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Typical disease-associated microbiota changes are widely studied as potential diagnostic 
or therapeutic targets. Our aim was to analyze a hospitalized cohort including various 
gastroenterological pathologies in order to fine-map the gut microbiota dysbiosis. Bacterial 
(V3 V4) and fungal (ITS2) communities were determined in 121 hospitalized gastrointestinal 
patients from a single ward and compared to 162 healthy controls. Random Forest models 
implemented in this study indicated that the gut community structure is in most cases 
not sufficient to differentiate the subjects based on their underlying disease. Instead, 
hospitalized patients in our study formed three distinct disease non-related clusters (C1, 
C2, and C3), partially explained by antibiotic use. Majority of the subjects (cluster C1) 
closely resembled healthy controls, showing only mild signs of community disruption; 
most significantly decreased in this cluster were Faecalibacterium and Roseburia. The 
remaining two clusters (C2 and C3) were characterized by severe signs of dysbiosis; 
cluster C2 was associated with an increase in Enterobacteriaceae and cluster C3 by an 
increase in Enterococcus. According to the cluster affiliation, subjects also showed different 
degrees of inflammation, most prominent was the positive correlation between levels of 
C-reactive protein and the abundance of Enterococcus.
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INTRODUCTION

Multiple different host-specific and environmental factors are 
known to shape a healthy gut microbiota (Falony et  al., 2016; 
Strati et  al., 2016; Zhernakova et  al., 2016). Major shifts in 
microbial community composition, also known as dysbiosis, 
are associated with a loss of important functions, which can 
lead to adverse effects on human health. Different types of 
dysbiosis can be  associated with genetic markers, diet, stress, 
or disease. Typical signs of disrupted microbiota include lower 
diversity, decrease in anti-inflammatory species such as 
Faecalibacterium prausnitzii and increase in different members 
of Enterobacteriaceae (Belizário and Faintuch, 2018). Some 
mechanisms leading to state of dysbiosis have already been 
described (Levy et al., 2017; Rivera-Chávez et al., 2017; Belizário 
and Faintuch, 2018). However, identification of type or disease-
specific microbial signatures in dysbiosis has proven to 
be  challenging.

Microbiota association with gastrointestinal diseases including 
inflammatory bowel disease (IBD) (Ni et  al., 2017; Sun et  al., 
2019), colorectal cancer (Kelly et  al., 2018; De Almeida et  al., 
2019), and different infections (Lazar et  al., 2018) has been 
extensively investigated. Usually the research is focused on the 
characterization of the bacterial community; however the 
remaining members of gut microbiota such as viruses (Kernbauer 
et  al., 2014; Norman et  al., 2015), archaea (Chehoud et  al., 
2015; Lewis et  al., 2015), and especially fungi (mycobiota) 
(Liguori et al., 2016; Sokol et al., 2016) have been lately gaining 
in recognition.

An important shortfall of the abovementioned studies is 
the inclusion of a single disease patient cohort. Such an approach 
might hamper the ability to distinguish between disease-specific 
microbial patterns and general dysbiosis-associated changes in 
the gut environment. In an effort to address this issue, 
we analyzed the bacterial and fungal microbiota in a hospitalized 
cohort with a variety of gastroenterological pathologies.

Hospitalization by itself introduces numerous alterations to 
the normal lifestyle irrespective of the underlying disease. 
Additionally, age, gender, medication, stress, and changed diet 
potentially influence the microbiota composition, affecting the 
identification of disease-specific patterns (Falony et  al., 2016; 
Zhernakova et  al., 2016). For this reason, we  supported 
conventional analysis of microbial communities with machine 
learning approaches, allowing us to evaluate the individual 
and combined ability of different microbiota components at 
predicting diagnosis-based groups of hospitalized patients, while 
accounting for the effects of host-specific factors.

