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ABSTRACT
Bispecific antibodies have recently attracted intense interest. CrossMab technology was described in 2011 
as novel approach enabling correct antibody light-chain association with their respective heavy chain in 
bispecific antibodies, together with methods enabling correct heavy-chain association using existing pairs 
of antibodies. Since the original description, CrossMab technology has evolved in the past decade into 
one of the most mature, versatile, and broadly applied technologies in the field, and nearly 20 bispecific 
antibodies based on CrossMab technology developed by Roche and others have entered clinical trials. The 
most advanced of these are the Ang-2/VEGF bispecific antibody faricimab, currently undergoing regula-
tory review, and the CD20/CD3 T cell bispecific antibody glofitamab, currently in pivotal Phase 3 trials. In 
this review, we introduce the principles of CrossMab technology, including its application for the genera-
tion of bi-/multispecific antibodies with different geometries and mechanisms of action, and provide an 
overview of CrossMab-based therapeutics in clinical trials.
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Introduction into bispecific antibodies

Antibodies, or so-called immunoglobulins, are Y-shaped pro-
teins of ca. 150 kDa generated by B and plasma cells of the 
immune system as response to infection. They consist of two 
identical heavy and two identical light chains forming: 1) two 
variable antigen-binding sites within the antigen-binding frag-
ments (Fabs) that serve for the specific recognition of (foreign) 
antigens; and 2) a constant Fc domain that serves for the 
recruitment of the human immune system.

Recombinant antibodies have been used therapeutically for 
over 30 years, and today more than 120 therapeutic antibodies 
are approved or under regulatory review by health authorities 
for use in humans (source: https://www.antibodysociety.org/ 
resources/approved-antibodies/). Since the advent of recombi-
nant antibody technologies, there has been substantial interest 
in the generation of engineered and bispecific antibodies that 
are characterized by having two independent specificities in the 
Fabs, resulting in novel mechanisms of action that typically 
cannot be achieved with conventional monospecific antibodies. 
More than 100 bispecific antibodies are currently being tested 
in clinical trials.1–6

While uncountable approaches for the generation of bispecific 
antibodies have been described, 1–6 some of the most broadly 
applied technologies for the generation of bispecific antibodies 
include ART-Ig,7–10 BEAT,11 BiTE,12,13 common light 
chains,9,10,14–16 DAF,17 DART,18 DuoBody,19 DutaFab,20 DVD- 
Ig,21 Fab arm exchange,22 Fcab,23–25 FORCE,26 half antibody 
assembly,27 Hetero-Ig,28,29 IgG-scFv,3031,131κλ-bodies,32 

Multiclonics,14 orthogonal Fab interface,33 Tandab,34 XmAb,35 

VELOCI-Bi,15 and WuxiBODY.36

As of August 2021, three bispecific antibodies have 
been approved, the tandem single-chain variable fragment 
(Fv)-based CD19/CD3 Bispecific T-cell Engager (BiTE) 
blinatumomab developed by Amgen for the treatment of 
acute lymphocytic leukemia (ALL),37 the heterodimeric 
ART-Ig-based coagulation factor IX/X bispecific IgG anti-
body emicizumab developed by Chugai and Roche for the 
treatment of hemophilia A,7,8,10 and the heterodimeric 
DuoBody-based EGFR/c-Met bispecific IgG antibody ami-
vantamab developed by Janssen for treatment of non-small 
cell lung cancer harboring EGFR exon 20 insertion 
mutations.38–40

CrossMab technology for the generation of bispecific 
antibodies

We have developed an alternative technology, known as 
CrossMab technology, which together with methods enabling 
correct heavy-chain association such as the so-called knobs- 
into-holes technology (KiH),16 that enables the correct asso-
ciation of the different antibody light chains with their 
respective counterparts. This is achieved in different antibody 
formats and geometries by the exchange or crossover of 
antibody domains.41–43 Here, we give a brief overview of 
the basic principles of CrossMab technology and its applica-
tion for the generation of various CrossMabs with different 
molecular formats and mechanisms of action.42,44,45 In fact, 
back in 2011, this approach was the first technology 
described allowing the conversion of two pre-existing anti-
bodies into heterodimeric bispecific antibodies of the bivalent 
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IgG format without the need to rely on so-called common 
light-chain antibodies that have identical light chains in each 
Fab.42

Since in bispecific antibodies the two heavy chains as well as 
the two light chains are different and can randomly associate, 
expression of these four chains leads to the formation of ten 
different antibody variants.46 Correct heavy-chain association 
resulting in a heterodimeric Fc can be enforced using KiH 
technology by introducing a bulky tryptophan (Trp) residue 
in one Fc fragment and forming a corresponding cavity on the 
other Fc fragment that can accommodate the Trp 
residue.16,47,48 More recently, multiple alternative approaches 
to enable correct heavy-chain association have been described, 
such as relying on charge interactions.7–11,14,29,49

Although KiH technology was developed in the late 1990s,16 

enabling correct light-chain association remained a major pro-
blem, and the only approach to achieve this at the time relied on 
the use of common light chains for both specificities.9,10,14–16 

However, the use of a common light chain requires the de novo 
identification of the corresponding antibody pairs, which can be 
challenging and/or time-consuming depending on the desired 
target, and restricts the availability and diversity of antibodies 
that can be used; thus, methods allowing the generation of bispe-
cific antibodies from pre-existing antibody pairs were highly 
desired.

