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Abstract

Mounting evidence shows that brain functions and cognitive states are dynamically changing even 

in the resting state rather than remaining at a single constant state. Due to the relatively small 

changes in BOLD (blood-oxygen-level-dependent) signals across tasks, it is difficult to detect the 

change of cognitive status without requiring prior knowledge of the experimental design. To 

address this challenge, we present a dynamic graph learning approach to generate an ensemble of 

subject-specific dynamic graph embeddings, which allows us to use brain networks to disentangle 

cognitive events more accurately than using raw BOLD signals. The backbone of our method is 

essentially a representation learning process for projecting BOLD signals into a latent vertex-

temporal domain with the greater biological underpinning of brain activities. Specifically, the 

learned representation domain is jointly formed by (1) a set of harmonic waves that govern the 

topology of whole-brain functional connectivities and (2) a set of Fourier bases that characterize 

the temporal dynamics of functional changes. In this regard our dynamic graph embeddings 
provide a new methodology to investigate how these self-organized functional fluctuation patterns 

oscillate along with the evolving cognitive status. We have evaluated our proposed method on both 

simulated data and working memory task-based fMRI datasets, where our dynamic graph 
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embeddings achieve higher accuracy in detecting multiple cognitive states than other state-of-the-

art methods.
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1. Introduction

The human brain is a complex, interacting network with unique topological properties 

(Sporns et al., 2004). Advances in network neuroscience have aroused much interest in 

understanding how distinct brain regions work together to maintain high-level brain 

functions and behaviors. To that end, the notion of functional connectivity (FC) comes to the 

stage to characterize the functional relationship between spatially separated anatomical brain 

regions, which can be measured, yet indirectly, either through the electrical activities in the 

electroen-cephalogram (EEG) (Stam et al., 2007) or from the blood-oxygen-level-dependent 

(BOLD) signals in functional magnetic resonance imaging (fMRI) (Biswal et al., 1995).

FC is essentially a statistical measurement that reflects the synchronization degree of 

fluctuation patterns between two brain regions with whole-brain connectivity analyses 

allowing for the examination of network topology (Rubinov and Sporns, 2010; Sporns, 

2011).

Tremendous strides have been made in functional brain networks by assuming FC remains 

stationary throughout the entire scan session (Bastos and Schoffelen, 2016; Friston, 2011; 

Van Den Heuvel and Pol, 2010), which is often known as static FC. However, mounting 

studies have revealed that the functional brain networks change dynamically over time and 

manifest as multiple brain states even in the resting state, implying that static FC may not 

capture the full extent of dynamic brain networks (Hutchison et al., 2013). Thus, research 

interest is shifting towards quantifying dynamic changes in FC (aka. dynamic FC), which 

may provide greater insight into the fundamental properties of brain networks (Allen et al., 

2018; Gonzalez-Castillo and Bandettini, 2018; Shine et al., 2015). In the past decade, a lot 

of computational methods have been developed to characterize functional dynamics, which 

can be roughly categorized into two groups: (1) statistical modeling for detecting temporal 

change points (Cribben et al., 2012; Xu and Lindquist, 2015) and (2) the sliding window 

technique (Allen et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014; Rashid et al., 

2014).

Regarding statistical modeling on functional dynamics, the key is to identify significant 

changes in the network structure, which presumably underlies cognition changes. For 

example, Cribben et al. (2012) proposed a dynamic connectivity regression (DCR) method 

to detect temporal changing points, which first partitions the time course into intervals and 

then estimates connectivity networks within each interval using the statistical inference 

model learned from population data. After that, the classic DCR method has been improved 

in (Xu and Lindquist, 2015) by utilizing a sparse matrix estimation technique and a 

hypothesis testing procedure to detect changing points. Besides recognizing the changing 
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positions in the signal domain, a novel statistical inference method (Schröder and Ombao, 

2019) has been recently proposed to identify frequency-specific changes using a cumulative 

sum-type test statistic, that is devised to detect subtle disruptions in normal brain functioning 

that precede the onset of an epileptic seizure. Although statistical inference provides a 

potentially powerful method for tracking dynamic FC, the intensive computational cost 

limits its application only to small-scale networks.

A more common and computationally effective way to understand dynamic FC is the sliding 

window technique (Allen et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014; Rashid et 

al., 2014). In general, the entire time course of BOLD signals is first partitioned into a set of 

(overlapping or non-overlapping) sliding windows. Given that brain function stays stationary 

within a short time window, the topology changes of functional brain networks across the 

sliding windows are supposed to underline the intrinsic functional dynamics. In light of this, 

clustering the within-sliding-window FC matrices is often used to identify the change of 

cognitive states. However, the sliding window approach is very sensitive to the window size 

and BOLD signal noise, resulting in less replicable results (Hindriks et al., 2016; Shakil et 

al., 2016).

