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Abstract

Escherichia coli BL21(DE3) is an industrial model microbe for the mass-production of bio-

products such as biofuels, biorefineries, and recombinant proteins. However, despite its

important role in scientific research and biotechnological applications, a high-quality meta-

bolic network model for metabolic engineering is yet to be developed. Here, we present the

comprehensive metabolic network model of E. coli BL21(DE3), named iHK1487, based on

the latest genome reannotation and phenome analysis. The metabolic model consists of

1,164 unique metabolites, 2,701 metabolic reactions, and 1,487 genes. The model was vali-

dated and improved by comparing the simulation results with phenome data from phenotype

microarray tests. Previous transcriptome profile data was incorporated during model recon-

struction, and flux prediction was simulated using the model. iHK1487 was simulated to

explore the metabolic features of BL21(DE3) such as broad spectrum amino acid utilization

and enhanced flux through the upper glycolytic pathway and TCA cycle. iHK1487 will con-

tribute to systematic understanding of cellular physiology and metabolism of E. coli BL21

(DE3) and highlight its biotechnological applications.

Introduction

Modeling and simulation of metabolic networks are well-established computational tools for

myriad applications such as designing of microbial cell factories, model-driven discovery, and

phenotype prediction [1–4]. The recent development of sequencing technology and accumula-

tion of biochemical and enzymatic data has facilitated the reconstruction of genome-wide met-

abolic networks in diverse organisms [5,6]. However, reconstruction of a comprehensive and

accurate metabolic network model is a time- and labor-consuming task. To tackle this prob-

lem, a protocol for genome-scale metabolic reconstruction was suggested [7]. Several methods

have been developed to support model reconstruction in a (semi-) automatic manner [8–10].

Basically, these methods convert genome annotation into a genome-scale metabolic model.

Thus, the automated approach generates a draft reconstruction, which can be easily falsified by

(i) incomplete and erroneous genome annotation, (ii) inconsistent naming of metabolites and

reactions among different data sources, and (iii) conflicting information on reversibility and
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activity of metabolic reactions [11,12]. Thus, high quality metabolic network reconstruction

requires extensive manual curation based on expert knowledge and literature survey.

The K-12 and B strains of Escherichia coli and their derivatives have been widely used and

have had enormous impact on basic biology, medicine, and biotechnology. K-12 strains have

been the primary choice for genetic studies, and hence, extensive genetic, metabolic, and omic

studies of E. coli have been performed using K-12 or its derivatives. After the release of the

complete genome sequence of E. coli K-12 MG1655 in 1997 [13], global efforts have been dedi-

cated to generate a functional update of the K-12 genome [14–17], as a result of which, this

strain has the most comprehensive and curated metabolic network model [1,18].

Derivatives of E. coli B, especially BL21(DE3) [19], have been widely used for the over-

production of recombinant proteins, biofuels, and biorefineries owing to several favorable

features such as faster growth in minimal media, lower acetate production, higher expres-

sion levels of recombinant proteins, and less degradation of such proteins during purifica-

tion [20,21]. Despite their importance in biotechnology, omics and systems biology studies

on B strains are limited. In 2009, the entire genome sequences of two E. coli B strains, BL21

(DE3) and REL606, were first completed and annotated [22,23]. The genome information

has enabled multi-omics analysis and genome-scale metabolic network of E. coli REL606

[3]. Recently, the BL21(DE3) genome was re-annotated and the transcriptome structure of

the strain was determined [24].

E. coli BL21(DE3) is one of the most widely used industrial workhorses, especially for the

overproduction of recombinant proteins [21]. BL21(DE3) was derived from BL21 by inte-

grating the DE3 prophage in the lambda attachment site of BL21 to use phage T7 RNA poly-

merase for recombinant protein production [19]. Compared to the highly curated and fine-

tuned metabolic network model of E. coli K-12 MG1655 [25], development of the metabolic

network of E. coli BL21(DE3) is in early stages. The first metabolic model of E. coli BL21,

iECD_1391 [26,27], was reconstructed in a semi-automatic manner using the ModelSEED

pipeline [8]. Considering the recent genome reannotation and biotechnological importance

of BL21(DE3), its metabolic network model has to be reconstructed via expert manual

curation.

In this study, we reconstructed a comprehensive and highly-curated metabolic network

model of E. coli BL21(DE3) based on the recent genome reannotation and phenome analysis.

To exploit the well-developed metabolic model of K-12 MG1655 [25], we highlighted similari-

ties and differences between the genomes of BL21(DE3) and K-12 MG1655. Phenotype micro-

array (PM) test was performed to validate and corroborate the network model. Finally, the

reconstructed model was simulated to explore the metabolic features of BL21(DE3).

Materials and methods

Metabolic network reconstruction

The metabolic network model of E. coli BL21(DE3) was reconstructed based on recent genome

annotation of E. coli BL21(DE3) [24] and metabolic model of E. coli K-12 MG1655 (iML1515)

[25]. The K-12 iML1515 consists of 1,515 genes, 2,719 metabolic reactions, and 1,192 unique

metabolites, which was downloaded from the BiGG database [6] in the SBML file format.

Genes present both in the BL21(DE3) and K-12 genomes were retrieved from the publication

on genome reannotation of BL21(DE3) [24], and their corresponding metabolic reactions

were obtained from iML1515. Reactions that depend only on K-12-specific genes and pseudo-

genes were excluded from iML1515. Genes unique to BL21(DE3) and their corresponding

reactions were retrieved from the recent genome reannotation [24] and MetaCyc database

[28], respectively.

Metabolic network model of Escherichia coli BL21(DE3)
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Phenotype microarray test

E. coli BL21(DE3) [19] was provided by F. William Studier, Brookhaven National Laboratory,

and E. coli K-12 MG1655 was purchased from American Type Culture Collection (ATCC).