Figure 1 shows the basic principle of the domain crossover 
applied in CrossMab technology to enable correct light-chain 
association in bispecific antibodies.41 By incorporating the 
original heavy chain VH-CH1 domains in the Fab of 
the second specificity of the bispecific antibody as the novel 
“light chain” and the original light chain VL-CL domains for 
the novel “heavy chain” by fusing them to the hinge region of 
the Fc fragment, correct light-chain association can be 
enforced in the CrossMabFab format. This format has recently 
also been described as Fabs-in-Tandem Ig (FIT-Ig).50,51

Alternatively, only the VH-VL or only the CH1-CL domains 
can be exchanged in the CrossMabVH-VL and CrossMabCH1−CL 

formats (Figure 1). In the case of the CH1-CL crossover, no 
theoretical side product due to domain crossover is expected 
and crystal structure analysis confirmed the structural integrity 
of the crossed Fab domain in the CrossMabCH11−CL format.52 

In the case of the Fab crossover in the CrossMabFab, two heavy 
and light chain-based monovalent side products can be 
observed. However, the correct preferential formation of the 
CrossMabFab can be fostered by relative over-expression of the 
respective light chains so that the respective undesired mono-
valent and binding inactive side products do not form in 
significant amounts. Similarly, in the case of VH-VL crossover, 
a Bence-Jones-like side product based on VL-VL together with 
the CH1-CL interaction can be observed. In order to avoid 
formation of this side product, natural charge pairs in the Fab 
were identified and the respective orthogonal charge interac-
tions were introduced into the non-exchanged antibody CH1- 
CL domains.53 As a consequence, the undesired Bence-Jones- 
like side product does not form due to repulsive charge inter-
actions, whereas the desired light-chain pairs correctly in the 
non-crossed Fab due to attractive charge interactions so that 

the corresponding CrossMabVH-VL± constructs can subse-
quently be obtained in high yields and purity without major 
side products.

Notably, these design principles can be applied not only 
to heterodimeric antibodies where one arm is directed to the 
first antigen, the other arm to the second antigen (1 + 1 
format), but the CrossMab technology also allows generation 
of so-called MonoMabs, monovalent antibodies with one Fc 
portion, and DuoMabs, bivalent antibodies with two Fc 
portions (Figure 1).54 Furthermore, it can be applied to 
enable the correct light-chain association in hetero-/homo-
dimeric bi-/multispecific antibody appended or tandem-Fab 
formats with, for example, 2 + 1, 2 + 2, 3 + 1, 4 + 1 or 4 + 2 
valencies and in antibody fusion proteins (Figure 2).44,45 In 
line with this, Wu and colleagues from Lilly applied Fab 
crossover to generate orthogonal Fab-based trispecific anti-
body formats termed “OrthoTsAbs”.55,56 Interestingly, 
domain crossover has also been described as a means to 
prevent mispairing of T-cell receptor (TCR) domains in 
adoptive T-cell therapy.57

Because the CrossMab approach showed advantages in 
terms of production, stability, developability, and versatility 
over analogous formats based on either single-chain Fv58–60 

or single-chain Fab61–67 building blocks, it was ultimately cho-

Figure 1. Principles of CrossMab technology: The four major CrossMab formats 
as applied to 1 + 1 heterodimeric bispecific antibodies are depicted as well as 
potential side products. On the bottom, the structure of mono- and duomabs is 
indicated. Heavy-chain domains are depicted in dark colors and respective light- 
chain domains are depicted with corresponding bright colors. Created with 
BioRender.com.
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sen as the antibody engineering approach of choice for the 
generation of various clinical development candidates. 
Obviously, in order to develop CrossMabs for therapeutic 
use, the establishment of various methods covering CMC 
(Chemistry, Manufacturing, and Controls) aspects, including 
upstream and downstream processing (USP, DSP) and the 
establishment of the respective bioassay and (bio-) analytical 
methods was and is essential.68–8081 When considering the 
formation of (undesired) side products, it has to be taken 
into account that, independent of CrossMab technology, 
other unrelated side products can occur, such as half- or ¾- 
antibodies missing two or one light chains, respectively, or 
hole-hole/knob-knob heavy-chain homodimers. In order to 
avoid the formation of these side products, achieving equal 
expression levels for the four heavy and light chains during 
transient expression and/or stable cell line generation by select-
ing suitable clones is advantageous. Based on the general 
advancement in the field of therapeutic antibody manufactur-
ing, as well as considering these specific learnings, bispecific 
antibodies of different formats based on CrossMab technology 
can generally be manufactured in a consistent and reproducible 
fashion with volumetric yields in the several g/L range and in 
quality comparable to conventional therapeutic antibodies 
using established USP and DSP platforms.

Consequently, since the original description of this concept, 
the technology has evolved in the past decade into one of the 
most mature, versatile, and broadly applied technologies in the 
field for the generation of various bispecific antibody formats. 
As of mid-2021, at least 19 bispecific antibodies and fusion 
proteins based on CrossMab technology developed by Roche 
and others have entered clinical trials, of which 16 continue to 
be evaluated in active clinical trials (Table 1 and Figure 2). In 
the following sections, an overview of therapeutic bispecific 
antibodies and fusion proteins based on CrossMab technology 
is provided, with a focus on those in clinical trials.

Applications in targeted cancer therapy: 
Angiogenesis, receptor tyrosine kinases, and death 
receptor signaling

For many years, anti-angiogenesis approaches blocking the 
vascular endothelial growth factor-A (VEGF-A) have been 
a major area of targeted cancer therapy.95–96 One of the first 
IgG-based antibodies and the first bispecific CrossMab to enter 
clinical trials, in 2012, was the heterodimeric 1 + 1 VEGF/Ang- 
2 CrossMabCH1−CL vanucizumab (RG7221) (Figure 2a) target-
ing the pro-angiogenic ligands VEGF-A and angiopoietin-2 
(Ang-2), which are involved in (tumor) angiogenesis.95,96,97 

Vanucizumab, as well as a mouse-specific surrogate bispecific, 
mediated potent anti-tumoral and anti-angiogenic efficacy in 
various preclinical models as monotherapy and in combination 
with chemotherapy,81,98–101 as well as combined with PD-1 
checkpoint inhibition102–104 and CD40 agonism.105,106 

Vanucizumab was generally well tolerated as a monotherapy 
in a Phase 1 clinical trial and demonstrated promising anti- 
tumor efficacy, IgG-like pharmacokinetics and low 
immunogenicity,107 as well as the anticipated pharmacody-
namic mechanism of action.108 Based on the negative outcome 
of the randomized McCAVE Phase 2 study, where it was 

compared to bevacizumab in combination with FOLFOX-6 
chemotherapy in patients with untreated metastatic colorectal 
carcinoma, clinical development was discontinued.109 