Due to the low signal-to-noise ratio and high spatial-temporal redundancy in BOLD signals 

(Krüger and Glover, 2001), the correlation between BOLD signals and the intrinsic changing 

points is often not strong enough to yield reliable tracking of cognitive states. To illustrate 

this, we randomly select two regions (left parietal cortex and right pre-frontal cortex) and 

calculate the central temporal difference of the BOLD time course, as shown by the red dash 

curves at the top of Fig. 1. For clarity, we only plot the magnitude of the central temporal 

difference and overlay with green delta peaks, which designate the pre-defined switch points 

of tasks in a multi-task fMRI scan. It is apparent that the peaks of the curve (red peak points) 

have significant offsets compared to the ground truth, which will undermine the accuracy of 

detecting state changes. Furthermore, we average the whole-brain BOLD signal trajectories 

and then show the central temporal difference (solid red curve) of the average BOLD time 

course in the gray box of Fig. 1. The correlation (r = −0.09) between the ground truth and 

whole-brain average of the BOLD signals not only shows a negative relationship but also 

indicates a significant gap between the two data domains. Since the sliding window 

technique is widely used to capture functional dynamics, we examine the network difference 

across sliding windows. The curve of network difference between two neighboring sliding 

windows is displayed in the purple box of Fig. 1, where we use Gromov-Hausdorff distance 

(Lee et al., 2012) to measure the topology difference between two functional brain networks. 

Again, the temporal changes of network topologies do not closely synchronize with the 

transition of cognitive states. Thus, multiple threads of evidence clearly show a need to 

derive a better feature representation from the BOLD signals where the evolution of the new 

data representation synchronizes with the intrinsic cognitive state changes associated with 

changes in task demands.

To address this challenge, we introduce a new dynamic graph learning approach to generate 

new feature representations from the BOLD signals that have an enhanced correlation with 

the real cognitive changes and thus yield more accurate cognitive change detection results. 

The workflow of our learning approach is shown in Fig. 2(a). In general, our method opts to 
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project BOLD time courses into a latent vertex-time domain (displayed in the red box), 

where the projection coefficients constitute the new feature representations for detecting 

cognitive changes by the classic temporal clustering method. The backbone of our approach 

is the latent vertex-time domain, which allows us to capture the dynamic patterns supported 

by the subject-specific intrinsic network topology. Since the brain network is often encoded 

in a graph structure, we regard the array of the BOLD signals at each time point (represented 

as columns in the gray box in Fig. 2(b)) as a graph signal, where the element-to-element 

relationship in the data array is regulated by the corresponding node-to-node connectivity 

degree in the graph.

In this context, we conceptualize the BOLD time courses as an evolving graph signal 

(illustrated in the blue box of Fig. 2(b)), which forms a dynamic system. In control theory, it 

is well studied that the dynamics of the system are governed by the Eigen-system of 

Laplacian operator (Gu et al., 2015; Honey et al., 2009; Medaglia et al., 2017). To that end, 

we first extend our previous work (Kim et al., 2019) from learning graph Laplacian to the 

new paradigm of learning the dynamic graph Laplacian of the vertex-time domain. Indeed, 

we have the closed-form solution to derive the joint Eigen-system of the learned dynamic 

graph Laplacian, which consists of (1) a set of harmonic waves (bases) for characterizing the 

network topology and (2) a set of Fourier bases for capturing dynamic changes. After that, 

we construct the dynamic graph embeddings for each sliding window by projecting the 

BOLD signals through the joint harmonic-Fourier bases. Finally, we employ an off-the-shelf 

temporal clustering method (Ng et al., 2002) to detect changing positions based on the 

dynamic graph embeddings. We evaluate the power of our dynamic graph embedding 

method on both simulated data and task-based fMRI data involving working memory, where 

we have achieved more accurate detection results than using raw BOLD data.

2. Materials and methods

2.1. Data description

Simulate data.—First, SimTB toolbox (Erhardt et al., 2012) is employed to create 

simulated fMRI time series with K brain states, where K = 3 in our simulated experiments. 

Fig. 3 (top) shows three FC matrices at the pre-defined cognition stages, where each FC 

matrix consists of three modules (communities) along the diagonal line. For each possible 

pair of nodes with the same module, the connectivity degree is set to one. No cross-module 

connectivity is allowed (equals to zero). Here, we set two changes of FC at t = 100 and t = 

200 (in seconds), respectively. Therefore, each brain state could last 100 s. Based on this 

setting, we use SimTB to generate the simulated dynamic fMRI data with a total length of 

300 TRs (shown at the bottom of Fig. 3). We repeat this process 100 times and evaluate the 

sensitivity of our proposed dynamic graph learning method with respect to window size, 

noise level, and network size (number of nodes) based on the 100 simulated fMRI dataset as 

follows. We evaluate our proposed change detection method on simulated data in Section 

3.1.