PM tests on BL21(DE3) and K-12 strains were performed as described previously [3]. The PM

plates (Biolog Inc., Hayward, CA, USA) consisted of 20 96-well plates containing different

sources of carbon (PM1 and PM2), nitrogen (PM3), phosphorus, and sulfur (PM4), auxotro-

phic supplements (PM5 to PM8), or salt (PM9). The PM10 plate was used to test pH stress,

whereas PM11 to PM20 plates contained inhibitory compounds such as antibiotics, antimetab-

olites, and other inhibitors. Cells were grown overnight at 37˚C on Biolog universal growth

(BUG) + B agar plate. Colonies were picked from the agar surface and suspended in inoculat-

ing fluid (IF) containing the indicator dye tetrazolium violet. The IF-0 media was used for

plates PM1 to PM8 and IF-10 for plates PM9 to PM20. Sodium succinate or pyruvate was

added with ferric citrate to the inoculation solution of plates PM3 to PM8. All PM plates were

inoculated with cell suspensions at 100 μl/well and incubated in an OmniLog incubator (Bio-

log Inc.) at 37˚C for 30 or 48 hours. Five independent PM tests were performed on BL21(DE3)

by varying the carbon source for the plates PM3 to PM8 (sodium pyruvate for three replicates

and sodium succinate for two replicates). One PM test using sodium pyruvate as the carbon

source for the plates PM3 to PM8 was performed on K-12 MG1655. Four independent PM

tests on K-12 and five PM tests on B REL606, which used sodium succinate as the carbon

source for the plates PM3 to PM8, were retrieved from our previous study [3]. The PM data

was analyzed using the opm R package [29], and the bacterial cell growth in each well was clas-

sified into negative, weak (or ambiguous), and positive growths.

Flux balance analysis

Flux balance analysis (FBA) [30] of the reconstructed metabolic model of BL21(DE3) was per-

formed to simulate cell growth using Constraints-Based Reconstruction and Analysis for python

(COBRApy) [31]. The maximum growth rate from the core biomass equation [25] was used as

the objective function. The upper limit of uptake rates of glucose and oxygen were set as 10 mmol

gDCW-1 h-1 and 18.5 mmol gDCW-1 h-1, respectively, unless otherwise mentioned.

For simulation of cell growth on PM plates for testing carbon source utilization (PM1 and

PM2), the maximum uptake rate of each carbon source was set at 10 mmol gDCW-1 h-1. The

composition of minimal media IF-0 used in PM1 and PM2 (136.1 mM chloride, 104.5 mM

Na+, 30 mM triethanolamine, 5 mM ammonium, 2 mM phosphate, 1 mM K+, 0.25 mM sul-

fate, 0.05 mM Mg2+, and 0.001 mM Fe3+) was retrieved from the BioCyc web site [32] and was

used as the upper limit of the uptake rate of the corresponding component. A substrate was

considered to be not metabolized if the growth rate was less than 5% of the growth objective

value calculated for the wild type strain.

To identify the reactions that are essential for cell growth, the maximum growth rate was simu-

lated when each reaction was removed from the reconstructed metabolic model using the func-

tion “find_essential_genes” in COBRApy [31]. An unrestrained supply of all the substrates was

assumed. A reaction was considered essential if its removal from the model reduced growth rate

below the default threshold of 5% of the growth objective value calculated for the wild type strain.

Results

Overview of the metabolic model reconstruction

We reconstructed a genome-scale metabolic network model of BL21(DE3) by comparing the

genomes of BL21(DE3) and K-12 (Table 1). The genomes of BL21(DE3) and K-12 MG1655

Metabolic network model of Escherichia coli BL21(DE3)
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are similar in terms of gene contents and sequence identity [23,24,33]. Thus, we utilized the

metabolic model of K-2 MG1655 (iML1515) [25], which is the most comprehensive and accu-

rate model in microorganisms, for reconstructing the BL21(DE3) metabolic model, starting

with the identification of the gene set commonly present in BL21(DE3) and K-12 MG1655.

The 1,452 metabolism-related genes (96%) in the K-12 metabolic model (iML1515) were also

detected in the BL21(DE3) genome, leading to the identification of 2,637 metabolic reactions

(97% of iML1515) shared by the two genomes.

Thirty-nine metabolic genes were present only in the BL21(DE3) genome, and their associ-

ated metabolic reactions and metabolites were identified using exhaustive searches in bio-

chemical literature and the MetaCyc database [28], leading to the addition of 27 metabolites

and 51 metabolic reactions, including 11 exchange reactions into the metabolic model (S1 and

S2 Tables). Each of the 51 added reactions was verified to be connected properly to the preex-

isting network by performing flux variability analysis [34]. Among the 39 added genes, 34

genes associated with 25 reactions were expressed in more than one condition among the five

culture/growth conditions of our transcriptome analysis of BL21(DE3) [24] (S3 Table).

Although the remaining five genes were not expressed in any of the five conditions, they were

added to the model because their product annotations were updated to be functional from the

previous genome reannotation [24]. We did not add genes which were annotated to have puta-

tive or hypothetical functions without any transcriptional evidence. For example, ECD_04073,

encoding the putative acetyl-CoA:acetoacetyl-CoA transferase, is absent in the K-12 genome

and is highly similar to the gene encoding propanoyl-CoA transferase of Megasphaera elsdenii
(6 × 10−141 e-value, 98% coverage, and 46% amino acid identity); however, it was not expressed

in any of the transcriptome data set.

From the reaction list of K-12 MG1655 model (iML1515) [25], 70 reactions specific to the

K-12 genome were excluded, such as those involved in D-galactose utilization and phenylace-

tic acid degradation. Sixty-four genes and their related reactions in iML1515 were removed, as

those genes were absent or annotated as pseudogenes in the BL21(DE3) genome (S4 Table).

The draft model was further revised based on the PM results (see below). The resulting meta-

bolic network of BL21(DE3), referred to as iHK1487, consisted of 1,487 genes, 1,164 unique

metabolites, and 2,701 reactions. The model can be downloaded in Excel (S5 Table) and SBML

format (S1 File), which are input to the COBRA softwares [31,35].