Similarly, in spite of promising preclinical data, Phase 1b 
studies of vanucizumab in combination with the PD-L1 anti-
body atezolizumab (NCT01688206) and the CD40 antibody 
selicrelumab (NCT02665416) were ultimately discontinued. 
Recently, preclinical data demonstrated that dual inhibition 
of VEGF and Ang-2 by the vanucizumab mouse-specific sur-
rogate bispecific in murine sepsis models improved the out-
comes, making it a potential therapeutic against vascular 
barrier breakdown.110 Similarly, Zhou and colleagues reported 
on an alternative anti-angiogenic approach for cancer therapy 
using a heterodimeric 1 + 1 VEGF/DLL4 CrossMabCH1−CL 

called HB-32 that mediated potent anti-angiogenic activity 
in vitro, as well as in vivo anti-tumor activity in breast cancer 
xenograft models.111

In addition to anti-angiogenesis, targeting receptor tyro-
sine kinases (RTKs) like EGFR, HER2 or c-Met has been 
a major area for cancer therapy during the past decades.112 

Accordingly, various preclinical-stage bispecific CrossMabs 
targeting RTKs have been developed during the past years, 
but none of these have advanced to clinical trials so far. 
Zhang and colleagues created a biparatopic HER2/HER2 
1 + 1 CrossMabFab based on trastuzumab and an avidity- 
improved variant L56TY derived from pertuzumab called 
Tras-Permut CrossMab. Tras-Permut CrossMab mediated 
improved activity against trastuzumab-resistant breast cancer 
and enhanced calreticulin exposure, which may contribute to 
the induction of tumor-specific T-cell responses.113 Lu and 
colleagues, in turn, generated a bispecific HER2/EGFR 1 + 1 
CrossMabCH1−CL based on the trastuzumab and cetuximab.72 

Interestingly, Hu and colleagues went a step further and 
generated so-called four-in-one antibodies that exhibited 
four different specificities against EGFR, HER2, HER3, and 
VEGF by generating a 1 + 1 CrossMAbCH1−CL using dual- 
acting Fabs (DAF) as building blocks in the FL518 bispecific 
or by combining CrossMab and DVD-Ig technology in the 
tetraspecific, tetravalent antibody CRTB6 to enable correct 
light-chain association in the DVD format.114 Not surpris-
ingly, these tetraspecific antibodies showed superior efficacy 
as compared to the respective bispecific antibodies.114 Finally, 
different bispecific EGFR/Notch CrossMabs were described to 
block EGFR signaling together with Notch signaling. The first 
of these antibodies, termed CT16, combined the EGFR anti-
body cetuximab and the Notch 2/3 antibody tarextumab 
using the prototypical heterodimeric 1 + 1 CrossMabCH11 

−CL format, which served as a radiosensitizer and prevented 
acquisition of resistance to EGFR inhibitors and radiation in 
cell line models of non–small cell lung cancer and patient- 
derived xenograft tumors.115 In a second publication from the 
same group, three heterodimeric bispecific 1 + 1 
CrossMabCH1−CL antibodies (PTG12, RTB3, MTJ16) were 
generated from panitumumab/tarextumab, RG7116/tarextu-
mab, and MEHD7945A/tarextumab and were shown to 
increase the response to PI3K inhibition with GDC-0941 by 
inhibiting stem cell–like subpopulation, reducing tumor- 
initiating cell frequency, and downregulating mesenchymal 
gene expression.116
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Another major field in targeted cancer therapy has been and 
continues to be apoptosis induction through death receptor 
(DR) signaling.117,118 As conventional DR5 antibodies have not 
been successful in clinical trials, approaches for tumor-targeted 
DR5 agonism have been pursued. Expression of the fibroblast 
activation protein (FAP) on tumor fibroblasts is found in the 
majority of solid tumors, making FAP an attractive antigen for 
tumor targeting.119,120 Based on this rationale, FAP-targeted 
bispecific antibodies and fusion proteins have been created 
using CrossMab technology that rely on FAP binding with 
one moiety to induce, with their second moiety, hyper- 
clustering of tumor necrosis factor (TNF) receptor superfamily 
members121 like DR5 for apoptosis induction,85 4–1BB/CD137 
for T cell activation,89 or CD40 for activation of antigen- 
presenting cells,94,122 as described below. The first of these 

conditional FAP-targeted TNFR agonistic antibodies entering 
Phase 1 clinical trials was the symmetric tetravalent 
C-terminally fused FAP/DR5 targeted 2 + 2 CrossMabCH1−CL 

RG7386 (Figure 2g). Preclinical data demonstrated that 
RG7386 effectively triggered FAP-dependent, avidity-driven 
DR5 hyper-clustering and subsequent tumor cell apoptosis,85 

but ultimately, clinical development of RG7383 was not further 
continued after the completed Phase 1 study (NCT02558140) 
due to portfolio reprioritization.

Finally, Tung and colleagues described novel HER2 or 
CD19 tumor-targeted heterodimeric 1 + 1 CrossMabCH1−CL 

antibodies that recognize with their second specificity 
PEGylated proteins, liposomes, and nanoparticles. Using 
these bispecific antibodies, cytotoxic cargo such as PEGylated 
liposomal doxorubicin can be delivered to tumor cells.123