MATERIALS AND METHODS

Study Design and Specimen Collection
Stool samples were collected from patients hospitalized at the 
Department of Gastroenterology at the University Medical 
Centre Maribor after informed consent. The department has 
35 beds and 1,400 hospitalized patients per year. Patients were 
diagnosed with standard medical procedures including clinical, 

radiological, endoscopic, and histological criteria and were, for 
the purpose of further analysis, distributed into five groups 
based on the diagnosis: IBD [subdivided into Ulcerative colitis 
(UC, n  =  25) and Crohn’s disease (CD, n  =  15)], Tumor 
(n  =  22), Infection (n  =  23), and Other (n  =  36). All IBD 
patients were in the state of flare-up during the time of the 
specimen collection. The most common in the “Tumor” group 
were patients with pancreatic, gastric or liver cancer. The group 
“Infection” includes patients with pneumonia, cholangitis, 
hepatitis, gastritis, or pancreatitis. The group “Other” is a diverse 
population of patients, mostly diagnosed with cirrhosis or peptic 
ulcer; included in this group are also patients with unidentified 
abdominal pain. A total of 121 samples were used in the final 
analysis. Patients over 80 years of age (n = 16) and IBD patients 
in remission (n  =  7) were removed. Results for C-reactive 
protein, total leukocytes, and total neutrophils were collected 
retrospectively from the medical records and the test result 
closest to the sample collection date was taken for each patient.

Stool samples from hospitalized patients (HPs) were collected 
in sterile containers and immediately transported to the 
laboratory. Samples were homogenized and volumetric equivalent 
of 50  μl was added to 1  ml of Inhibitex buffer (QIAamp Fast 
Stool DNA Mini Kit, Qiagen) and stored at −80°C until 
further use.

The group of healthy volunteers (non-hospitalized controls, 
NHCs) was used as a control (n  =  162). Sample collection is 
described elsewhere (Mahnic and Rupnik, 2018). Out of 197 
collected samples, 162 were chosen for the analysis while 35 
subjects were removed based on the following criteria: missing 
information (n  =  6), age over 80  years (n  =  2), surgical 
procedure on gastrointestinal tract in the last 3 months (n = 1), 
hospitalized in the last 3  months (n  =  6), gastrointestinal 
infection in the last 3  months (n  =  13), diagnosed with IBD 
(n = 1), bacterial or fungal community analysis yielded insufficient 
number of reads (n  =  6).

Ethics approval was obtained from the National Medical 
Ethics Committee separately for the study part on hospitalized 
patients (KME 95/05/15) and the study part on healthy volunteers 
(No. KME 81/03/16).

Isolation of the Total Bacterial DNA, 
Library Preparation, and Amplicon 
Sequencing
Total bacterial DNA was extracted from each stool sample 
using the QIAamp Fast Stool DNA Mini Kit (Qiagen, Hilden, 
Germany) after mechanical disruption (speed 7,000 for 70s) 
with the SeptiFast Lyse Kit on MagNA Lyser (Roche).

The V3  V4 hypervariable region of the 16S rRNA gene 
was amplified using broad-range set of primers 341F 
(5′-CCTACGGGNGGCWGCAG-3′)–805R (5′-GACTACHVG 
GGTATCTAATCC-3′). Library preparation was carried out 
according to 16S Metagenomic Sequencing Library Preparation 
manual (Illumina).

The Internal Transcribed Spacer 2 (ITS2) was amplified 
using broad-range set of primers ITS86F (5′-GTGAAT 
CATCGAATCTTTGAA-3′)–ITS4R (5′-TCCTCCGCTTATTGA 
TATGC-3′). Library was prepared according to 16S Metagenomic 
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Sequencing Library Preparation manual (Illumina, CA, USA) 
with the exception of using Q5 High-Fidelity DNA Polymerase 
(NEB, Massachusetts, USA) instead of KAPA HiFi HotStart 
ReadyMix (Kapa Biosystems).

Final library quality and quantity were assessed using the 
High Sensitivity DNA Analysis Kit, BioAnalyzer (Agilent). 
Sequencing was performed on the Illumina MiSeq platform 
with Reagent Kit V3 (2  ×  300 bp) (Illumina).

Data Availability
The sequence data supporting the conclusions of this article 
are available in the form of combined paired end reads (contigs) 
on the Metagenomics RAST (MG-RAST) database server1 under 
the project access number mgp86691.2 Nine samples did not 
meet the minimum criteria of 1,000,000  bp per sample as 
required by MG-RAST and are available upon request 
from authors.