Real data.—We used working memory fMRI data from 60 healthy subjects selected from 

the Human Connectome Project (Van Essen et al., 2013). The working memory tasks in each 
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fMRI scan include 2-back and 0-back task events of body parts, places, faces, and tools, as 

well as resting fixation periods. The BOLD-contrast images in echo-planar imaging 

sequence were collected using a 3T ConnectomeScanner adapted from a Siemens Skyra 

(acquisition time = 5 min and 1 s, TR = 0.72 s, TE = 33 ms, 2 mm isotropic resolution). We 

used the minimally pre-processed data (Glasser et al., 2013) and additionally performed the 

following preprocessing steps. First, motion correction was performed using AROMA 

(Pruim et al., 2015). The data were then bandpass filtered (0.009–0.8 Hz) and a regression 

was performed to removed whole-brain gray matter, white matter, and cerebrospinal fluid 

signal as well as realignment parameters and the first temporal derivative. Data were then 

parcellated into 268 regions by the Shen 268 brain region atlas (Shen et al., 2013), and new 

time courses were generated by averaging the signal of all voxels in each region. We first 

focus on 58 brain regions, which are located at the default mode network (DMN) and 

attention network (ATN) since they are closely related to the resting periods and working 

memory task, respectively (see Supplementary Material for list of atlas regions). Then, we 

demonstrate the scalability of our method using all brain regions. In Section 3.2, we evaluate 

the performance of our proposed method on detecting changes of functional connectivity 

and the discriminative power of our proposed method in recognizing different functional 

tasks on real fMRI data involving the working memory task.

2.2. Construction of joint vertex-time domain

Any brain network can be described as a graph structure G = (V, E, W), where a set of N 
brain regions consists of the node-set V . E denotes the edge-set, where the connectivity 

degrees are encoded into an adjacent matrix W = wij i, j = 1
N . In fMRI, each element wij (−1 

≤ wij ≤ 1) is essentially the statistical correlation of BOLD signals between the regions Vi 

and Vj.Given the adjacency matrix W, the underlying Laplacian matrix can be calculated as 

LG = D − W, where D is a diagonal matrix defined as Dii = ∑j = 1
N wij. Supposed the BOLD 

time course has T sampled time points. We use data matrix X = xt t = 1, …, T ∈ RN × T  to 

represent the entire brain BOLD time series, where xt ∈ RN is a column vector denoting the 

“snapshot” of the whole-brain BOLD signals at a particular time t.

In order to capture the putative spatio-temporal patterns from BOLD signals, we opt to find 

a hidden domain, called joint vertex-time domain, which allows us to disentangle the mixed 

spatial-temporal information in BOLD signals into the topological patterns (characterizing 

intrinsic functional connectivities in the brain) and dynamic patterns (characterizing 

functional dynamics). To be more specific, this domain is formed by (1) a set of Fourier 

bases ΦT for characterizing the dynamic fluctuation pattern in the temporal domain and (2) a 

set of harmonic bases ΦG for representing the topological property of the functional brain 

network in the graph spectrum domain. Since the Eigen-system of the Laplacian operator 

controls the dynamic characteristics of time-varying FC, we can arrive at the solution of the 

Fourier bases and harmonic bases by finding the joint Laplacian matrix from the temporal 

and graph spectrum domains as follows.

First, we introduce the standard definition of the dynamic Laplacian matrix in the temporal 

domain. The first-order difference operator in the temporal domain is defined as:
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X ∇T = xt − xt − 1 (1)

with periodic boundary conditions (i.e., xT+1 = x1), and the second-order temporal derivative 

is defined as:

XLT t = 2xt − xt − 1 − xt + 1 (2)

where the dynamic Laplacian matrix is denoted by:

LT = ∇T ⊤∇T ∈ RN × N (3)

Since LT is fixed and circulant (xT+1 = x1), the dynamic Laplacian LT which encodes Eigen-

system of the temporal domain can be decomposed into LT = ΦT ΛT ΦT
⊤, where 

Eigenvectors ΦT and the diagonal Eigenvalue matrix ΛT have the closed-form solution as:

ΦT(t, k) = e−j 2π(k − 1)
T

T t, k = 1, …, T
(4)

ΛT(t, t) = λT(t) = 2 1 − cos 2π(t − 1)
T (5)

It is clear that the Eigenvectors ΦT in Eq. (4) is essentially a set of Fourier waves with the 

temporal frequency being defined in Eq. (5).

Second, in the graph spectrum domain, the network-specific harmonic bases ΦG can be 

obtained by applying singular vector decomposition (SVD) (Cline and Dhillon, 2006) on the 

latent graph Laplacian LG of the underlying brain network, i.e., LG = ΦG
⊤ΛGΦG, where ΦG 

and ΛG are Eigenvectors and Eigenvalues, respectively. Although it is straight-forward to 

calculate the graph Laplacian matrix LG from the adjacency matrix W, we propose to 

optimize LG from BOLD signals for the following reasons. (1) The possible external noise 

in BOLD signals might undermine the accuracy of signal correlations in the adjacency 

matrix (Kim et al., 2019). (2) Since the calculation of adjacency matrix W is based on the 

entire BOLD signals, it has limited power to capture the functional fluctuations of BOLD 

signals running in the joint vertex-time domain. In light of this, we opt to learn the dynamic 

graph Laplacian matrix LG, by following the learning process described below.