Figure 2. Major CrossMab formats: A) 1 + 1 CrossMab:CH1−CL vanucizumab, faricimab, 10E8.4/iMab 1 + 1; B) 1 + 1 CrossMabVH-VL±: PD1-TIM3, PD1-LAG3; C) 
CrossMabCH1−CL+/–based FAP-4-1BBL, CD19-4-1BBL fusion proteins; D) 2 + 1 CrossMab:CH1−CL cibisatamab; E) 2 + 1 CrossMabVH-VL±: glofitamab, CC-93269, TYRP1-TCB, 
WT1-TCB, RG6123; F) 2 + 2 CrossMabCH1−CL-based FIT-Ig EMB-01, EMB-02, EMB-06; G) 2 + 2 CrossMab:CH1−CL FAP-DR5; H) 2 + 1 CrossMab VH-VL±: BS-GANT, FAP-CD40; I) 
1 + 1 CrossMabCH1−CL-based Nkp46-based NK cell engager (NKCE). Heavy-chain domains are depicted in dark colors and respective light-chain domains are depicted 
with corresponding bright colors. Fusion protein depicted in purple. Note: Differences in variable regions and/or isotype and Fc engineering are not depicted. Created 
with BioRender.com.
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Applications in cancer immunotherapy: Dual 
checkpoint inhibitors, T and innate cell engaging 
bispecifics and tumor-targeted co-stimulation
With the advent of cancer immunotherapy and checkpoint 
inhibitor antibodies during the past decade, the development 
of bispecific antibodies for immunotherapy has attracted sub-
stantial attention in industry and academia, whereas the inter-
est in anti-angiogenic and pro-apoptotic therapies has 
declined. In this context, bispecific monovalent dual check-
point inhibitory PD-1 antibodies co-targeting the checkpoint 
inhibitory receptors TIM-3 or LAG-3 have been designed 
based on a bispecific 1 + 1 CrossMabVH-VL± format 
(Figure 2b), allowing avidity-mediated selectivity gain and 
thus enhanced selectivity for PD-1+ and PD-1+ TIM-3+/LAG- 
3+ double-positive T cells. Both of these bispecific dual check-
point inhibitory antibodies, PD1-TIM3 (RG7769) 87 and PD1- 
LAG3 (RG6139),91 are currently in Phase 1 and 2 clinical trials 
(NCT03708328, NCT04140500, NCT04785820).124,125 

Preclinically, a heterodimeric 1 + 1 PD-1/RANKL 
CrossMabCH1−CL was shown to demonstrate potent tumor 
growth inhibition as a monotherapy and combined with 
CTLA-4 antibodies, particularly in models showing checkpoint 
inhibitor resistance to PD-1 antibodies.126

Many of bispecific antibodies currently being developed are 
bispecific T-cell engagers.22,127–131 One of the first IgG-based, 
and Roche’s first, T-cell bispecific antibody (TCB) to enter 

clinical trials was the heterodimeric and trivalent CEA/CD3ε 
2 + 1 TCB cibisatamab (RG7802). It is a heterodimeric CEA/ 
CD3ε bispecific antibody in the 1 + 1 CrossMabCH1−CL format to 
which a single additional Fab targeting CEA is fused to the 
N-terminus of the knob-containing heavy chain 
(Figure 2d).84,132 FcγR and C1q binding are abolished by intro-
duction of P329G LALA mutations.133 This so-called 2 + 1 TCB 
format provides advantages over conventional heterodimeric 
1 + 1 TCB formats through the highly flexible head-to-tail fusion 
in the tandem Fab arm and by being bivalent for the tumor 
antigen, allowing a better differentiation between tumor and 
normal cells due to avidity-mediated affinity tuning.132 

Cibisatamab demonstrated tumor targeting and in vitro and 
in vivo anti-tumor efficacy dependent on CEA over-expression 
due to the bivalent binding mode in models of colorectal and 
gastric cancer,84,134–137 which was further enhanced when com-
bined with PD-L1 inhibition.138 Based on these data and using 
a MABEL approach due to the lack of cross-reactive toxicology 
species,139,140 clinical studies were initiated in relapsed/refrac-
tory CEA-positive colorectal cancer patients. Cibisatamab is 
currently in Phase 1b clinical trials in combination with the PD- 
L1 antibody atezolizumab (NCT03866239) and with FAP- 
4-1-BBL (NCT04826003) (see below). Pre-treatment with obi-
nutuzumab is being clinically explored to mitigate the potential 
development and impact of anti-drug antibodies that could be 
observed in patients treated with cibisatamab.

Table 1. CrossMabs in clinical trials (status July 2021), FP: Fusion protein, FIT-Ig: Fabs-in-tandem Ig, EIH: Entry into human date.

Name Target A/B Format Indication Stage Company EIH Clinical trial Reference

1 Vanucizumab 
(RG7221)

Ang-2/VEGF-A 1 + 1 CrossMabCH1−CL Oncology Terminated 
Ph 2

Roche 2012 NCT02141295, NCT01688206, 
NCT02665416

81

2 Faricimab 
(RG7716)

Ang-2/VEGF-A 1 + 1 CrossMabCH1−CL DME, 
wAMD

Ph 3 Roche 2013 NCT03823287, NCT03823300, 
NCT03622580, NCT03622593

82,83

3 Cibisatamab 
(RG7802)

CEA/CD3ε 2 + 1 CrossMabCH11−CL Oncology Ph 1b Roche 2014 NCT03866239, NCT04826003 84

4 FAP-DR5 
(RG7386)

FAP/DR5 2 + 2 CrossMabCH11−CL Oncology Terminated 
Ph 1

Roche 2015 NCT02558140 85

5 Glofitamab, 
RG6026)

CD20/CD3ε 2 + 1 CrossMabVH-VL± NHL Ph 2/3 Roche 2017 NCT04703686, NCT04914741 
NCT04077723, NCT04408638

86

6 PD1-TIM3 
(RG7769)

PD-1/TIM-3 1 + 1 CrossMabVH-VL± Oncology Ph 1/2 Roche 2018 NCT03708328, NCT04785820 87

7 RG6123 CEACAM5/CD3ε 2 + 1 CrossMabVH-VL± Oncology Terminated 
Ph 1

Roche 2018 NCT03539484 -

8 BCMA TCE 
(CC-93269)

BCMA/CD3ε 2 + 1 CrossMabVH-VL± Multiple 
Myeloma

Ph 1 BMS 2018 NCT03486067 88

9 FAP-4-1BBL 
(RG7827)

FAP/4-1BB 1 + 3 CrossMabCH1−CL± 4-1BBL FP Oncology Ph 1b Roche 2018 NCT03869190, NCT04826003 89

