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What is the biological advantage of having consciousness? Functions of consciousness have been elusive due to the subjective
nature of consciousness and ample empirical evidence showing the presence of many nonconscious cognitive performances
in the human brain. Drawing upon empirical literature, here, we propose that a core function of consciousness be the ability
to internally generate representations of events possibly detached from the current sensory input. Such representations are
constructed by generative models learned through sensory-motor interactions with the environment. We argue that the
ability to generate information underlies a variety of cognitive functions associated with consciousness such as intention,
imagination, planning, short-term memory, attention, curiosity, and creativity, all of which contribute to non-reflexive
behavior. According to this view, consciousness emerged in evolution when organisms gained the ability to perform internal
simulations using internal models, which endowed them with flexible intelligent behavior. To illustrate the notion of
information generation, we take variational autoencoders (VAESs) as an analogy and show that information generation
corresponds the decoding (or decompression) part of VAEs. In biological brains, we propose that information generation
corresponds to top-down predictions in the predictive coding framework. This is compatible with empirical observations that
recurrent feedback activations are linked with consciousness whereas feedforward processing alone seems to occur without
evoking conscious experience. Taken together, the information generation hypothesis captures many aspects of existing ideas
about potential functions of consciousness and provides new perspectives on the functional roles of consciousness.
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The notion that consciousness is a natural phenomenon sug-
gests that consciousness is subject to a set of universal laws
of nature, and a scientific theory of consciousness should cor-
rectly identify physical or information-theoretic conditions in
which consciousness occurs (Chalmers 1993). This implies that
biological brains are not the only medium that gives rise to con-
sciousness. Any physical system that satisfies the necessary
and sufficient condition for generating consciousness should
possess internal experience (Searle 2017). However, those

conditions have been difficult to determine due to the subjec-
tive nature of conscious experience.

Consciousness has both functional and subjective aspects
(Block 1995). The functional aspect, also known as access con-
sciousness, is the objectively observable aspect of conscious-
ness, which are amenable to scientific scrutiny, while the
subjective aspect, known as phenomenal consciousness, is not
directly observable except for the person experiencing that con-
scious state. Understanding how phenomenal consciousness
occurs within physical systems is known as the Hard problem
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memory, attention, curiosity, and creativity.
in the brain.

simulations using generative models.

¢ Drawing upon empirical research into consciousness, we propose a hypothesis that a function of consciousness is to inter-
nally generate counterfactual representations detached from the current sensory events.

¢ Interactions with generated representations allow an agent to perform a variety of non-reflexive behaviors associated with
consciousness such as cognitive functions enabled by consciousness such as intention, imagination, planning, short-term

¢ Applying the predictive coding framework, we propose that information generation is performed by top-down predictions

* The hypothesis suggests that consciousness emerged in evolution when organisms gained the ability to perform internal

of consciousness (Chalmers 1997) and is considered to be one of
the toughest problems in science. Much of the interest devoted
to possible solutions to the Hard problem often results in the
views that consciousness is epiphenomenal, i.e., that subjective
experiences exist only as a by-product of information process-
ing without playing any functional role (Velmans 1991). Instead
of directly addressing the Hard problem, a possibly more pro-
ductive direction might be to consider putative functions of
consciousness, namely, cognitive functions that require con-
sciousness in the sense of being awake and able to report stimu-
lus contents with confidence. Here, we consider consciousness
both in terms of the state of consciousness (e.g. wakefulness)
and the contents of consciousness (e.g. awareness of specific
sensory stimuli).