2.3. Learning dynamic graph Laplacian from BOLD signals

To estimate an intrinsic graph Laplacian that encodes the topology of the dynamic functional 

network, we extend our previous work (Kim et al., 2019) to learn a dynamic graph Laplacian 

LG in the vertex-time domain instead of learning graph Laplacian only in the vertex domain. 

As shown in Fig. 2(b), we propose to jointly denoise the observed signals X and discover the 

dynamic graph Laplacian matrix LG from the latent clean BOLD signals.
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First, we propose to estimate LG based on the intrinsic BOLD signals Y instead of the 

observed signals X. Generally, Y should be close to the observed X, which is constrained by 

a ℓ2 -norm data fitting term X − Y F
2  to measure the distance between X and Y.Given the 

intrinsic BOLD signals Y, we estimate the network graph Laplacian LG by introducing the 

following three constraints to guarantee a well-posed objective function.

1. Temporal smoothness constraint on Y. Since the BOLD signals have been 

smoothed by bandpass filters (e.g., 0.009–0.8 Hz), it is reasonable to assume that 

the BOLD signal changes relatively slowly over short periods of time. Thus we 

require the time series of a BOLD signal at each brain region (each row of Y) 

should be smooth between yti and yt + 1
i :

Y
LT

= tr Y ⊤LTY = ∑
i = 1

N
∑
t = 1

T
yt + 1

i − yti
2

(6)

2. Graph smoothness constraint on Y. Inspired by the recent work on graph signal 

processing (Grassi et al., 2018; Ortega et al., 2018; Shuman et al., 2013), yt at 

each time point t can be regarded as a graph signal that resides on the same graph 

G, where the relationship between any two elements in yt should follow the 

context in the latent functional brain network. That is, if there exists a high 

weight wij of FC between the nodes vi and vj, they should have similar scalar 

signal value yti and yt
j, which can be quantified as:

Y
LG

= tr Y ⊤LGY = ∑
i = 1

T
∑
ij

wij yti − yt
j 2

(7)

3. Regularization term on graph Laplacian LG. In order to guarantee LG is a valid 

estimated Laplacian matrix, we regularize the LG by applying Frobenius norm 

LG F
2  and the trace norm tr (LG) = N that equals the number of network nodes 

N (to avoid the degeneration of solution space).

By combining all the constraints mentioned above, the overall energy function for estimating 

the dynamic graph Laplacian matrix LG is:

arg min
Y , LG

X − Y
F

2 + μ1 Y
LG

+ μ2 Y
LT

+ η LG F
2 ,  s.t.  tr LG = N (8)

where μ1 and μ2 control the strength of graph and temporal smoothness, respectively, and η 
controls the strength of LG F

2 .

Since Y and LG are coupled in Eq. (8), we present an alternative solution to optimize Y and 

LG one after another until converging which has been used in our previous work (Kim et al., 

2019). The optimization details are shown step by step in the Supplemental Materials. Since 

the optimization problem of either Y and LG is relatively easier, it is efficient to obtain the 
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harmonic-Fourier bases and generate the dynamic graph embedding for each time point 

described below.

2.4. Dynamic graph embedding

Given the harmonic bases ΦG from the learned graph Laplacian LG and the classic Fourier 

bases ΦT, we form a dynamic graph J spanned by ΦG and ΦT jointly, which has a multi-

layer graph structure, as shown in Fig. 4. As demonstrated in (Grassi et al., 2018), the 

spectrum of dynamic graph J is encoded in the Laplacian matrix LJ as:

LJ = LT ⊗ IG + IT ⊗ LG (9)

where ⊗ denotes a Cartesian product. Likewise, the Eigenvector of LJ is the Cartesian 

product of ΦG and ΦT:

LJ = ΦT ⊗ ΦG ΛT ⊗ IG + IT ⊗ ΛG ΦT ⊗ ΦG
⊤ = ΦJΛJΦJ⊤ (10)

Next, we generate the dynamic graph embedding vectors for the BOLD signals in each 

sliding window. Without loss of generality, the sliding window size is set to P (P < T). Then, 

we partition the entire BOLD signals into S overlapped segments. Each segment becomes a 

sliding window Ωs (s = 1, …, S) with P time points. Furthermore, we use ts to denote the 

center of the sliding window Ωs. As a common practice in signal processing, we truncate the 

first P Fourier bases in ΦT and yield the window-specific temporal bases ΦP. The dynamic 

graph embedding vector Fs for the sliding window Ωs can be calculated by:

Fs = ΦP ⊗ ΦG
⊤Y Ωs = ΦG⊤Y ΩsΦP (11)

where Y Ωs denotes the intrinsic BOLD signals within the sliding window Ωs.The intuition of 

dynamic graph embedding Fs can be interpreted as (1) dynamic spectral embedding by 

applying discrete Fourier transform Y Ωs = Y ΩsΦP  on the intrinsic BOLD signals, and (2) 

graph spectral embedding by applying graph Fourier transform ΦG
⊤Y Ωs.