10 10E8.4/iMab, 
TMB-370

HIV-1 Env/CD4 1 + 1 CrossMabCH1−CL HIV-1 Ph 1 TaiMed 2019 NCT03875209 90

11 EMB-01 EGFR/c-Met 2 + 2 CrossMabFab /FIT-Ig Oncology Ph 1 EpimAb 2019 NCT03797391 50,151

12 BS-GANT 
(RG6102)

Abeta/TfR 2 + 1 CrossMabVH-VL± Alzheimer’s Ph 2 Roche 2019 NCT04639050

13 CD19-4-1BBL 
(RG6076)

CD19/4-1BB 1 + 3 CrossMabCH1−CL± 4-1BBL FP NHL Ph 1b Roche 2019 NCT04077723 89

14 PD1-LAG3 
(RG6139)

PD-1/LAG-3 1 + 1 CrossMabVH-VL± Oncology Ph 1/2 Roche 2019 NCT04140500, NCT04785820 91

15 TYRP1-TCB 
(RG6232)

TYRP1/CD3ε 2 + 1 CrossMabVH-VL± Melanoma Ph 1 Roche 2020 NCT04551352 92

16 WT1-TCB 
(RG6007)

WT1/CD3ε 2 + 1 CrossMabVH-VL± AML Ph 1 Roche 2020 NCT04580121 93

17 EMB-02 PD-1/LAG-3 2 + 2 CrossMabFab /FIT-Ig Oncology Ph 1 EpimAb 2020 NCT04618393 -
18 EMB-06 BCMA/CD3ε 2 + 2 CrossMabFab /FIT-Ig Multiple 

Myeloma
Ph 1 EpimAb 2021 NCT04735575 -

19 FAP-CD40 FAP/CD40 2 + 1 CrossMabVH-VL± Oncology Ph 1 Roche 2021 NCT04857138 94
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The most advanced 2 + 1 T cell bispecific antibody is 
glofitamab (RG6026), which, in contrast to cibisatamab, is 
based on a 2 + 1 CrossMabVH-VL format with charge interac-
tions using variable regions derived from obinutuzumab 
(Figure 2e). Glofitamab showed potent tumor cell killing and 
antitumor efficacy in preclinical in vitro, ex vivo and in vivo 
lymphoma models, as well as superiority over the respective 
conventional heterodimeric 1 + 1 TCB formats as a conse-
quence of its head-to-tail orientation and bivalent binding to 
CD20, allowing pre-treatment with obinutuzumab, in this case 
as a strategy to reduce the incidence of cytokine-release syn-
drome by glofitamab.86,141,142 Based on the clinical efficacy and 
safety in the Phase 1 clinical trial in relapsed/refractory non- 
Hodgkin lymphoma (NHL) patients and particularly the high 
rate of durable complete responses,143,144 glofitamab is cur-
rently being evaluated in multiple clinical trials in lymphoma 
patients, including trials in patients relapsed after CAR-T cell 
therapy (NCT04703686) and in Phase 3 clinical trials in 
relapsed/refractory diffuse large B cell lymphoma patients 
(NCT04077723, NCT04408638).145 No anti-drug antibodies 
recognizing glofitamab were detected in the Phase 1 clinical 
study.143

Additional analogous 2 + 1 T cell bispecific antibodies using 
this technology have entered early clinical Phase 1 trials, 
including the BCMA-TCE CC-93269 for the treatment of 
multiple myeloma (NCT03486067)88 and the TYRP1-TCB 
(RG6232) for the treatment of TYRP1-expressing melanoma 
(NCT04551352).92 Recently, the WT1-peptide-MHC-specific 
TCR-like WT1-TCB (RG6007) for the treatment of acute mye-
loid leukemia (AML) became the first TCR-like bispecific anti-
body to enter a clinical trial (NCT04580121).93 While 
Immunocore pioneered the field of targeting peptide-MHC 
complexes with recombinant TCR-based bispecific T-cell enga-
gers, the so-called ImmTACs,146 WT1-TCB is based on a TCR- 
like antibody fragment recognizing the RMF WT1 peptide- 
HLA-A*02 complex. WT1-TCB can mediate specific killing 
of AML cell lines and primary AML cells, and it has anti- 
tumor activity in humanized mice bearing SKM-1 tumors.93

Additional preclinical stage 2 + 1 TCBs based on this format 
have been described, including ones that target HER2147,148 or 
the p95 HER2 fragment.149 The p95 HER2 fragment is only 
found on a portion of ~ 30–40% of HER2+++ tumor cells, and 
as such can be considered a highly tumor-specific neoantigen. 
Thus, 2 + 1 TCBs targeting specifically p95 HER2 are of 
particular interest as they do not mediate T cell killing of 
normal cells that express HER2, such as cardiomyocytes or 
breast epithelial cells, as opposed to conventional HER2- 
TCBs.149 An alternative approach to overcome the on-target 
off-tumor killing of normal cells is tumor-specific activation of 
TCBs by protease expressed in the tumor. For this purpose, 
a protease-activated mesothelin-TCB using CrossMab technol-
ogy has been described that is blocked by an anti-CD3 anti- 
idiotypic mask that is cleaved in the tumor- 
microenvironment.150 Alternatively, to counteract and manage 
any undesired T cell activation, it was shown that the Src/lck 
inhibitor dasatinib is able to reversibly switch off cytokine 
release and T-cell cytotoxicity following stimulation with dif-
ferent 2 + 1 TCBs targeting CEA, CD19 and WT1.151 Finally, 
related to the TCB approach, 2 + 1 bispecific antibodies 

designed based on CrossMab technology have been developed 
specifically for the recruitment of synthetic agonistic receptor 
transduced T-cells (SAR-T) in adoptive T-cell therapy together 
with Kobold and colleagues.152–154