Table 1. Comparison of the metabolic network models of E. coli BL21(DE3).

Metabolic model iECD_1391 iHK1487

Genes 1355 1487

Reactions 2747 2701

Metabolic reactions 1766 1650

Transport reactions 650 705

Exchange reactions 331 347

Gene-reaction association 2747 2701

Gene-associated reactions 2209 2205

Not gene-associated reactions 502 460

Spontaneous reactions 36 37

Metabolites 1924 1877

Cytoplasmic 1105 1062

Periplasmic 478 469

Extracellular 341 346

Unique metabolites 1225 1164

https://doi.org/10.1371/journal.pone.0204375.t001
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Comparative analysis of BL21(DE3) and K-12 genomes

Comparison of BL21(DE3) and K-12 genomes identified the genomic regions of BL21(DE3)

that differ from those of K-12 MG1655 (Fig 1). The 51 metabolic reactions and 27 metabolites

detected only in the BL21(DE3) genome were associated with O7 antigen biosynthesis [36],

capsular polysaccharide biosynthesis [37,38], and 3- or 4-hydroxyphenylacetate (HPA), D-

arabinose, and N-acetylgalactosamine metabolism.

BL21(DE3) can synthesize the O7 antigen due to the presence and expression of the intact

gene cluster for O7 antigen biosynthesis (rfb genes) (Fig 1A) [24]. However, K-12 cannot syn-

thesize the O16 antigen because of disruption of wbbL by insertion sequence (IS) element inte-

gration [23,39]. The BL21(DE3) genome contains a group II capsular gene (kps) cluster

(ECD_02813 to ECD_02828) which was presumably acquired by horizontal gene transfer in

the K-12 pheV locus (Fig 1B) [38]. The metabolic genes of Haemophilus influenzae for capsular

polysaccharide biosynthesis [37] were homologous to the 11 genes in the kps cluster of BL21

(DE3) [24], and their metabolic reactions were added to the metabolic model. ECD_02649,

encoding the L-ribulokinase AraB-like protein, is located between fucA and fucI of BL21(DE3)

ral
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https://doi.org/10.1371/journal.pone.0204375.g001
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(Fig 1C), and its associated reaction for D-arabinose catabolism (RBK_D1) were retrieved

from the REL606 metabolic model [3]. BL21(DE3) harbors an intact aga operon for N-acetyl-

galactosamine metabolism (Fig 1D). Different gene clusters for the catabolism of aromatic

compounds were present in the two strains, namely, the hpa cluster for 3- and 4-hydroxy phe-

nyl acetic acid (HPA) catabolism in the BL21(DE3) genome (Fig 1E) and the paa cluster for

phenyl acetic acid (PAA) utilization in the K-12 genome (Fig 1F). Although the BL21(DE3)

genome has two large gene clusters for the DE3 prophage (Fig 1G) and additional type II secre-

tion system, metabolic genes were not present in these clusters.

Interestingly, a large gene cluster was missing near the DE3 insertion site in the BL21(DE3)

genome, which led to the absence of the gal operon (galETKM), molybdate ABC transporter

genes (modF and modABC), and pgl (encoding 6-phosphogluconolactonase) in the oxidative

pentose phosphate pathway of BL21(DE3) (Fig 1G). pgl is present both in B REL606 and K-12

genomes [3], but is absent in the BL21 genome [27]. This might imply that lack of pgl is not a B

lineage-specific characteristic. BL21(DE3) appears to have reduced capacity for uptake of

cobalamins such as vitamin B12 due to a nonsense mutation in btuB. Repression of BtuB syn-

thesis resulted in resistance of E. coli to colicins [40].

Identification of BL21(DE3)-specific metabolic regulation

To identify the BL21 specific regulation, the regulatory influences of transcription factors

(TFs) on metabolic gene(s) were retrieved from the previous publication [25]. We also per-

formed literature and database searches for additional regulatory influences. If a given TF is

frameshifted or deactivated in BL21(DE3), we turned off its influenced metabolic reaction(s).

Next, we checked whether the turned-off metabolic genes were not expressed using our pervi-

ous transcriptome profile data [24]. Some of the regulation were verified by PM data.

We deactivated 11 metabolic reactions (S1 Table) by setting the fluxes associated with BL21

(DE3)-specific regulation to zero. Two regulatory genes, IgoR (encoding the putative regulator

of L-galactonate metabolism) (Fig 1E) and dcuS (encoding C4-dicarboxylate-sensing histidine

kinase), are frameshifted in BL21(DE3), whereas they are intact in K-12. The IgoR deletion

mutant did not grow on L-galactonate [41] and our PM data showed that BL21(DE3) did not

grow on L-galactonate. Thus, we turned off one reaction catalyzed by L-galactonate oxidore-

ductase and two L-galactonate transport reactions. DcuS is a sensor kinase of the two-compo-

nent system DcuSR for the utilization of C4-dicarboxylates such as aspartate, fumarate, malate,

and succinate [42]. DucS is the positive regulator of the fumarate/succinate antiporter (DcuB)

and aerobic C4-dicarboxylate carrier (DctA) [42,43]. Our PM data also showed that among the

C4-dicarboxylates, BL21(DE3) showed growth defects in using D-tartaric acid and D-malic

acid as a carbon source (S6 Table). Hence, we deactivated eight transport reactions mediated

by DctA and DcuB.

Generation of biomass equation

The biomass equation of iML1515 for K-12 model [25] was modified in iHK1487. In the

iML1515 biomass equation, K-12 specific factors are GC content, composition of metal cofac-

tors (MoO4
-2, Cu+2, Mn+2, Zn+2, Ni+2, and Co+2) [44], and growth-associated maintenance

energy (GAM), while all the remaining compositions came from B/r [18,45,46]. B/r and BL21

shares the same ancestor of E. coli B [22].