2.5. Detect changes in functional connectivity

In dynamic brain network theory, we assume that the FC states are quasi-stationary within a 

time interval, that is, changes in brain state usually happen between different time intervals. 

Thus, it is reasonable to cluster the dynamic functional brain network into a number of 

quasi-stationary brain states. Given the dynamic graph embedding vector Fs at each sliding 

window, we opt to use a classic spectral clustering method (Ng et al., 2002) to automatically 

detect the changes of FC. In general, the main steps for detecting changes of FC based on 

dynamic graph embedding can be summarized as follows: (1) Learn the latent graph 

Laplacian matrix LG and estimate the intrinsic BOLD signals Y by optimizing Eq. (8). (2) 

Construct a joint vertex-time spectrum domain. (3) For each time point ts, we construct a 

sliding window Ωs centered at ts, and project the intrinsic BOLD signals Y Ωs to the joint 

spectrum domain to obtain the dynamic graph embedding vector Fs by Eq. (11). (4) Based 
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on the embedding vectors Fs s = 1
S , the classic spectral clustering is employed to cluster all 

Fss into K cognitive states (K is pre-defined). Given the clustering result, the changes in the 

functional connectivity can be determined by judging the transition of clustering categories 

along with the time series.

3. Results

In this section, we evaluate the performance of our dynamic graph embedding (dGE) method 

for detecting changes of FC on both simulated dataset and real fMRI data from HCP 

(Human Connectome Project) database. Our proposed method is compared with the 

following two methods: (1) the dynamic brain state tracking method, i.e., sliding window 

correlation method (SWC) (Allen et al., 2014) and (2) the simplified version of our proposed 

method that only utilizes the learned harmonic bases ΦG, called static graph embedding 

(sGE) (Kim et al., 2019). Specifically, the input to SWC method is a set of vectorized 

functional brain networks constructed within the sliding window, where each sliding 

window is centered at the underlying time point and uses the same window length as our 

dGE method. Instead of estimating the FC matrices based on the independent components 

by group ICA (Calhoun et al., 2001) as in the original SWC work (Allen et al., 2014), we 

construct functional brain networks from BOLD signals directly. Although the feature 

representations of functional dynamics vary across three change detection methods, all of 

them use the spectral clustering method (Ng et al., 2002) to group time points into different 

cognitive tasks.

We use the grid search strategy to determine the parameters for η (Foubenius norm 

constraint on Laplacian matrix LG), μ1 (graph smoothness constraint), and μ2 (temporal 

smoothness constraint), where η ranges from 0.0 to 2.0, and μ1 and μ2 range from 0.01 to 

1.0. The optimal parameter ranges are found stable where η is around 1.0, μ1 is around 0.1, 

and μ2 is around 0.15. In the following experiments, we fix the parameters to η = 1.0, μ1 = 

0.1, and μ2 = 0.15.

3.1. Evaluation of simulated data

3.1.1. Sensitivity analysis on different window sizes—In this experiment, we 

examine how the selection of window size P affects the detection of FC changes. Since the 

ground truth is known, we use the clustering purity score (Manning et al., 2008) to measure 

the clustering accuracy between the ground truth and automatic detection results. 

Specifically, we calculate the purity score in the following two steps: (1) for each identified 

cluster, count the number of time points from the most common task; and (2) take the sum 

over all clusters and divided by the number of time points. Fig. 5(a) shows the clustering 

accuracy results by sliding window correlation (in green), static graph embedding (in blue), 

and our dynamic graph embedding method (in red), where our method consistently achieves 

the highest accuracy (on average 4.6% higher than SWC and 32.2% higher than sGE) with 

respect to different window sizes. We note that both the sliding window correlation and our 

dynamic graph embedding method outperform the static graph embedding method, which 

does not model the functional dynamics.
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3.1.2. Robustness analysis to noise—Here, we study the performance of FC 

changes detection with respect to different noise levels. To do so, we randomly sample 10% 

time points from the simulated BOLD signals and add uncorrelated additive Gaussian noise 

with SNR levels ranging from 5 dB to 50 dB. As shown in Fig. 5(a), the performance of 

SWC method achieves the highest detection accuracy with window size ranged from 20 to 

30 time points. Hence, we set the window size to 22 time points and keep this setting for all 

methods in the following experiments. The change detection accuracy curves with respect to 

noise level by sliding window correction, static graph embedding, and our dynamic graph 

embedding are displayed in green, blue, and red, respectively, in Fig. 5(b). It is clear that our 

dynamic graph embedding method is much more robust to the noise presented in the BOLD 

signals than the other two methods (on average 25.1% higher than SWC and 46.0% higher 

than sGE), which shows the advantage of new feature representations learned from the latent 

vertex-time domain.