In order to further boost the potency of T-cell bispecific 
antibodies, the tumor (stroma)-targeted FAP-4-1BBL 
(RG7827), CD19-4-1BBL (RG6076) and CEA-4-1BBL fusion 
proteins have been developed for solid tumors and NHL. 
These molecules are used to provide the co-stimulatory TNF 
receptor superfamily-mediated signal 2 to T cells in combina-
tion with the T-cell bispecific antibodies cibisatamab or glo-
fitamab, which provide the signal 1.89,155,156 These 4–1BBL 
fusion proteins contain a split trimeric 4–1BB ligand fused to 
the CH1 and CL domains, and constant chain mispairing is 
abolished by CH1-CL domain crossover in conjunction with 
the respective charge pairs (Figure 2c).89 FAP-4-1BBL and 
CD19-4-1BBL have been designed to trigger 4–1BB/CD137 
hyper-clustering specifically in the tumor microenvironment, 
but not in circulation or in the liver, with the goal to over-
come typical 4–1BB antibody-mediated toxicities.89 Tumor- 
targeted 4–1BBL fusion proteins were shown to mediate 
improved T-cell activation, superior tumor control in combi-
nation with TCBs and checkpoint inhibitors, and strong 
T-cell infiltration in preclinical models.89,155,157 Clinical 
Phase 1b studies combining cibisatamab with FAP-4-1-BBL 
(NCT04826003) and glofitamab with CD19-4-1BBL 
(NCT04077723) are currently ongoing.

A similar rationale was applied to trigger the TNF receptor 
superfamily member CD40 on antigen-presenting cells (APCs) 
through a trivalent C-terminally fused FAP/CD40 2 + 1 bispecific 
antibody in a 2 + 1 CrossMabVH-VL± format with charges 
(Figure 2h). This design was chosen to make FAP-CD40 
(RG6189), a FAP-targeted CD40 agonistic bispecific antibody, 
with the goal of abrogating systemic toxicity and enabling admin-
istration of doses sufficiently high to result in highly tumor- and 
lymph node-specific activation of APCs with subsequent induc-
tion of antitumor immunity.94,122 Phase 1 clinical trials have been 
initiated to validate this approach in the clinic (NCT04857138).

Notably, the domain crossover/CrossMab technology has also 
been used by researchers outside of Roche for the development of 
bispecific antibodies for cancer immunotherapy. This includes the 
so-called Fabs-in-tandem Ig (FIT-Ig) approach developed by 
Gong and colleagues from EpimAb, which relies on Fab crossover 
to enable correct light-chain association for the generation of 
symmetric tetravalent N-terminally fused bispecific antibodies in 
the 2 + 2 CrossMabFab format (Figure 2f).50,51 Three different 
bispecific FIT-Igs have reached clinical Phase 1 trials to date co- 
targeting: 1) EGFR/c-Met for receptor tyrosine kinase inhibition 
(EMB-01) (NCT03797391), 2) PD-1/LAG-3 for dual checkpoint 
inhibition (EMB-02) (NCT04618393), and 3) BCMA/CD3ε for 
T cell engagement in multiple myeloma (EMB-06) 
(NCT04735575).

In order to recruit innate immune cells for cancer cell kill-
ing, Gauthier and colleagues from Innate Pharma recently 
described an advanced preclinical approach to generate multi-
functional natural killer cell engagers (NKCE) targeting 
a tumor antigen and the NK cell ligand NKp46 in a FcγRIII- 
binding competent monovalent C-terminally fused 1 + 1 anti-
body format using CH1-CL crossover to ensure correct light- 

e1967714-6 M. SUROWKA ET AL.



chain association (Figure 2i).158 Trifunctional NKCEs targeting 
CD19, CD20, or EGFR as tumor antigens triggered tumor 
killing by human primary NK cells in vitro and induced NK 
cell infiltration and anti-tumor efficacy, as well as protective 
tumor immunity in vivo.158

Zhao and colleagues demonstrated that a bispecific hetero-
dimeric CD20/HLA-DR 1 + 1 CrossMabCH1−CL termed CD20– 
243 CrossMab for the treatment of NHL patients co-expressing 
CD20 and HLA-DR mediated strong complement-dependent 
cytotoxicity, antibody-dependent cell-mediated cytotoxicity 
and anti-proliferative activity.159 Similarly, Rajendran and col-
leagues generated a bispecific heterodimeric CD30/CD137 
1 + 1 CrossMabCH1−CL to target specifically these two co- 
expressed antigens on Hodgkin and Reed-Sternberg cells with-
out inducing CD137 signaling.160

In an alternative approach to activate innate immunity, Du 
and colleagues devised a bispecific heterodimeric GPC3/CD47 
1 + 1 CrossMabCH1−CL to bind to GPC3 and CD47 on hepato-
cellular cancer cells, and at the same time inhibit the CD47 
interaction with SIRP1α responsible for the “do-not-eat-me 
signal” to recruit myeloid cells for phagocytosis.161 The 
GPC3/CD47 CrossMab induced enhanced Fc-mediated effec-
tor functions by both macrophages and neutrophils toward 
dual antigen-expressing hepatocellular carcinoma (HCC) cells 
in vitro, and strong in vivo efficacy against xenograft HCC 
tumors in a fashion superior to the respective monotherapies 
and combination thereof.161

In order to further boost antigen presentation and foster the 
generation of a secondary anti-tumor immune response, again 
Zhao and colleagues created a novel CD20/Flt3 ligand antibody 
fusion protein, termed CD20-Flex BiFP using CrossMab 
technology.162 CD20-Flex BiFP not only eliminated lymphoma 
temporarily but also potentiated tumor-specific T-cell immu-
nity by expanding and fostering infiltration of antigen- 
presenting dendritic cells into the tumor tissue.162

Most recently, Panina and colleagues described a novel bis-
pecific heterodimeric HER2/IFNα-1 + 1 CrossMabCH1−CL with 
the ultimate goal to deliver IFNα into HER2 expressing 
tumors.163

Applications in therapy of viral infections and 
autoimmune diseases

The application of CrossMab technology has become quite 
popular for the generation of bispecific and multispecific 
antibodies targeting various viruses. During the past years, 
multiple highly potent bispecific antibodies targeting HIV-1 
have been generated using CrossMab technology for the 
prevention and treatment of HIV-1.164,165 Examples of 
these approaches are: 1) four different 1 + 1 CrossMabCH1 