We determined GAM and non-growth-associated maintenance energy (NGAM) which

represent energy costs for cell maintenance and cell growth, respectively [7]. Specific growth

rate versus glucose uptake rate, which were obtained from glucose-limited chemostat cultures

of E. coli B/r growing aerobically on minimal medium [47], was plotted to calculate NGAM of

Metabolic network model of Escherichia coli BL21(DE3)
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5.17 mmol ATP gDCW-1 h-1 from the y-intercept (S1 Fig). FBA was performed varying GAM

in the biomass equation to find GAM leading to the closest fit of the experimental plot (70.12

mmol ATP gDCW-1). These values are lower than those from K-12 iML1515 (6.86 of NGAM

and 75.55 of GAM), probably due to the nonmotility of B strains [21]. The influence of GAM

and NGAM on the predicted rates of cell growth, oxygen uptake, and acetate production was

investigated (S2 Fig). Under the simulation condition of aerobic growth with high glucose

uptake rate (10 mmol gDCW-1 h-1), we varied values of GAM (from 20 to 100 mmol ATP

gDCW-1) and NGAM (0 to10 mmol ATP gDCW-1 h-1). The sensitivity analysis showed that,

as GAM and NGAM increased, the growth rate decreased while rates of oxygen uptake and

acetate production increased. The impact was much greater in GAM than in NGAM, which is

consistent with the previous sensitivity analysis of GAM and NGAM under high glucose

uptake condition [48]. Notably, acetate production rate increased gradually when GAM was

greater than 52.3 mmol gDCW-1 h-1 when NGAM was fixed to 5.17 mmol ATP gDCW-1 h-1,

due to the oxygen limitation.

Since metal composition of K-12 was assumed in iHK1487 due to the lack of strain-specific

experimental data, we evaluated the influence of each of the metal components on the pre-

dicted rates of cell growth, oxygen uptake, and acetate production (S2B Fig). During the sensi-

tivity analysis with the glucose uptake rate of 10 mmol gDCW-1 h-1, only one metal

component was evaluated by varying its proportion in the biomass equation (±20%). All the

predicted rates remained almost unchanged depending on any of the metal component, dem-

onstrating negligible impact of the metal composition on the prediction power of the model.

The biomass equation having strain-specific parameters (GAM, NGAM, and GC content) is

given in S5 Table.

Phenome analysis

We used PMs to monitor various phenotypic reactions to exogenous compounds and environ-

mental changes [49]. Among the 190 different sources of carbon (PM1 and PM2), BL21(DE3)

grew on 91 sources (Fig 1 and S6 Table). The differences in carbon source utilization of BL21

(DE3), K-12 MG1655, and B REL606 are summarized in S3 Fig.

PM comparisons were made for BL21(DE3) versus K-12 MG1655 (Fig 2A) and BL21(DE3)

versus B REL606 (Fig 2B). Compared to K-12, BL21(DE3) grew on 16 carbon sources such as

galactitol, 3-HPA, 4-HPA, L-arginine, glycine, L-proline, L-glutamate, N-acetylgalactosamine,

and D-arabinose, whereas it did not grow on six carbon sources, namely, m-tartaric acid, D-

malic acid, L-galactonic acid-γ-lactone, D-galactose, α-methyl-D-galactoside, and β-methyl-

D-galactoside. BL21(DE3) and K-12 showed no difference in growth on 13 out of the 17

amino acids used as carbon source (S6 Table). BL21(DE3) grew slowly on α-ketoglutarate,

whereas it grew rapidly on L-glutamate, L-proline, L-arginine, and glycine. Remarkably, BL21

(DE3) outgrew the B strain of REL606 on 20 carbon sources, including galactitol, L-arabinose,

L-fucose, D-xylose, 3-HPA, L-arginine, and glycine, whereas it did not grow on D-galactose,

N-acetyl-L-glutamic acid, α-methyl-D-galactoside, and β-methyl-D-galactoside.

We could not assess the usability of nutrients in the PM plates designed for testing the utili-

zation of different sources of nitrogen (PM3), phosphorus, and sulfur (PM4), and auxotrophic

supplements (PM5 to PM8). According to the recommendation from the manufacturer (Bio-

log Inc.), the PM tests for PM3 to PM8 were performed using sodium pyruvate in triplicate

and sodium succinate in duplicate as the main carbon source. When sodium pyruvate was

used as the carbon source, BL21(DE3) grew in all the cells of PM3 to PM8, including those of

the negative control (S4 Fig). However, for sodium succinate, BL21(DE3) manifested growth

defects in most of the PM cells. This is unexpected as BL21(DE3) grew on succinate and
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L-Glutamic acidL-Glutamic acid
D-Malic acidD-Malic acid

L-Galactonic acidL-Galactonic acid
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α-Methyl-D-Galactosideα-Methyl-D-Galactoside

Tween 40Tween 40
mm-Tartaric acid-Tartaric acid

4-Hydroxyphenylacetic acid4-Hydroxyphenylacetic acid

3-Hydroxyphenylacetic acid3-Hydroxyphenylacetic acid

N-Acetyl-D-GalactosamineN-Acetyl-D-Galactosamine
D-ArabinoseD-Arabinose

β-Methyl-D-Galactosideβ-Methyl-D-Galactoside

L-prolineL-proline

α-ketoglutarateα-ketoglutarate

L-ArabinoseL-Arabinose
L-FucoseL-Fucose
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α-Keto-Butyric acidα-Keto-Butyric acid

D-XyloseD-Xylose
DulcitolDulcitol

33-Hydroxyphenylacetic acid-Hydroxyphenylacetic acid
Tween 40Tween 40

Bromo-succinic acidBromo-succinic acid
α-Hydroxybutyric acidα-Hydroxybutyric acid

α-Methyl-D-Galactosideα-Methyl-D-Galactoside
Mono-methyl succinateMono-methyl succinate