3.1.3. Scalability in network size—To evaluate the accuracy of change detection as 

network size increases, we expand the simulated networks generated in Section 3.1.1 from 

10 × 10 to 100 × 100. As shown in Fig. 5(c), our dynamic graph embedding method 

consistently outperforms the other two methods. Note, it is clear that both dGE and SWC 

methods show less sensitivity to the network size, which can maintain the detection accuracy 

beyond 0.9 as the network size increases from 10 × 10 to 100 × 100. Since the sGE method 

does not take functional dynamic information into account, the detection accuracy drops 

significantly from 0.6 to less than 0.5 as the network dimension beyond 50 nodes. The 

computational cost as the number of nodes increases in the network, as shown using 

computation time in Fig. 5(d). It is apparent that our dGE method (along with sGE) only has 

a marginal increase of computational cost as the network expands from 10 × 10 to 100 × 

100, compared to a large increase in computation time for SWC.

3.2. Application to task-based fMRI data

3.2.1. Detection of functional connectivity changes—In this section, we evaluate 

the accuracy of change detection using the BOLD signals on 58 nodes in the default mode 

network (DMN) and attention network (ATN). First, we quantitatively evaluate the detection 

accuracy to different window sizes by varying the window size from 10 to 60 TRs, and 

showing the mean and standard deviation of purity scores over all 60 task fMRI scans, the 

detection curves with respect to different window sizes are provided in Fig. 6(a), where our 

proposed method (in red) consistently outperforms the other two methods (on average 2.1% 

higher than SWC and 9.3% higher than sGE) in different window sizes. Based on the result, 

we fix the window size to 22 time points (i.e., 22 TR = 15.8 s) in the following experiments.

Second, we show the mean and standard deviation of purity scores over 60 task fMRI scans 

in Fig. 6(b), where the average purity score is 0.734 by SWC, 0.663 by sGE, and 0.771 by 

our dGE method. Note, we demonstrate the scalability of our change detection method in 

Section 3.2.2.

Third, we further demonstrate the FC change detection results of two typical fMRI scans in 

Fig. 6 (c1–c2), where each functional task is designated by bars in different heights. For 
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clarity, we further assign a different color to each task. Note that for these two particular 

scans, the ordering of the tasks is different. At the bottom of Fig. 6(c), we display the 

automatic detection results by our dynamic graph embedding method (1st row), sliding 

window correlation (2nd row), and static graph embedding method (3rd row). Based on the 

temporal alignment between the pre-defined functional tasks and the automatic detection 

result, our dynamic graph embedding method has a more accurate prediction than the other 

two methods.

3.2.2. Scalability of dynamic graph embedding—In this experiment, we evaluate 

the detection accuracy of change detection methods with respect to different network sizes. 

To achieve this, we increase the number of network dimensions by successively adding 

nodes from sub-networks like default mode network (DMN), attention network (ATN), 

visual network (VIS), and sensorimotor network (SMN) until we cover the whole brain, and 

evaluate the detection accuracy at different network dimensions. The selected nodes at 

different network dimensions are shown on the top of Fig. 7, and the corresponding 

detection results are shown in the middle of Fig. 7. Our proposed dGE method constantly 

outperforms the compared methods on different network sizes, where ‘*’ indicates the 

significant improvement using a two-sample t-test (p < 0.05). We also show the computation 

time at the bottom of Fig. 7 (Note, the curves by dGE and sGE overlap since they have very 

similar computational time). Similar to the result in Fig. 5(d), our method is more scalable to 

be deployed to large-scale brain networks than SWC.

3.2.3. Classification of functional task events—In this experiment, we examine the 

classification performance of our graph embedding vectors in recognizing 2-back task event 

versus 0-back task event in working memory task-based fMRI data by training a support 

vector machine (SVM). Although there are four 0-back tasks and four corresponding 2-back 

tasks in the entire scan, we train four separate binary SVMs to differentiate 0-back/2-back 

body part tasks, 0-back/2-back place tasks, 0-back/2-back face tasks, and 0-back/2-back tool 

tasks, respectively. In training each SVM, the dynamic graph embedding vector is 

considered as the feature vector of the underlying time point, and the associated functional 

task is used as the label.

We evaluate the task classification results using 10-fold cross-validation for recognizing 0-

back/2-back body part tasks, 0-back/2-back place tasks, 0-back/2-back face tasks, and 0-

back/2-back tool tasks, respectively. From Fig. 8(a)–(d), we show the ROC (receiver 

operating characteristics) curves of classifying 2-back task versus 0-back task for body parts, 

places, faces, and tools by using BOLD signals in sliding window correlation (in green), 

static graph embedding vectors (in blue), and our dynamic graph embedding vectors (in red), 

respectively, where x and y axes denote for false positive rate (FPR) and true positive rate 

(TPR). Note, the ROC curve reflects the TPR against FPR at various thresholding settings. It 

is clear that the SVM trained by using our dynamic graph embedding vectors achieves the 

highest classification accuracy in all functional tasks than the SVMs trained using other 

features.
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4. Discussion

In both experiments on simulated and real task-based fMRI data, we find that our dynamic 

graph embedding method achieves significant improvement over the conventional method 

that directly uses BOLD signals. We propose that the performance gain might come from the 

graph learning technique and the joint vertex-time domain of dynamic graph embedding 

vectors. Thus, we first evaluate the contribution of these two components. After that, we 

discuss the study limitations and possible application of our dynamic graph embedding 

method.