−CL-based bispecific antibodies, of which the one based on 
VRC07 and PG9-16 displayed the most favorable neutraliza-
tion profile and IgG-like pharmacokinetic properties in 
monkeys;166 2) 1 + 1 CrossMabCH1−CL-based bispecific anti-
bodies that, however, did not allow intra-spike binding;167 3) 
unique bispecific antibodies based on the broadly neutraliz-
ing antibodies (bNAbs) 3BNC117 and 10–1074 with 

a modified hinge region of human IgG3 isotype for increased 
Fab flexibility and improved neutralization potency based on 
a 1 + 1 CrossMabCH1−CL format;168 4) a 1 + 1 CrossMabCH1 

−CL-based bispecific antibody targeting two non-competing 
epitopes on the HIV-1 co-receptor CCR5 based on RoAb13 
and PRO 140 to increase avidity;169 5) the 1 + 1 
CrossMabCH1−CL-based bispecific antibody iMab-CAP256 
comprising the highly potent CAP256.VRC26.25 bNAb and 
the host-directed CD4 antibody, ibalizumab (iMab);170 

and 6) the 1 + 1 CrossMabCH1−CL-based bispecific antibody 
BICM-1A for simultaneous recognition of two critical V2- 
and V3-glycan epitopes of the single HIV-1 envelope 
glycoprotein.171 Of all these approaches, the heterodimeric 
bispecific 1 + 1 CrossMabCH1−CL antibody 10E8.4/iMab 
showed exquisite potency and breadth against various HIV- 
1 strains, including activity in HIV-1 in vivo treatment and 
prevention models,90,172 and compared very favorably to 
conventional antibodies and other bispecific bNAbs.173 

Based on these data, 10E8.4/iMab is currently being evalu-
ated in a Phase 1 clinical trial (NCT03875209).174

Wang and colleagues generated a symmetric and tetravalent 
FIT-Ig-based bispecific antibody against Zika virus that 
showed high in vitro and in vivo potency, and prevented viral 
escape, supporting its potential use for the therapy of Zika virus 
prevention or infections.175

Interestingly, and most recently, De Gasparo and collea-
gues described the first bispecific antibody targeting SARS- 
CoV-2 based on a 1 + 1 CrossMabCH1−CL format targeting 
two non-overlapping sites on the receptor binding domain 
of SARS-CoV-2 and blocking binding to angiotensin- 
converting enzyme 2 (ACE2).176 The respective bispecific 
antibody CoV-X2 was designed using C121 and C135, two 
antibodies derived from donors who had recovered from 
COVID-19. Most notably, CoV-X2 neutralized wild-type 
SARS-CoV-2 and variants of concern and escape, protected 
mice from disease and suppressed viral escape.176 Along 
these lines, Jette and colleagues described a subset of 
donor-derived neutralizing bispecific CrossMabs with 
broad cross-reactivity to sarbecoviruses.177

Bispecific CrossMab-based antibodies have also been 
generated with the goal of treating autoimmune 
diseases.178,179 Fischer and colleagues showed that com-
bined inhibition of TNFα and IL-17 was more effective in 
inhibiting the development of inflammation and bone and 
cartilage destruction in arthritic mice compared to the 
respective monotherapies. For this purpose, bispecific 
TNFα/IL-17 1 + 1 and 2 + 2 CrossMabCH1−CL antibodies 
were prepared that showed superior efficacy in blocking 
cytokine and chemokine responses in vitro.180 Similarly, 
Xu and colleagues showed that a tetravalent bispecific 
TNFα/IL-17 1 + 1 CrossMabVH-VL together with electro-
static steering for heavy-chain heterodimerization signifi-
cantly decreased the expression level of neutrophil and 
Th17 chemokines, and the secretion of IL-6/IL-8 on fibro-
blast-like synoviocytes. Moreover, combined inhibition of 
both cytokines by the bispecific antibody was superior to 
inhibition of either cytokine alone.181 Based on these data, 
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dual-targeting bispecific antibodies neutralizing pro- 
inflammatory cytokines may provide novel treatment 
options for autoimmune diseases. However, as they are 
not necessarily differentiated from the combination of the 
respective monotherapies, the benefit of using a bispecific 
antibody over a combination therapy needs to be assessed 
on a case-by-case basis.

Applications in ophthalmology and therapy of central 
nervous system diseases

The heterodimeric 1 + 1 VEGF/Ang-2 CrossMabCH1−CL vanu-
cizumab (RG7221) was the first anti-angiogenic bispecific anti-
body to enter clinical trials with the goal of suppressing tumor 
angiogenesis via simultaneous blockade of the pro-angiogenic 
ligands VEGF-A and Ang-2. VEGF and Ang-2 have also been 
shown to play an important role in ocular angiogenesis in 
diseases like wet age-related macular degeneration (wAMD) 
and diabetic macular edema (DME).96,182–184 However, until 
now only the VEGF blocking antibody fragments ranibizumab 
and brolucizumab and the VEGFR1/2-ECD-Fc fusion protein 
aflibercept are approved for use in ophthalmology.185

