝑡

𝐵D∗ i𝑉
∗

𝑃∗j
. (S37) 1039 

To generalize this bound to the case of pVMR including dead material, we begin with 1040 

the multispecies version of the dead virus dynamics: 1041 

𝑑𝐷G,@
𝑑𝑡

= 𝜔G,@(𝑡)𝑉@ − 𝛿(𝑡)𝐷G,@ − 𝜔HG,@(𝑡)𝐷G,@ , (S38) 1042 

which then yields an expression for the dynamics of the total dead virus population: 1043 

𝑑log𝐷G,@
𝑑𝑡

= 𝜔G(𝑡) E
𝑉
𝐷G
F − 𝛿(𝑡) − 𝜔¤HG,@(𝑡), (S39) 1044 

where 𝜔¤HG,@(𝑡) ≡
∑ N(&,!(K)H&,!!

∑ H&,!!
. At statistical steady state, this leads to [&

∗

>;[&
∗ =

G∗

H&
∗ ≈

X∗EN(&
∗

N&
∗ , 1045 

which when combined with Eq. S35 shows the lower bound is preserved when the 1046 

pVMR accounts for dead populations, as in the earlier single species derivation.  1047 

 1048 

Note that in this section we have only analyzed a simple case of this community model, 1049 

and further analysis, such as exploring the role of temporal correlations and the relative 1050 

contribution of induction and direct lysis, is a promising direction for future theoretical 1051 

phage ecology work. 1052 

 1053 

Here, we have shown the multispecies generalization of the induction rate estimate from 1054 

VLP-to-prophage ratio. The rate estimates computed from cell viability will similarly 1055 

extend to the multispecies context, as we model all sources of death in aggregate, 1056 

independent of which phage causes lysis. The induction rate estimate from the lysogen 1057 

copy number is performed on a prophage-by-prophage basis, hence it is not affected in 1058 

a multispecies context. However, this context will lead to a difference in the kind of 1059 
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average used in the estimate: unlike the average computed from the VLP-to-prophage 1060 

ratio, the average from copy number average is not abundance weighted and includes 1061 

only lysogens captured with their host contig. 1062 

  1063 
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Data Availability 1064 

All code used in this manuscript is available at 1065 

https://github.com/jaimegelopez/gut_phage_quantification. All data analyzed in this 1066 

manuscript is publicly available. Processed final versions of the datasets (e.g. estimated 1067 

taxonomic compositions) are available in the GitHub repository.  1068 
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Supplementary Figures 1069 

 1070 

Figure S1: Species-level relative abundance analysis of the overlap between 1071 

phage community quantifications using VLP- and stool-based approaches. Data 1072 

and plotting methods are the same as Fig. 1C, except that relative abundance was 1073 

used instead of absolute genome/particle density. This figure includes only phage 1074 

shared between the VLP fraction and stool, corresponding to the central scatter plot of 1075 

Fig. 1C. Relative abundance was defined relative to total taxonomic abundance of 1076 

phage within VLPs/stool. Note that without the absolute abundance normalization 1077 

employed in Fig. 1C, adult VLP abundances appear to be substantially lower than infant 1078 

abundances.  1079 
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 1080 

Figure S2: Species-level absolute abundance analysis of the overlap between 1081 

VLP- and stool-based phage community quantifications, colored by predicted 1082 

virulence. This figure is the same as Fig. 1C, except points are colored by predicted 1083 

virulence rather than their dataset of origin. Diamond markers represent points from 1084 

adult samples, while squares represent points from infant samples.   1085 
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 1086 

Figure S3: Time series of various reconstruction evaluation metrics in hCom2-1087 

colonized mice. Each row is a version of Fig. 3C,D but instead showing Spearman 1088 

correlation of taxa read abundances (A,B), Spearman correlation of read abundances of 1089 

species shared between hCom2/hMock sample pairs (C,D), Jaccard index (E,F), 1090 

fraction of read abundances in hCom2-colonized mouse feces that are nonzero in 1091 

hMock (G,H), mean squared error (MSE) of log10(read abundance) of species shared 1092 
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between hCom2/hMock sample pairs (I,J), and MSE of log10(read abundance) 1093 

computed with a relative abundance pseudocount of 10-7 (K,L). All metrics were 1094 

computed using species-level relative read abundances. Jaccard index is the number of 1095 

shared species between an hCom2/hMock sample pair divided by the total number of 1096 

species with nonzero abundance in at least one of the two samples. For (G,H), shared 1097 

read abundances were normalized to the total bacterial or phage abundance in the 1098 

hCom2-colonized mouse fecal sample.  1099 
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 1100 

Figure S4: Comparison of phage and bacterial community properties in the feces 1101 

of hCom2-colonized mice across conditions. Community properties and plotting 1102 

methods are the same as in Fig. 4. ‘Unchallenged’ corresponds to in vivo samples from 1103 

hCom2-colonized gnotobiotic mice that have not been exposed to a human stool 1104 

sample, while ‘Challenged’ denotes samples from hCom2-colonized mice that have 1105 

been exposed to a human stool challenge. ‘in vitro’ corresponds to hCom2 communities 1106 

grown in vitro.  1107 
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 1108 

Figure S5: Comparison of the virulent-to-temperate ratio (VTR) between stool 1109 

from humans and feces from hCom2-colonized mice, as estimated by PhaTYP. 1110 

Equivalent to Fig. 4D, except the virulence prediction of phage genomes was performed 1111 

using PhaTYP (57) instead of using the Phanta UHGV database (24).  1112 
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