N-Acetyl-L-Glutamic acidN-Acetyl-L-Glutamic acid

β-Methyl-D-Galactosideβ-Methyl-D-Galactoside
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pyruvate as the carbon source in PM1 and the reason is not immediately obvious. In BL21

(DE3), dcuS encoding C4-dicarboxylate-sensing histidine kinase is frameshifted. BL21(DE3)

grew on succinate contained in PM1 slightly slower than K-12. It was reported that E. coli B

REL606 having frameshifted dcuS did not grow on succinate of PM1 and showed growth

defects in many wells of the PM3 to PM8 plates with succinate as a carbon source [3]. The

dcuSRmutant of K-12 also showed many growth defects with the PM3 to PM8 plates when

using succinate as a carbon source [50]. DcuS is the positive regulator of C4-dicarboxylate

transporter gene (dcuB) whose expression depends on the initial concentration of C4-dicar-

boxylates in the medium [42,51]. Probably, in dcuSmutant, the concentration of succinate

added to PM3 to PM8 plates became too high for dcuB expression. It is more difficult to

explain growth in all the PM3 to PM8 wells. Probably, there might be crosstalk regulation

between different areas of metabolism [52]. It was reported that the usability of nitrogen

sources in PM tests varied with the carbon source used [53]. However, in the case of pyruvate

as a carbon source, BL21(DE3) grew even in the negative control wells. Therefore, the reason

is hard to be explained without knowing the exact concentration and composition of the cul-

ture media dried onto the bottom of each PM well which is confidential and proprietary by the

PM manufacturer.

BL21(DE3) was more susceptible than K-12 to various stressful conditions caused by

changes in osmolality (PM9) and pH (PM10), and inhibitory compounds such as antibiotics,

antimetabolites, and other inhibitors (PM11 to PM20) (S4 Fig). BL21(DE3) did not grow in

40 PM cells containing enoxacin, nalidixic acid, 2,2’ dipyridyl, furaltadone, sodium metavana-

date, carbenicillin, sodium orthovanadate, protamine sulfate, sulfisoxazole, and ciprofloxacin,

whereas it grew in 224 cells containing amikacin, colistin, capreomycin, nafcillin, erythromy-

cin, neomycin, gentamicin, kanamycin, paromomycin, tobramycin, fluoroorotic acid, specti-

nomysin, ampicillin, 5-fluorouracil, geneticin, cesium chloride, glycine, thallium [I] acetate,

moxalactam, sodium arsenate, piperacillin, EGTA, procaine, cefmetazole, D-cycloserine, nor-

dihydroguaiaretic acid, oleandomycin, zinc chloride, phosphomycin, streptomycin, 5-azacyti-

dine, rifamycin, chromium [III] chloride, ferric chloride, L-glutamic acid-γ-hydroxamate,

thiosalicylate, hygromycin, ethionamide, 4-aminopyridine, 3-amino-1,2,4-triazole, tannic

acid, chlorambucil, phenylarsine oxide, trifluorothymidine, sodium m-arsenite, triclosan, myr-

icetin, 3,5-fluoro-5’-deoxyuridine, umbelliferone, disulphiram, phenyl-methyl-sulfonyl fluo-

ride, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), hydroxylamine,

dihydrostreptomycin, apramycin, and crystal violet.

Unlike K-12, BL21(DE3) did not grow in 132 cells containing high concentration of amoxi-

cillin, minocydine, enoxacin, nalidixic acid, chloramphenicol, penicillin G, oxacillin, ben-

zethonium chloride, oxolinic acid, cobalt [II] chloride, trifluoperazine, acriflavine, furaltadone,

nitrofurantoin, carbenicillin, domiphen bromide, nitrofurazone, menadione, puromycin,

protamine sulfate, diamide, cinoxacin, caffeine, cefoperazone, tinidazole, plumbagin, phe-

nethicillin, captan, orphenadrine, thioridazine, ciprofloxacin, amitriptyline, and ornidazole.

BL21(DE3) grew in 28 cells containing colistin, gentamicin, kanamycin, polymyxin B, sodium

arsenate, sodium m-arsenate, and erythromycin (S4 Fig), whereas K-12 did not. E. coli B

strains have enhanced membrane permeability and have been widely used for mutagenic

assays and toxicological studies [54]. Compared to E. coli K-12, sensitivity to a wider range of

antibiotics was also observed for E. coli B REL606 [3]. This is probably due to differences in the

lipopolysaccharide core composition and expression of outer membrane proteins, resulting in

Fig 2. Comparison of carbon source utilization of E. coli BL21(DE3) and K-12 MG1655. Growth curves in all the cells of the PM1 and PM2 are shown for E. coli
BL21(DE3) (red) and E. coli K-12 MG1655 (green) (A), and for E. coli BL21(DE3) (red) and E. coli B REL606 (blue) (B).

https://doi.org/10.1371/journal.pone.0204375.g002
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alterations in screening barriers that control import and export of antibiotics. Similar to other

B strains, BL21(DE3) is deficient in the Lon protease, which is associated with bacterial evolu-

tion to antibiotic resistance [55] and has additional type II secretion system [24]. As current

understanding of the mechanism underlying the antibiotic sensitivity of BL21(DE3) is far

from complete, experimental data can be used to refine and extend the model.

Validation and revision of the metabolic model

The reconstructed model was validated by comparing the simulated growth from FBA using the

model with experimental growth from PM tests (S7 Table). The simulated and experimental

growths were not matched for 34 carbon sources. Among them, four false negatives (growth

from PM tests and non-growth from simulation) were reflected to modify the model (Table 2).