Mechanism of joint graph learning and BOLD signals smoothing.

Due to the significant amount of external noise in the BOLD signals, feature representations 

extracted from the original BOLD signals might undermine the detection accuracy. Most 

current preprocessing methods only use the heuristics in the temporal domain to suppress the 

noise for each time course separately, ignoring the topological interactions across BOLD 

signals. Our method can simultaneously remove the external noise (less relevant to the brain 

activity) in the BOLD signals and optimize the harmonic bases for the vertex-time domain in 

the graph Laplacian learning process. In Fig. 9, we display the BOLD signals (left) of two 

typical brain regions of interest and the frequency spectrums (right) of the original BOLD 

signal (black), smoothed BOLD signal utilizing Gaussian filtering (blue), and smoothed 

BOLD signal by our graph learning method (red). Although the Gaussian smoothing and our 

graph filtering both use the low-pass filters, our method has more capability to maintain the 

detail than Gaussian smoothing, as the spectrum curve of harmonic magnitudes (shown in 

the zoom-in view 3 in Fig. 9) by our method is apparently above the spectrum curve by 

Gaussian smoothing. After visually inspecting the recovered BOLD signals, we found that 

the smoothing results by both methods are very similar when the BOLD signal is relatively 

stable. However, our method can maintain much more intrinsic changing patterns (shown in 

the zoom-in view 1 and 2 in Fig. 9) than Gaussian smoothing when BOLD fluctuations 

occur.

Joint vertex-time domain for capturing the functional dynamics.

The spatial-temporal information is highly mixed in the original BOLD signal. Thus, the 

accurate detection of FC changes is indispensable to the disentanglement of functional 

connectivity and functional dynamics. Our dynamic graph embedding method opts to find 

the vertex-time domain from the observed BOLD signal. Thus, the resulting dynamic graph 

embedding vectors have more sensitivity to capture the dynamic changes and characterize 

the changing patterns. As shown in Fig. 5 and Fig. 6, our novel feature representations show 

more discriminative power to detect FC changes than conventional methods. Furthermore, 

we visualize the harmonic basis of two randomly selected subjects in Fig. 10. In the left top 

panel of Fig. 10, we display in total 268 brain parcellations on the cortical surface, where the 

colormap down below shows the assigned color for the nodes in default mode network, 

attention network, dorsal attention network, sensorimotor network, salience network, basal 

ganglia network, visual network, respectively. Next, we shuffle the elements in each 

harmonic basis and plot the signals in a module-by-module manner, where color indicates 

the associated sub-network. Furthermore, in the left bottom panel, we display 10 randomly 
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selected brain regions, and plot the signals on each brain region. Here, we only show the 

harmonic bases representing the low, middle, and high-frequency bands. In general, low-

frequency harmonic bases exhibit slow waves all over the brain. On the contrary, high-

frequency counter-parts show the pattern of localized rapid fluctuations.

Limitations of our dynamic graph embedding and possible solutions.

The goal of our graph-based learning approach is to generate a new embedding vector that 

can describe the functional dynamics at each time. However, our current method has several 

limitations. First, given the global nature of our harmonic-Fourier bases, our method does 

not readily lend itself to mapping the frequency-based bases to the brain and identifying the 

task-relevant brain regions. One possible solution is to localize the harmonic-Fourier bases 

using a post-hoc optimization methods (Melzi et al., 2018) which have been studied in the 

shape analysis area. Second, our current graph learning approach is unsupervised, which is 

steered by the temporal characteristics of the BOLD signals and network topology, instead 

of cognitive tasks. For the possible application of recognizing functional tasks (such as in 

Section 3.2.3), supervised feature representation learning or feature selection is needed to 

make the features more discriminative across tasks. Third, since we apply our graph learning 

approach to each subject separately, the resulting harmonic-Fourier bases are subject-

specific. Thus, it is hard to find common task-relevant patterns across individuals. Recently, 

we have developed a manifold-based learning method to unify the harmonic bases on the 

Stiefel manifold (Chen et al., 2020), which can be used to find common harmonic-Fourier 

bases of functional brain networks for group comparison studies.

Relevant works and future direction.

In our previous work (Bahrami et al., 2019), we were interested in investigating the across-

task relationships between dynamic brain networks by projecting the FC matrices into a low-

dimensional space. However, the feature representation that can characterize the underlying 

functional dynamic was not the focus of this proof-of-concept work. Similarly, the study in 

(Shine et al., 2018) investigated context-sensitive balance between functional integration and 

segregation in the brain by examining the temporal trajectories of network properties such as 

participation coefficients and modularity degree (Rubinov and Sporns, 2010). Since our 

harmonic-like bases offer a new feature representation to capture the functional dynamics 

with a greater insight into mathematics and network neuroscience, our future work includes 

(1) applying the dynamic graph embeddings to identify task-specific fingerprints that can 

discriminate cognitive tasks across individuals, and (2) understanding the functional 

dynamics using the well-studied physics concepts such as power and energy.