Faricimab (RG7716) is a heterodimeric 1 + 1 VEGF/ 
Ang-2 CrossMabCH1−CL specifically optimized for intraocu-
lar use and high concentration formulation in ophthalmol-
ogy indications by use of optimized anti-VEGF and anti- 
Ang-2 Fabs, as compared to vanucizumab, and by the 
introduction of P329G LALA and Triple A mutations in 
the KiH-containing IgG1 Fc portion to abolish 
FcγR-mediated effector functions and FcRn recycling for 
low systemic exposure.82,83,186–189 While faricimab neutra-
lizes two soluble ligands, particularly in the field of 
ophthalmology the use of such a bispecific antibody pro-
vides advantages in terms of intraocular administration via 
a single injection due to the simultaneous inhibition of two 
different angiogenic pathways with a single agent. 
Importantly, as compared to VEGF inhibition alone, farici-
mab mediated improved anti-angiogenic activity in various 
preclinical models to limit pathological angiogenesis in the 
eye.82,83,190,191 Based on these data, faricimab was the first 
bispecific antibody worldwide entering Phase 1 clinical 
trials in ophthalmology, where it was well tolerated and 
exhibited a favorable safety profile with evidence of 
improvements in best-corrected visual acuity (BCVA) and 
anatomic parameters supporting further clinical 
investigation.192 Subsequently, faricimab was compared 
head-to-head to ranibizumab in the BOULEVARD Phase 
2 randomized clinical trial in patients with DME, where it 
met the primary end point and demonstrated statistically 
superior visual acuity gains versus ranibizumab, suggesting 
a benefit of simultaneous inhibition of angiopoietin-2 and 
VEGF-A.193 In the AVENUE Phase 2 randomized clinical 
trial in patients with AMD, it did not meet the primary end 
point of superiority over ranibizumab in BCVA at week 36, 
but visual and anatomical gains observed with faricimab 
supported pursuing Phase 3 trials for an alternative to 
monthly anti-VEGF therapy.194 This was taken into account 

together with the data from the STAIRWAY Phase 2 ran-
domized clinical trial in AMD where faricimab dosed every 
16 weeks or 12 weeks resulted in maintenance of initial 
vision and anatomic improvements comparable with 
monthly ranibizumab.195,196 Recently, positive outcomes 
were reported from four independent pivotal Phase 3 trials 
in wAMD and DME patients where faricimab was com-
pared to aflibercept and met the primary endpoints 
(NCT03823287, NCT03823300, NCT03622580, 
NCT03622593). Based on these data, marketing applica-
tions for faricimab have been filed with health authorities 
for approval in DME and wAMD, with FDA granting it 
a priority review.197

The treatment of central nervous system (CNS) diseases 
with monoclonal antibodies is hampered by the low penetra-
tion of antibodies through the blood-brain barrier, and the 
field still is in its infancy.198 To overcome this limitation, 
Niewoehner and colleagues have generated transferrin recep-
tor-targeted bispecific antibodies that allowed delivery of these 
antibodies through the blood-brain barrier and showed 
improved brain exposure and prevented plaque 
formation.66,67 Using this approach, BS-GANT (RG6102) was 
generated based on the amyloid-beta antibody 
gantenerumab199 as a trivalent C-terminally fused amyloid- 
beta/TfR 2 + 1 bispecific antibody in a 2 + 1 CrossMabVH-VL± 

format with charges (Figure 2h). BS-GANT (RG6102) recently 
entered Phase 2 clinical trials in patients with prodromal or 
mild-to-moderate Alzheimer’s disease (NCT04639050).

Conclusions

During the past 20 years, numerous technologies have been 
developed to generate bispecific antibodies, and these mole-
cules represent a rapidly growing class of biopharmaceuticals 
in clinical trials and on the market. CrossMab technology was 
first described in 2011 as a novel approach enabling correct 
antibody light-chain association with their respective heavy 
chain in bi-/multispecific antibodies, together with methods 
enabling correct heavy-chain association.

As briefly mentioned in the introduction, alternative 
technologies to achieve correct heavy-light-chain pairing 
are currently being applied for the generation of proto-
typical (heterodimeric) IgG-like bispecific antibodies. 
These include in vitro assembly approaches, where the 
two bispecific antibodies are produced separately and sub-
sequently assembled in vitro like DuoBody,19 Fab arm 
exchange,22 FORCE26 or half antibody assembly,27 as well 
as approaches allowing the production of bispecific anti-
bodies in one cell line, for example via the use of common 
light chains or orthogonal Fab interfaces. Recently, several 
groups have also reported that the specific pairing prefer-
ences of selected heavy and light chain pairs can be used 
to drive the assembly of correct bispecific antibodies.200,201 

In the field of common light chains, much progress has 
been made in the selection of suitable common light-chain 
antibodies from common light-chain-bearing animals or 
use of in vitro display technologies.9,10,14–16,202–205 Based 
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on this progress, several bispecific common light-chain- 
based IgG antibodies are currently in clinical trials, 
including odronextamab, REGN4018, REGN5678, 
REGN7075, MCLA-145, MCLA-158, and 
others.7,8,10,15,206–213 Alternatively, the correct light-chain- 
heavy-chain association can be enforced using orthogonal 
Fab interfaces by introduction of (several) mutations in 
the Fab interface.28,29,33,55,56,214,215

CrossMab technology continues to represent a simple, 
straightforward and clinically validated antibody engineer-
ing solution to achieve correct light-chain association with 
minimal engineering using existing pairs of antibodies. In 
fact, since its original description, it has evolved into one 
of the most mature, versatile, and broadly applied tech-
nologies in industry and academia, in conjunction with 
the KiH technology. Until now ~20 bispecific antibodies 
and fusion proteins based on CrossMab technology devel-
oped by Roche and others have entered clinical trials. 
Based on the available clinical data, CrossMabs show 
favorable IgG-like properties in terms of pharmacokinetics 
and immunogenicity similar to conventional therapeutic 
monoclonal antibodies. The most advanced of these bis-
pecific antibodies are: 1) the 1 + 1 heterodimeric Ang-2/ 
VEGF bispecific antibody faricimab for the treatment of 
DME and wAMD, which is currently undergoing regula-
tory review, and 2) the 2 + 1 heterodimeric CD20/CD3 
T-cell bispecific antibody glofitamab for the treatment of 
relapsed/refractory DLBCL or follicular NHL, which is 
currently in pivotal Phase 3 clinical trials.

Based on the progress in making bi- and multispecific 
antibodies, we anticipate that this class of therapeutics with 
novel mechanisms of actions as compared to conventional 
therapeutic antibodies will have a major impact on the 
treatment of various diseases, including oncology, infectious 
diseases, autoimmunity, CNS, and metabolic diseases. 
Taken together, CrossMab technology has proven to be 
very useful for the fast and straightforward generation of 
bispecific antibody formats to tackle novel biological chal-
lenges and help to develop novel therapeutic concepts for 
patients in need.
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