We added three transport reactions and one exchange reaction of fucose and glyoxylate, 12 met-

abolic reactions, two transport reactions, and two exchange reactions for 3-HPA metabolism,

and one metabolic reaction for melibiose utilization. Two reactions formyo-inositol metabolism

encoded by putative genes (yhiJ and yidK) were removed as BL21(DE3) did not grow onmyo-

inositol in the PM tests. In conclusion, the simulated growth qualitatively agreed with PM results

for 160 out of 190 carbon sources, and the predictive accuracy of our model can be considered to

be 84.2%, representing 4.7% increase over 79.5% accuracy of the iECD_1391.
13C metabolic flux analysis (13C-MFA) is the robust approach to experimentally quantify

the metabolic fluxes in central carbon metabolism [56]. We used published 13C-MFA data to

evaluate prediction accuracy of a metabolic network model. As shown in S5A Fig, the pre-

dicted fluxes using iHK1487 were well fitted to 13C fluxes of BL21 [57] (r2 = 0.95). Since BL21

(DE3) and K-12 have the same metabolic gene repertoire in central carbon metabolism with

the exception of absence of pgl in BL21(DE3), K-12 without PGL reaction can have flux distri-

bution in central metabolism similar to BL21(DE3). Remarkably, the predicted fluxes using

Table 2. Different phenotypes of E. coli BL21(DE3) and K-12 MG1655, and modifications of the corresponding reactions.

Carbon sources PMa

BL21(DE3)/

K-12

Predictionb BL21

(DE3)/K-12

Associated reactionsc Modification

D-Galactose -/+ -/+ UDPG4E, GALM2pp, and UGLT Deletion

β-Phenylethylamine -/- -/+ PACCOAE, DHACOAH, OXDHCOAT, REPHACCOAI, HADPCOADH3,

3OXCOAT, PACCOAL, OXCOAHDH, PACOAT, HPACOAT, and 2HPTCOAT

Deletion

4-Hydroxyphenylacetic

acid

+/- +/- 4H3M, 34DH23OR, 5C2HMSO, 5C2HMDI, 5O3E125TC, HPAG, 2OH3E17DH,

HPAH, HPAI, HPAP, HPAtex, and EX_4hphac_e

Addition

3-Hydroxyphenylacetic

acid

+/- +/- 3H3M, 3HPAP, 3HPAtex, and EX_3hphac_e Addition

N-Acetylgalactosamine +/- +/- ACGALptspp, and ACGAL6PI Addition

D-Arabinose +/- +/- RBK_D1, DARBabcpp, DARBt2rpp, DARBt3ipp, DARBtex, and EX_arab-D_e Addition

Glyoxylic acid +/+ +/- GLXtmp, GLXt2_3pp, and EX_glx_e Addition

L-Fucose +/+ +/+ FUCtpp Addition

D-Malic acid -/+ -/+ MALDt2_2pp Deactivated

L-Galactonic acid-γ-

lactone

-/+ -/+ GALCTLO, GALCTNLtex, and EX_galctn__L_e Deactivated

The complete list of experimental and simulated cell growth on carbon sources is available in S7 Table.
aCell growth from PM tests are categorized into non-growth (‘-‘) or growth (‘+’) based on statistical analysis of five growth replicates of each strain (see S7 Table for

details).
bSimulated cell growth on each carbon source by flux balance analysis: non-growth (‘-’), growth (‘+’).
cDetailed information for the reactions is listed in S1 Table.

https://doi.org/10.1371/journal.pone.0204375.t002
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iHK1487 also agreed well with 13C fluxes of the deletion mutant of pgl in K-12 [58] (r2 = 0.95)

(S5B Fig), implying that absence of pgl is an important intrinsic property of BL21(DE3) in the

central carbon metabolism. The excellent agreement between in vivomeasurements and in sil-
ico predictions indicate iHK1487 yielded fairly accurate flux predictions.

Analysis of co-factor balance in energy metabolism

To expand insights on energy metabolism, we calculated production and consumption rates of

major co-factors of the redox carriers (NADH and NADPH) and the energy carrier (ATP). As

the major feature of BL21 in the central metabolism is the absence of pgl involved in the oxida-

tive PPP, the simulation results from iHK1487 (representing wild-type BL21(DE3)) were com-

pared with those from iHK1487 added with the PGL reaction (iHK1487 + PGL) (representing

BL21(DE3) having the active PGL reaction) (Fig 3). For FBA, the maximum uptake rates of

glucose and oxygen were set to 10 mmol gDCW-1 h-1 and 18.5 mmol gDCW-1 h-1, respectively.

Under the simulation condition, the optimal growth rate was similar in both cases (0.82 h-1 for

iHK1487 and 0.831 h-1 for iHK1487 + PGL). For the aerobic growth on glucose, total produc-

tion rates of NADPH and ATP were similar in both cases. However, total production rate of

NADH were 12% higher in iHK1487 (40.5 mmol gDCW-1 h-1) than in iHK1487 + PGL (36.2

mmol gDCW-1 h-1), due to the higher flux through glycolysis and TCA cycle in iHK1487. And

then, the increased NADH in iHK1487 was converted to NADPH by transhydrogenase to

compensate the loss of NADPH production by the block of the oxidative PPP. Total ATP pro-

duction rates were very similar in iHK1487 (78.3 mmol gDCW-1 h-1) and iHK1487 + PGL

(79.4 mmol gDCW-1 h-1), and the majority of ATP was produced from oxidative phosphoryla-

tion (> 71%) via oxidation of NADH. Taken together, these results demonstrate that absence

of PGL reaction in BL21(DE3) considerably affects the way of NADH/NADPH generation.
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Fig 3. Quantitative analysis of co-factor balances (NADH, NADPH, and ATP) in FBA using iHK1487. For each of the co-factors, the production and consumption

rates predicted using iHK1487 are compared with those using iHK1487 added with the PGL reaction (iHK1487 + PGL). The maximum uptake rates of glucose and

oxygen were set to 10 mmol gDCW-1 h-1 and 18.5 mmol gDCW-1 h-1, respectively. Cellular processes associated with production and consumption of co-factors are

color-coded. “Others” denotes sum of the cellular processes with minor contribution.