16S rRNA Sequence Analysis
The analysis in mothur (v.1.36.1) (Schloss et  al., 2009) was 
performed according to the MiSeq standard operating 
procedure (SOP) for Illumina paired end reads. The bacterial 
16S rRNA reads were processed using the following criteria: 
(1) reads were not allowed any ambiguous bases and the 
maximum homopolymer length was set to 8 base pairs (bp); 
(2) the reads were aligned against the Silva reference alignment 
(Release 123); (3) chimeras were identified using the UCHIME 
algorithm; (4) the classification of reads was performed using 
the RDP training set (version 16) with 0.80 bootstrap threshold 
value; and (5) sequences were clustered into operational 
taxonomic units (OTUs) at 97% similarity cut-off. After 
quality filtering, we  obtained an average depth of 37,780 
sequences per sample (min 297 sequences, max 87,916 
sequences). We  removed reads that were represented in the 
abundance of less than 0.01% and rarefied each sample to 
3,000 sequences. A single sample with less than 3,000 sequences 
was removed from further analysis.

ITS2 Sequence Analysis
Fungal ITS2 reads were processed using following criteria: (1) 
the reads were not allowed any ambiguous bases; (2) reads 
shorter than 205 bp or longer than 502 bp were removed; 
(3) reads containing homopolymers longer than 12 bp were 
removed; (4) ITSx software was used for binning in order to 
remove non-fungal reads (Bengtsson-Palme et  al., 2013); (5) 
the reads were aligned pairwise using the Needleman-Wunsch 
method (rewards +1 for a match and penalizes with −1 and 
−2 for a mismatch and gap, respectively); (6) the sequences 
were clustered into operational taxonomic units (OTUs) at a 
98% similarity cut-off; and (7) the classification was inferred 
using UNITE ITS database (version 6) with 0.80 bootstrap 
threshold value. After quality filtering, we  yielded an average 
depth of 19,661 sequences per sample (min 504 sequences, 

1 http://metagenomics.anl.gov/
2 https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp86691

max 73,757 sequences). We removed reads that were represented 
in the abundance of less than 0.01% and rarefied each sample 
to 1,000 sequences. Samples with less than 1,000 sequences 
(n  =  13) were removed from further analysis.

Statistical Analysis
Alpha diversity (Shannon index), beta diversity (AMOVA with 
Bray Curtis distances), and population level analysis (LEfSe) 
(Segata et  al., 2011) were performed in mothur (v 1.36.1). 
Non-Metric Multidimensional Scaling (NMDS) analysis was 
done in R (version 3.1.3) with the “Vegan” package using Bray 
Curtis distances as input. Clusters were obtained with the 
partitioning around medoids (PAM) method (R, version 3.1.3). 
The optimal number of clusters was determined based on the 
highest mean Silhouette coefficient. The R script and output 
for PAM analysis are available in Supplementary Material.

Machine Learning for Relating Microbiota 
Composition to Diagnosis-Based Groups
In this paper, we use machine learning (ML) to relate microbiota 
composition to diagnosis-based groups. In particular, we  built 
predictive models that take relative OTU abundances as input 
and predict a specific group as output. Note that the diagnosis-
based groups are hierarchically organized (see Figure  1).

The task of predicting a group from such a hierarchy is an 
example of a hierarchical classification task, where all labels 
on the path from the root to a leaf of the hierarchy are predicted, 
rather than just the leaf (e.g., Subject/HP/Tumor, rather than 
just Tumor). We  solve this task by using Predictive Clustering 
Trees (PCTs), an extension of decision trees that can handle 
hierarchical classification tasks (Blockeel et al., 1988; Vens et al., 
2008). PCTs are grown top-down, from root to the leaves, with 
each node corresponding to a cluster, increasing within-cluster 
similarity of the samples (patients) in tree nodes with each 
consecutive split of the learning data, until only samples (patients) 
of the same category remain in the leaves, at which point the 
tree growing stops. PCTs take the diagnosis-based group hierarchy 
into consideration during the learning process.

In order to lift the predictive performance of PCTs, we learn 
ensembles thereof by using the Random Forest algorithm (Kocev 
et  al., 2013). This algorithm learns many PCTs, each on a 
subset of the original data. An ensemble makes predictions 
by querying each ensemble member (PCT) and averaging their 
predictions. Genie3 scores were calculated from the ensembles 
to determine the importance of the individual attributes (OTUs) 
in the whole dataset (Huynh-Thu et  al., 2010).