In this Opinion article, we examine possible functions of
consciousness in the current literature of neuroscience and psy-
chology, and propose that information generation of possibly
counterfactual representations is the core faculty of conscious-
ness. Traditionally, many high-level cognitive functions have
been associated with consciousness. However, more recent
studies have uncovered cognitive functions such as attention
(Kanai et al. 2006; Bahrami et al. 2007; Koch and Tsuchiya 2007;
Hsieh et al. 2011), working memory (Soto et al. 2011; King et al.
2016), and executive control (Lau and Passingham 2007) can be
performed in the absence of conscious awareness (Lin and He
2009). Those empirical findings have made it difficult to pin
down cognitive functions that require consciousness. What
then is the critical function that requires consciousness? In the
literature, there have been a few suggestions for cognitive func-
tions that seem to require conscious awareness (Dehaene et al.
2017).

Reflexive versus non-reflexive behavior as a marker of
consciousness

In clinical settings, the ability to execute non-reflexive behavior
is taken as a sign of the presence of consciousness when distin-
guishing disorders of consciousness (Piccinini and Craver 2011):
the minimally conscious state (MCS) in which the patient is
awake and retains awareness of the self and environment, and
the unresponsive wakefulness syndrome (Laureys et al. 2010) in
which the patient is awake but lacks awareness of the self and
environment. According to a modern guideline, MCS is charac-
terized by the presence of cognitively mediated behavior, which
is differentiated from reflexive behavior (Giacino et al. 2002).
That is, in disorders of consciousness, the presence of con-
sciousness depends on intentional, deliberate behavior as

opposed to automated, reflexive behavior triggered solely by the
properties of the current sensory input. While identification of
non-reflexive behavior is difficult if we were to rely only on be-
havioral characteristics displayed by a patient, this clinical defi-
nition appeals to our intuition that consciousness is needed in
non-reflexive behavior.

Bridging a temporal gap in classical conditioning

Trace conditioning is a kind of classical conditioning which
pairs conditioned stimulus (CS) such as a tone with uncondi-
tioned stimulus (US), which evoked a response such as an eye-
blink from air puffs to the eye. Classical conditioning is said to
be a trace conditioning when CS and US do not overlap in time
as opposed to a delay conditioning in which CS and US overlap
in time. Crucially, empirical evidence suggests that successful
trace conditioning requires awareness of the relationship be-
tween CS and US, whereas delay conditioning occurs automati-
cally regardless of whether the subject became aware of the
relationship (Clark and Squire 1998; Clark et al. 2002).

The important difference is that in trace conditioning, the
subject needs to bridge the temporal gap between CS and US by
retaining the information of CS over a blank period. However,
the brain cannot prepare automated circuits to associate all
possible arbitrary combinations of temporally segregated
events, because the number of combinations increases when
we consider many different gap durations. Specifically, the in-
formation about the CS needs to be maintained over time in the
brain to be associated with the neural activity evoked by the US.
Therefore, the CS needs to be selected as such from many other
possible stimuli. That is to say, the subject needs to form a hy-
pothesis about the relationship between CS and US. This con-
trasts with delay conditioning in which the temporal overlaps
allow neural activities evoked by CS and US to directly interact
with each other without an additional mechanism to sustain in-
formation from the past. As such, the subject does not need to
pick a stimulus as a CS to maintain over a short time period.
These considerations based on findings in associative learning
studies suggest that a possible function of consciousness is to
bridge a temporal gap by selecting a small number of events.

Delayed response in a patient with agnosia

Another clue comes from experiments on the agnosia patient
DF who had impairments in conscious object recognition
(Goodale et al. 1991). When she was asked to indicate the orien-
tation of a slanted slit verbally or by adjusting a handle, she
could not report the orientation, suggesting that she had no
awareness of the orientation. However, she could post a letter
through the slit by adjusting the orientation of the letter in the



right angle, suggesting that she could use the orientation infor-
mation for guiding action. This is a classic example that led to
the proposal that the ventral pathway (where the patinet DF
had a damage) is for conscious vision, whereas the dorsal path-
way is for guiding action without necessarily evoking conscious
experience.