5. Conclusion

In this paper, we develop a novel learning-based approach to detect changes in functional 

connectivity. Our dynamic graph embedding learning method is designed to amplify the 

sensitivity to capture the cognitive changes from fMRI data. The backbone of our method is 

a graph learning approach, which allows us to characterize the intrinsic functional 

connectivity at each time point and capture functional fluctuations during the scan. The 

outcome of our method is a set of novel putative dynamic graph embeddings, which can be 
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used to identify the change points by clustering the dynamic graph embeddings into 

temporal segments. Promising results have been found on both simulated data and real task 

fMRI datasets, which indicate the great potential of our dynamic graph learning approach in 

the neuroscience field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The temporal patterns (measured by the magnitude of central difference) in BOLD signals 

often have a weak correlation with the task demand changes (green delta peaks) either using 

the regional BOLD time course (red and blue boxes) or whole-brain average BOLD signals 

(gray box). Likewise, the temporal change of network topology difference across sliding 

windows does not synchronize closely to the changes in task demands (purple box).
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Fig. 2. 
The overall pipeline of our proposed method: (a) the workflow and (b) learning harmonic 

bases by utilizing the dynamic graph learning approach.
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Fig. 3. 
Top: 3 simulated brain states with 10 brain regions are simulated (each with 3 modules of 

different dimension where the size of the modules in each state are defined as state1: [3 × 3, 

4 × 4, 3 × 3], state2: [3 × 3, 3 × 3, 4 × 4], and state3: [6 × 6, 2 × 2, 2 × 2]). Bottom: Given 

the simulated brain states, simulated fMRI data with 2 changes of FC at t = 100 and t = 200 

can be generated by SimTB toolbox.
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Fig. 4. 
The dynamic graph J is constructed by the Cartesian product of the graph G and a cyclic 

graph T in the temporal domain.
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Fig. 5. 
The performance of the detection of functional connectivity changes on the simulated 

dataset compared between the sliding window correlation (SWC) method, static graph 

embedding method (sGE), and our proposed method (dGE), based on (a) effect of window 

size, (b) noise level, and (c) network size. Besides, we show the computation cost with 

respect to the number of network nodes in (d).
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Fig. 6. 
The performance of detecting FC changes by our dynamic graph embedding method (dGE), 

with the comparison to the sliding window correlation method (SWC) and static graph 

embedding method (sGE). (a) The detection accuracy curves with respect to sliding window 

size by SWC (green), sGE (blue), and our dGE method (red). (b) The average detection 

accuracy by SWC (green), sGE (blue), and our dGE method (red). (c) The detection 

performance of our proposed method on two typical task fMRI scans, where the ground 

truth and automatic detection results are shown in the top and bottom, respectively. Note, the 

results shown here are based on BOLD signals from 58 nodes in the DMN and ATN.
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Fig. 7. 
The detection accuracy (middle) and computational time (bottom) with respect to different 

network dimensions. From (a)–(d), we show the accuracy and computation time by 

progressively including ATN, VIS, and SMN to DMN, until the whole brain is covered (e).
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Fig. 8. 
The ROC curve of 2-back versus 0-back task event classification involving body parts, 

places, faces, and tools task compared between the three methods.
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Fig. 9. 
The BOLD signals (left) and frequency spectrum (right) of the original BOLD signals 

(black), smoothed BOLD signals by Gaussian filter (blue), and smoothed BOLD signals 

recovered by our method (red) from two selected brain regions. Furthermore, we zoom in 

the overlap of BOLD signals in view 1–2 and spectrum in view 3, respectively.
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Fig. 10. 
Top: (1) left: 268 brain parcellations on the cortical surface, where the color indicates the 

sub-networks. (2) middle and right: from top to bottom, we plot the low, middle, and high 

harmonic bases for two subjects, where color indicates the associated sub-networks; Bottom: 

(1) left: 10 brain regions on the brain slice. (2) middle and right: from left to right, we plot 

the low, middle, and high harmonic bases on each brain region for the two subjects.

Lin et al. Page 26

Neuroimage. Author manuscript; available in PMC 2021 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and methods
	Data description
	Simulate data.
	Real data.

	Construction of joint vertex-time domain
	Learning dynamic graph Laplacian from BOLD signals
	Dynamic graph embedding
	Detect changes in functional connectivity

	Results
	Evaluation of simulated data
	Sensitivity analysis on different window sizes
	Robustness analysis to noise
	Scalability in network size

	Application to task-based fMRI data
	Detection of functional connectivity changes
	Scalability of dynamic graph embedding
	Classification of functional task events


	Discussion
	Mechanism of joint graph learning and BOLD signals smoothing.
	Joint vertex-time domain for capturing the functional dynamics.
	Limitations of our dynamic graph embedding and possible solutions.
	Relevant works and future direction.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.