We evaluated our models in terms of Area Under the 
Precision-Recall Curve (AUPRC) for individual groups and in 
terms of Area Under the average Precision-Recall Curve (AUPŔC) 
for all groups taken together, i.e., overall model performance 
(Vens et  al., 2008). These measures combine precision and 
recall and are widely used to determine the quality of machine 
learning models when dealing with imbalanced learning data.

A more detailed explanation of the used machine learning 
approaches and evaluation measures used in this article is 
available in the Supplementary Material.
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RESULTS

Bacterial and fungal stool communities were analyzed in 283 
individuals. These included 121 gastroenterological hospitalized 
patients (HPs) from a single ward and 162 non-hospitalized 
healthy controls (NHCs). After quality filtering, we  obtained 
a total of 438 bacterial OTUs (102.7 ± 40.6 OTUs per sample), 
and 136 fungal OTUs (5.8  ±  2.9 OTUs per sample).

Metadata collected on subjects participating in the study 
included age, gender, and the history of antibiotic therapy in 
the past 3  months (Table  1). Based on the analysis of the 
entire studied population, we have shown the correlation between 
age and antibiotic therapy with the structure of the bacterial 
community, jointly explaining 1.9% of interindividual variability 
(PERMANOVA, p  =  0.004 and 0.002, respectively). Antibiotic 
therapy was also weakly associated with the fungal community, 

explaining 1.2% of interindividual variability (PERMANOVA, 
p  =  0.013; Supplementary Table S1).

Gastroenterological Hospitalized Patients 
From Three Distinct Diagnosis  
Non-related Clusters
Hospitalized patients (HPs) differed significantly from NHCs 
(AMOVA <0.001). Bacterial community of HPs was characterized 
by an increase in Enterobacteriales and Lactobacillales (mainly 
Enterococcus) and reduction in Clostridiales, Bacteroidales, and 
community diversity (Supplementary Figure S1). Fungal 
community of HPs was characterized by an increase in different 
Candida species and reduction in Saccharomyces cerevisiae 
(Supplementary Figure S1). Different diagnosis-based groups 
of HPs however could not be  distinguished among each other 
neither with bacterial nor fungal community (AMOVA >0.05).

A

B

D

C

FIGURE 1 | Efficiency of the machine learning models at predicting diagnosis-based groups. Random Forest model of 100 PCTs was constructed individually for four 
datasets with different sets including host-specific factors alone (orange) or in combination with bacterial and/or fungal community (blue). An individual bar chart is 
plotted for each diagnosis-based group (node in the tree) arranged into the hierarchy as it was used in the model training. The length of the bar represents the area 
under the precision-recall curve ( ).AUPRC  The top-most node (A) shows the area under the average precision-recall curve (AUPŔC) scores, indicating the 
performance of the models across all groups. The other levels (B–D) show the AUPRC  scores indicating the performance of the models for each individual group. 
The length of blue bars extending to the right of the respective value of model including only host-specific factors (orange bar) represents D AUPRC  – the additional 
information contained in the microbial community contributing to the prediction of the diagnosis-based group beyond the information provided by host-specific factors.
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Additionally, significantly higher interindividual variability 
was observed among diagnosis-based groups of HPs as 
compared to the NHCs in both bacterial and fungal 
community (Supplementary Figure S2). In an effort to 
resolve the unexplained variability, we  clustered our  
samples using partitioning around medoids (PAM). 
Partitioning into three clusters was determined as optimal 
based on the highest mean Silhouette coefficient 
(Supplementary Material).

Analysis of molecular variance showed significant 
differentiation among clusters (AMOVA, p  <  0.001; 
Figure  2B). The first cluster (C1, n  =  227) included all 
NHCs and 65 HPs, and was for the purposes of downstream 
analysis split into two sub-clusters, C1(NHCs) and C1(HPs). 

The second and third clusters (C2 and C3) included 42 
and 14 HPs, respectively.