https://doi.org/10.1371/journal.pone.0204375.g003
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Gene essentiality analysis

FBA was performed to predict the reactions essential for cell growth of BL21(DE3) and K-12

strains. In BL21(DE3) and K-12, 195 genes were predicted to be essential. In addition, BL21

(DE3) harbored four more essential genes (argI, cysU, cysW, and cysA) which were not pre-

dicted to be essential in K-12. Ornithine carbamoyltransferase is involved in the L-arginine

biosynthetic pathway, which is encoded by two genes in K-12 (argF, and argI) and by one gene

in BL21(DE) (argI) [24,59]. In the K-12 metabolic model (iML1515) [25], sulfate is annotated

to be transported by two operons of cysPUWA, which encode an ATP-dependent sulfate/thio-

sulfate uptake system, and by modABC, which encodes a molybdate ABC transporter. The

modABC operon is missing in BL21(DE3) [24], and hence cysUWA becomes essential for BL21

(DE3). All the 199 genes associated with 382 reactions predicted to be essential for BL21(DE3)

were expressed in more than one condition among the five culture/growth conditions of our

transcriptome analysis [24] (S8 Table).

Among 69 metabolic genes involved in central metabolic pathways, nine were reported to

be essential for K-12 growing aerobically on glucose [25]. Of the nine essential genes, two

genes involved in TCA cycle (gltA encoding citrate synthase and icd encoding isocitrate dehy-

drogenase) were predicted to be essential from FBA using iML1515 of K-12 [25], which was

the same when using iHK1487 (S8 Table). The consistent results might imply that lack of PGL

reaction is not critical to overall energy metabolism and can be easily reconciled by rerouting

fluxes in the metabolic network. The remaining seven genes (lpd, gapA, eno, fbaA, pgk, pfkA,

and tpiA) represent false positives (i.e. predicted growth while experimental non-growth). The

false growth prediction can be used to refine the model when more biochemical information is

available [4].

Use of transcriptome data for metabolic simulation

Integrating transcriptome data into constraint-based models of metabolic network can

improve flux prediction [60–62]. In this study, we deactivated some reactions by constraining

their flux to zero in FBA simulation if their associated genes were not expressed from the

strand-specific transcriptome profiles of BL21(DE3) for the five different culture conditions

(exponential and stationary phases, and complex and defined media) [24]. In the transcrip-

tome study, total RNA was directly labeled and hybridized with oligonucleotide probes on the

single color genome-wide tiling array, and thus, the probe intensities were proportional to the

gene expression intensities.

When all the 238 fluxes corresponding to the 336 genes that were not expressed at the expo-

nential phase in the defined medium were set to zero, the growth objective value was almost iden-

tical to that when such restriction was not imposed on the fluxes. Regarding flux distribution,

most of the flux values did not change (< 5%), 44 fluxes disappeared or decreased, and 57

appeared de novo or were increased (S9 Table). Notably, 34 fluxes involved in the β-oxidation

pathway for the fatty acid degradation disappeared or decreased, and instead, 43 fluxes related to

de novo biosynthetic pathways of fatty acid newly appeared or increased (Fig 4A). Another exam-

ple is that carbamoyl phosphate was synthesized from L-glutamine, not from ammonium (Fig

4B). Previous E. coli proteome analysis showed that enzymes of the β-oxidation cycle (FadA, and

FadB) were not synthesized in flask cultures using defined medium without fatty acid [63], which

agrees with the flux distribution from the restricted FBA. The modification that contributed to the

improvement observed in fatty acid biosynthesis was the deactivation of the acyl-CoA dehydroge-

nase (ACOAD1fr) encoded by the putative acyl-CoA dehydrogenase (ydiO) in the β-oxidation

cycle. This case study demonstrates that the prediction power of the metabolic model can be

improved by incorporating transcriptome data into metabolic simulation.
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Discussion

The major genetic difference in the central metabolism between BL21 and K-12 strains is the

lack of pgl, which encodes 6-phosphogluconolactonase (Pgl) that is involved in the oxidative

branch of the pentose phosphate pathway (PPP) [27,64]. Absence of PGL in BL21(DE3) can

limit supply of NADPH for reducing power requirements, as well as those of ribose-5-phos-

phate and erythrose-4-phosphate for nucleotide and amino acid biosynthesis [64–66]. Simula-

tion of the BL21(DE3) metabolic model with glucose as the sole carbon source showed that the

carbon flux did not flow through the oxidative branch of the PPP, but channeled into the gly-

colytic pathway (Fig 5). This enhanced the flux through the glycolytic pathway and TCA cycle.

Ribulose-5-phosphate in the PPP was produced via the transaldolase reaction catalyzed by

TalA and TalB, rerouting the PPP, which agreed with the previous simulation of the BL21 met-

abolic model [27]. Our simulation showed that the rerouted flux through the transaldolase

reaction could generate ribose-5-phosphate and erythrose-4-phosphate, leading to undimin-

ished flux through the nucleotide biosynthetic pathway.

E. coli BL21(DE3) is widely used for the mass-production of recombinant proteins [21].

Comparative multi-omics analysis of E. coli B and K-12 strains showed that most of the genes
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involved in amino acid biosynthetic pathways were expressed more in B strains [3]. In addi-

tion, phenome data and simulation results demonstrated that BL21(DE3) and K-12 differed in

the pattern of amino acid utilization. Among the 17 kinds of amino acids tested in the PM

plates, BL21(DE3) and K-12 used 10 and six amino acids as carbon sources, respectively. The
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Fig 5. Distribution of the predicted fluxes in central metabolic pathways of E. coli BL21(DE3) and K-12 MG1655. Each arrow

denotes the direction of the reaction in proportion to the associated flux value of BL21(DE3) (orange) and K-12 MG1655 (dark

green). Individual thumbnail graphs represent growth of the BL21(DE3) (red) and K-12 MG1655 (green) cells on particular amino

acid as the carbon source, demonstrated by phenotype microarray tests. The x-axes denote culture time (up to 48 hours) and the y-

axes represent cell growth in arbitrary unit. The header background of each thumbnail graph is yellow if the corresponding amino

acid can be used as a carbon source in iHK1487, and is grey otherwise. Abbreviations are shown in S5 Table.