Clusters showed almost no diagnosis association. Clusters 
C1(HPs) and C2 included individuals from all five target groups 
of HPs, while C3 included individuals from groups “CD,” “UC,” 
and “Infection” (Figure  2A). No cluster association was found in 
relation to age or gender distribution (Supplementary Figure S3). 
The percentage of subjects on antibiotic therapy differed among 
clusters [C1(NHCs): 5.6%; C1(HPs): 23.1%; C2: 52.4% and 
C3: 92.9%, p  <  0.001] with cluster C3 including only one 
subject who did not receive antibiotic therapy during 
hospitalization. However, our results indicate that exposure to 
antibiotics was not the only driver of cluster-related changes 
in bacterial and fungal communities (Supplementary Figure S4).

TABLE 1 | Distribution of host-specific factors across different groups of hospitalized patients and non-hospitalized healthy controls.

Gastroenterological hospitalized patients Non-hospitalized 
healthy controls

Crohn’s disease Ulcerative colitis Infection Tumor Other

Number of samples (n = 15) (n = 25) (n = 23) (n = 22) (n = 36) (n = 162)

Age
Mean ± SD 41.1 ± 15.0 46.2 ± 14.6 64.6 ± 10.9 69.2 ± 10.9 58.0 ± 14.1 45.1 ± 15.5
Gender
Female [n (%)] 9 (60%) 12 (48.0%) 11 (47.8%) 9 (40.9%) 19 (52.8%) 104 (64.2%)
Male [n (%)] 6 (40%) 13 (52.0%) 12 (52.2%) 13 (59.1%) 17 (47.2%) 58 (35.8%)
Antibiotic therapy
Yes [n (%)] 8 (53.3%) 8 (32.0%) 16 (69.6%) 6 (27.3%) 12 (33.3%) 9 (5.6%)
No [n (%)] 7 (46.7%) 17 (68.0%) 7 (30.4%) 16 (72.7%) 24 (66.7%) 153 (94.4%)

A B

FIGURE 2 | Clusters of hospitalized patients and healthy controls obtained with partitioning around medoids. (A) Distribution of samples in clusters based on their 
diagnosis-based group affiliation. (B) Non-metric multidimensional scaling (NMDS) presentation of Bray-Curtis distances. The clusters are highlighted with different 
colors. Cluster C1 was, for the purpose of downstream analysis, divided into C1(NHCs) and C1(HPs). NHCs, healthy controls; CD, hospitalized patients with Crohn’s 
disease; UC, hospitalized patients with ulcerative colitis; Other, patients with other diagnoses, primarily liver-associated diseases.
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A

D FC E

B

FIGURE 3 | Cluster-specific bacterial and fungal patterns and degree of inflammation. (A) Shannon diversity index for bacterial and fungal communities. (B) 
Average relative abundance of four most represented bacterial orders and two most represented fungal genera. (C) The relative abundance of Enterobacteriales 
against relative abundance of Lactobacillales. Coloring in the subsections (A–C) denote cluster affiliation. (D–F) Measured inflammation markers, i.e., C-reactive 
protein (CRP) (D), total number of leukocytes, (E) and total number of neutrophils (F). Mean values are highlighted with a red dot. Asterisks denote the significance, 
at which the distributions differ among the compared groups.

Clusters C2 and C3 showed more pronounced signs of 
a disrupted bacterial community. Compared to clusters 
C1(NHCs) and C1(HPs), both C2 and especially C3 showed 
lower bacterial diversity (Shannon index, p  <  0.001) 
(Figure  3A). Cluster C2 was characterized by an increase 
in different representatives of the family Enterobacteriales 
(Escherichia/Shigella (Otu3) and Enterobacteriaceae (Otu6); 
LEfSe, LDA = 5.38 and 5.07, respectively). Detailed investigation 
of Enterobacteriaceae (Otu6) revealed that this OTU includes 
mainly representatives from genera Klebsiella and Citrobacter. 
Cluster C3 was on the other hand characterized by an increase 
in representatives from the order Lactobacillales [Enterococcus 
(Otu4) and Streptococcus (Otu19, Otu59); LEfSe, LDA = 5.49, 
4.65 and 4.01, respectively] (Figure 3B). Additionally, we have 
shown that the relative abundances of Enterobacteriales and 
Lactobacillales were weakly negatively correlated (Pearson’s 
r  =  −0.124, p  =  0.173; Figure  3C).

Cluster C1(HPs) resembled NHCs. Here, less pronounced 
characteristics of cluster C2 were observed such as decrease 
in the bacterial community diversity (Shannon index, 
p  <  0.001) and an increase in Enterobacteriales (Otu3 and 
Otu6; LEfSe, LDA  =  4.14 and 3.72, respectively) and 
Streptococcus (Otu19 and Otu59; LEfSe, LDA  =  3.48 and 
3.13, respectively). An increase in Enterococcus (Otu4), a 

pivotal characteristic of cluster C3, was on the other hand 
not observed in cluster C1(HPs). Cluster C1(HPs) was also 
associated with the reduction in Clostridiales, most 
significantly decreased were Faecalibacterium (Otu2) and 
Roseburia (Otu8) (LEfSe, LDA = 4.24 and 4.03, respectively; 
Supplementary Figure S5).

Regarding fungal community, all three clusters containing HPs 
showed a decrease in the relative abundance of Saccharomyces, 
predominantly S. cerevisiae (Otu1) (LEfSe, LDA  >  4.5 for all 
comparisons). The increase in Candida, especially C. albicans 
(Otu2) was significant in clusters C2 and C3 as compared to 
NHCs (LEfSe, LDA  >  4.5 for all comparisons) (Figure  3B).

The three tested inflammatory markers (C-reactive protein 
(CRP), total leukocytes and neutrophils) were significantly increased 
in patients belonging to cluster C3 as compared to the cluster 
C1(HPs), and two of them (CRP and total leukocytes) also 
compared to cluster C2. No significant differences were observed 
between clusters C1(HPs) and C2 (Figures  3D–F). Enterococcus 
(Otu4) was significantly correlated with CRP levels independent 
of the clusters (Pearson’s r  =  0.463, p  =  0.002; Supplementary 
Figure S6), while no community-associated correlations were 
observed between this OUT and the other two inflammatory 
markers. No data on inflammatory markers were available for 
NHCs. Compared to the reference values indicative for the healthy 
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population (CRP: 0.8  mg/L–3  mg/L; total leukocytes: 4–11 × 
109 cells/L; neutrophils: 2.5–7.5 × 109 cells/L), the average cluster 
values suggested an increased CRP in all three clusters containing 
HPs, while the total leukocytes and neutrophils were elevated 
above the normal range only in cluster C3.

Building Random Forest Models to  
Assess the Ability of Bacterial and  
Fungal Community to Predict  
Diagnosis-Based Groups
Predictive Clustering Tree (PCT) models for hierarchical 
classification (Blockeel et al., 1988; Vens et al., 2008) were trained 
to identify diagnosis-based groups, which could potentially 
be  predicted by bacterial and fungal microbiota, individually or 
in combination. In addition to PCTs, where a single decision 
tree constitutes the predictive model, Random Forest ensembles 
of 100 PCTs (PCT_RF) were trained (Kocev et  al., 2013). This 
increased the predictive performance over that of single PCT 
models at the expense of interpretability (Supplementary Table S2).

We built three models with the microbial communities 
included into the training data along with host-specific factors, 
i.e., models “Bacteria,” “Fungi,” and “Bacteria + Fungi” (Figure 1). 
The predictive power of microbiota was assessed by the difference 
in the AUPRC score between the models learned solely on 
host-specific factors (Figure 1, orange bars) compared to those 
including also microbial community data (Figure 1, blue bars). 
The difference (ΔAUPRC) was interpreted as the information 
contained in the respective microbial community, which was 
contributing to the prediction of the diagnosis-based groups 
beyond the contribution of the available host-specific factors.

Bacterial Community Is More Informative 
Than Fungal and Can to a Limited Extent 
Predict Some Diagnosis-Based Groups
Both bacterial and fungal microbiota showed the ability to 
distinguish between HPs (PCT_RF, ΔAUPRC  =  0.28 and 0.17 
for bacterial and fungal community, respectively) and NHCs 
(PCT_RF, ΔAUPRC  =  0.21 and 0.12 for bacterial and fungal 
community, respectively) (Figure  1B).