https://doi.org/10.1371/journal.pone.0204375.g005
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extracellular amino acids can be metabolized to generate three precursor intermediates in the

central catabolic pathways: from alanine, threonine, glycine, and serine to pyruvate; from

asparagine and aspartate to fumarate; from glutamine, glutamate, proline, and arginine to α-

ketoglutarate (Fig 5). However, K-12 did not grow on glutamate, proline, and arginine. The

differences in amino acid utilization patterns between BL21(DE3) and K-12 do not appear to

be the result of the different amino acid sequences of the amino acid transporters, as the pro-

tein sequences of the transporters of glutamate, proline, and arginine are nearly identical in

BL21(DE3) and K-12. Glutamate and glutamine are the key intermediates in cellular nitrogen

metabolism [67]; however, previous reports showed that wild-type E. coli could not grow on

glutamate [68] and grew poorly on glutamine as the carbon source [69]. The efficient utiliza-

tion of glutamate and glutamine as carbon sources demonstrates the enhanced capacity of

BL21(DE3) for nitrogen metabolism than other E. coli strains.

Interestingly, compared to K-12, BL21(DE3) did not grow well on α-ketoglutarate in PM

tests (Fig 2A and S6 Fig). The protein sequences of the α-ketoglutarate/H+ symporter (KgtP)

of BL21(DE3) and K-12 MG1655 are identical. α-Ketoglutarate lies at the intersection between

the carbon and nitrogen metabolic pathways and is a master regulator metabolite for nitrogen-

assimilatory reactions [70]. In addition, unlike K-12, BL21(DE3) does not contain gltF adjacent

to the gltBD operon encoding glutamate synthase, which converts α-ketoglutarate to glutamate

[24]. GltF was suggested to play a regulatory role in nitrogen catabolism and ammonium

transport [71]. Simulation of amino acid utilization predicted that both BL21(DE3) and K-12

can grow on glutamate, proline, and arginine, which only were in agreement with the PM

results of BL21(DE3). These observations imply that the regulation between carbon and nitro-

gen metabolism in BL21(DE3) differs from that of K-12 MG1655.

The automatically reconstructed metabolic model should be considered as a draft model,

which requires extensive expert review. iECD_1391, the metabolic model of BL21, which is the

predecessor of BL21(DE3), was first reconstructed in an automatic manner [26]. The BL21

model was updated [27]; however, it was similar to the previous version except for removal of

reactions falsely associated with pseudogenes or ambiguous genes. We observed that the cur-

rent iECD_1391 model still contains many metabolic reactions associated with pseudogenes

or genes with incomplete annotation (S10 Table). However, our model, iHK1487, incorpo-

rated the recent genome annotation of BL21(DE3) [24] and the recent version of the metabolic

model of the closely related strain, K-12 MG1655. The iHK1487 was highly manually curated

and was revised using phenome data. This effort increased the gene coverage and accuracy of

the metabolic model (Table 1).

Gene expression data can provide experimental evidences for the addition of model entities.

We also used the transcriptome data to improve the flux prediction in a condition-specific

manner (Fig 4). Set of genes that were not expressed in the defined medium were identified

from the transcriptome profiles [24], and their corresponding fluxes were constrained to zero.

The additional constraints can reduce the size of the solution space of the flux distribution,

which is helpful in predicting the precise flux state in a cell.

We showed that addition of BL21(DE3)-specific regulation into the metabolic model made

the metabolic model congruent with the carbon source utilization data obtained from PM

tests. As the regulatory rules of the current model were limited to two regulatory genes (IgoR
and dcuS) affecting 11 transport reactions, the iHK1487 can be further improved by integrat-

ing more regulatory rules. For example, FBA using iHK1487 predicted no flux through the

glyoxylate shunt pathway regardless of glucose concentration (Fig 5 and S5 Fig). This is con-

trasting to the previous experimental observation that the glyoxylate shunt in BL21 was highly

active regardless of glucose concentration, resulting in low acetate excretion even under high

glucose concentration, and fast growth thereby [72]. Compared to K-12, BL21 has no unique
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metabolism to use glyoxylate shunt for the glucose metabolism. However, BL21 has been sug-

gested to have different regulations affecting the glyoxylate shunt activity, such as constitutive

expression of cra (encoding catabolic repressor/activator) [73], reduced expression of arcA
(global regulator), iclR (repressor of aceBAK operon) [74], and induction of small RNA

degrading mRNA ptsG under high glucose concentration [75], although the exact regulatory

mechanism is still not clear. It should be mentioned that the discrepancy between FBA and

real fluxome can be due to sub-optimal cell metabolism (i.e., few metabolic pathways operate

at full efficiency), especially when complex regulatory mechanisms are involved. Therefore,

incorporation of the exact regulatory rules into the iHK1487 will increase the prediction accu-

racy for the glucose metabolism.

BL21(DE3) is one of the primary choices for overproduction of recombinant proteins, bio-

fuels, and biorefineries [21]. The genome-wide metabolic network model is useful for under-

standing the genotype-phenotype relationships and designing and optimizing microbial hosts

through modulation of the metabolic flux [1,2,4,76]. Until now, development of bioprocesses

using BL21(DE3) based on modeling and simulation has been limited because of the lack of

comprehensive metabolic network models. The iHK1487 will be pivotal for designing host

strains with customized genomes and developing rational fermentation strategies. As our

knowledge on BL21(DE3) is far from complete and the omics-based systems approach of the

strain is in an early stage [3,21,24], the iHK1487 will serve as a framework for integration of

various omics data and metabolic engineering of BL21(DE3).
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