Both bacterial and fungal communities were among different 
diagnosis-based groups most informative at predicting the group 
“IBD.” Model performance was higher when we  trained it on 
the bacterial community as compared to the fungal community 
(PCT_RF, ΔAUPRC  =  0.32 and 0.09 for bacteria and fungi, 
respectively). Performance did not improve when we  trained 
it on the combination of both bacterial and fungal community 
(PCT_RF, ΔAUPRC  =  0.30) (Figure  1C).

Bacterial community showed an increased ability to predict 
the group “CD,” while the ability to predict group “UC” was 
lower (PCT_RF, ΔAUPRC  =  0.17 and 0.05 for CD and UC, 
respectively). Fungal community showed no ability to predict 
either group “CD” or “UC” (PCT_RF, ΔAUPRC  =  0.0 and 
−0.04 for CD and UC, respectively) (Figure  1D).

Patients with both CD and UC generally showed similar 
signs of microbiota disruption, but these were more pronounced 

compared to other hospitalized patients. For instance, we  have 
shown that although it is indicative of all diagnosis-based groups, 
the decrease in community diversity, Faecalibacterium (Otu2), 
and Blautia (Otu15) was most significant in the group “CD” 
[LEfSe, LDA  =  4.18 and 3.52 for Faecalibacterium (Otu2) and 
Blautia (Otu15), respectively; Supplementary Figure S5]. By 
coupling Random Forest models with the Genie3 score 
(Huynh-Thu et  al., 2010; Petković et  al., 2017), we  obtained a 
set of taxa, which were most informative at predicting groups 
“CD” and “UC” (Supplementary Figure S7); however, significantly 
larger cohort would be  required to validate these results.

Bacterial and fungal communities also showed a limited ability 
to predict the group “Other” (PCT_RF, ΔAUPRC  =  0.12 and 
0.06 for bacteria and fungi, respectively) (Figure  1C). This is a 
heterogeneous group, including (among other) liver-associated 
diseases, which are known to be  associated with changes in the 
gut microbiota (Sanduzzi Zamparelli et al., 2017; Woodhouse et al., 
2018). Neither bacterial nor fungal community showed significant 
ability to predict patients with infection or tumor (Figure  1C).

DISCUSSION

Among different gastrointestinal and other chronic diseases, IBD, 
colorectal cancer, and infection-associated signatures in the gut 
microbiota have been extensively studied and well described in 
the past. However, studies commonly compare patient cohorts 
solely to the healthy controls. Here, we  aimed to characterize 
the gut bacterial and fungal communities in a broader group 
of gastroenterological patients hospitalized at the same ward.

First we  distributed hospitalized patients into diagnosis-based 
groups. All groups of hospitalized patients differed significantly 
from healthy controls in both bacterial and fungal community 
structure. Moreover, our results suggest that most prominent 
microbial signatures, often reported as disease-specific, are 
commonly observed in the general population of gastroenterological 
hospitalized patients. For instance, a decrease in bacterial diversity 
and multiple members of Clostridiales and an increase in 
Streptococcus and Escherichia/Shigella were reported in IBD patients 
as compared to the healthy controls (Gevers et  al., 2014; Rajca 
et  al., 2014; Sokol et  al., 2016; Takahashi et  al., 2016; Halfvarson 
et  al., 2017; Pascal et  al., 2017). Also, a significant decrease of 
Faecalibacterium in patients with CD is often described as highly 
significant (Sokol et  al., 2008, 2016; Rajca et  al., 2014; Takahashi 
et  al., 2016). In our study, we  have shown that these changes 
are not IBD exclusive, but typically found also in other 
gastroenterological pathologies. Based on the previously published 
data, we  suggest that these alterations most likely result from the 
elevated concentration of oxygen in the gut (Rigottier-Gois, 2013).

Random Forest models further confirmed that the ability 
of the microbial community to predict diagnosis-based groups 
was limited. By training models on host-specific factors and 
microbial community data simultaneously, we  were able to 
minimize the effect of age, gender, and antibiotic therapy, 
factors known to be associated with changes in the gut microbiota 
(Falony et  al., 2016; Zhernakova et  al., 2016). Group IBD was 
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the only among diagnosis-based groups where microbial 
community data improved model performance. However, our 
sample size was not sufficient to reliably differentiate between 
general dysbiosis patterns and IBD-specific microbial patterns.

Unsupervised partitioning was subsequently used with the 
aim to resolve the unexplained variability inside diagnosis-
based groups. Three clusters of patients were obtained, which 
were associated with a different degree of microbiota disruption 
as well as inflammation observed in patients.

Clusters could not be fully explained either by the underlying 
disease or the host-specific factors. Antibiotic use correlated 
with clustering to the greatest extent with the degree of 
disruption increasing with percentage of patients receiving 
antibiotics. However, similar patterns of community disruption 
often occurred in subject receiving antibiotics and those that 
did not, best exemplified in cluster C2 (Supplementary 
Figure S4).

The first cluster represented what is generally considered a 
healthy microbiota. It included all healthy controls and 
approximately half of the hospitalized cohort. Each of the 
remaining two clusters represented a unique type of a disrupted 
microbial community. Cluster C2 was characterized by an 
increase in the family Enterobacteriaceae while the cluster C3 
was dominated by order Lactobacillales, most prominently 
genus Enterococcus.

Cluster C3 was additionally associated with the most 
pronounced signs of microbial community disruption such as 
a lower bacterial diversity, the largest reduction of commensal 
taxa, and the highest abundance of C. albicans. Patients affiliated 
with this cluster also showed increased values of inflammation 
markers, most prominently the C-reactive protein and total 
leukocytes. Additionally, C-reactive protein was strongly 
correlated with the relative abundance of Enterococcus. On the 
other hand, correlation with an elevated inflammation marker 
could be  secondary to the infection treated with antibiotics, 
which were a prominent driver of shifts in microbiota.

With available data, we  were unable to deduce whether 
transition from Enterobacteriales dominated state (cluster C2) 
to Lactobacillales dominated state (cluster C3) is possible. On 
one hand, the dysbiosis-associated microbial patterns gradually 
increase from cluster C1 to C3 with most pronounced signs 
being observed in the latter. However, the negative correlation 
between Enterobacteriales and Lactobacillales (with Enterococcus 
as the main representative) suggests that these could present 
two independent states associated with different clinical outcomes. 
Our findings partially explain why the gut microbiota of 
hospitalized patients is often a suitable reservoir for antibiotic-
resistant enterobacteria and enterococci.

All three clusters differed in the prevalence of multiple 
members of Clostridiales. We  have shown that some highly 
prevalent OTUs, for example Blautia and Clostridium_XIVa, 
decreased in the abundance exclusively in the instance of severe 
dysbiosis (clusters C2 and C3). Faecalibacterium and Roseburia 
were, on the other hand, significantly decreased also in the 
group of hospitalized patients resembling healthy controls 
(cluster C1(HPs)), which suggests they are sensitive to the 
mild perturbations in the gut microbiota. Both are highly 

prevalent in the healthy population in Europe and in the USA 
(Qin et  al., 2010; Huse et  al., 2012; Falony et  al., 2016) and 
could therefore be  considered as potential biomarkers for an 
early detection of the dysbiosis onset.

Few studies to date have also analyzed the fungal microbiota. 
The target prediction-associated information contained in the 
fungal community was in our study limited to the hospitalization-
associated increase in C. albicans and a decrease in S. cerevisiae. 
In combination with bacteria, fungi showed no additional 
information contributing to the prediction of diagnosis-based 
groups. Although studies on fungal microbiota previously 
associated the increase in Candida with IBD (Sokol et  al., 
2016), its overgrowth seems to be  generally associated with 
the pre-disturbed gut microbiota, for example after the antibiotic 
treatment (Mavromanolakis et  al., 2001).

CONCLUSION

We have shown that bacterial and fungal gut microbiota 
alterations often reported as disease-specific, such as decrease 
of Faecalibacterium and increase of E. coli, Enterococcus, and 
Candida, are commonly found in a broader population of 
gastroenterological hospitalized patients. Although gut dysbiosis 
is often perceived as random (Zaneveld et  al., 2017), we  have 
described two distinct types where the severity of disruption 
was correlated with specific microbial patterns, the degree of 
inflammation, and to some extent with antibiotic use. We propose 
Faecalibacterium and Roseburia as potential biomarkers for an 
early detection of dysbiosis due to their high sensitivity to 
mild perturbations in the gut environment and high global 
prevalence in the healthy population.
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