Crucially, when she was shown the slot first, and then the
light was turned off so that she would have to wait for a few
seconds before acting, then she failed to reach the slot correctly
(Goodale et al. 1994; but see Hesse and Schenk 2014). This sug-
gests that the unconscious action system needs to be guided
online by visual information and to act on offline information
retained from the recent past requires the ability to consciously
perceive the shape. In other words, “online systems” that pro-
cess information real time works without awareness, but to
maintain information over time, consciousness is necessary.

These examples suggest that a possible function of con-
sciousness might be to maintain sensory information in
short-term memory in a flexible, usable form over a period of
time after the stimulus is no longer present. Indeed, based on
such observations, Koch proposed a delay test for conscious-
ness in biological systems where the presence of consciousness
is assessed by the ability to perform a task when a temporal gap
is inserted between a stimulus and an action (Koch 2004).

This is in line with the second and the third laws of the three
laws of qualia—a framework proposed by Ramachandran and
Hirstein (1997). “Qualia” refers to the qualitative aspect of con-
scious experience, which is sometimes characterized as the red-
ness of a sunset or the painfulness of headache (Kanai and
Tsuchiya 2012). In the three laws of qualia, qualia are character-
ized by three functional properties, namely, (i) irrevocability,
(ii) flexibility, and (iii) short-term memory. Irrevocability refers
to the observation that we cannot override the contents of expe-
rience at will via top-down attention. Flexibility implies the fact
that once sensory events are consciously registered, the con-
tents can be used for multiple, open-ended purposes unlike re-
flexive behavior. Short-term memory refers to the fact that the
content of consciousness remains for a sufficient time to allow
interaction with the executive system for making choices.

Counterfactual predictions for intention and planning

Another important aspect of consciousness pertains to motor be-
havior such as intention or planning. Intention can be formulated
as predictions about the consequences of actions before those
actions are executed (Jeannerod 1994). For example, I can predict
my sensory inputs from visual and somatosensory systems that
would arise if I were to make a particular action such as waving
my hand in front of my face even without actually performing
the movement. I can also think about going to the kitchen to
make coffee without actually standing up from the couch in the
living room. These instances of intention or planning are coun-
terfactual predictions in the sense that planned actions have not
materialized in the reality while imagining a possible future.

The importance of consciousness in planning has been ar-
gued in the literature. More than 20years ago, Crick and Koch
discussed plausible functions of visual awareness are to pro-
duce the best interpretation of the current scene, and to make
the information available for voluntary actions after a delay
(Crick and Koch 1995, 1998). Based on this view, they once pro-
posed that neurons in the primary visual cortex (V1) do not di-
rectly produce conscious experience (Crick and Koch 1995). The
rationale for the V1 hypothesis comes from the consideration
that the biological utility of conscious perception is to make the

sensory information available for planning and executing vol-
untary motor outputs. When we consciously experience sen-
sory information (e.g. seeing a red ball), we can use that
information for multiple purposes such as planning future
actions. Crucially, the V1 hypothesis predicted that neuronal ac-
tivities in V1 do not directly contribute to conscious experience
because V1 neurons do not directly project to the prefrontal cor-
tex implicated in the function of planning. While the position of
one of the original proposers may have changed (Koch et al.
2016), we believe that the rationale that a functional conse-
quence of conscious perception is the availability of the infor-
mation for future planning is still valid independent of his
current position.

The idea is also compatible with the current global work-
space theory in which the role of consciousness is to make sen-
sory information shared across multiple cortical regions
including the fronto-parietal networks (Baars 1997, 2005;
Dehaene et al. 1998; Dehaene and Naccache 2001). The key idea
is that consciousness allows one to utilize the content of con-
scious perception for flexible purposes (Earl 2014). These hy-
potheses put emphasis on short-term memory, working
memory, planning and executive control as functional capabili-
ties endowed by consciousness. In other words, a function of
consciousness is to make information globally available across
the system.

Another possible role of consciousness is metacognition. A
wide range of cognitive functions are known to be performed
without awareness. As psychophysical and neurological studies
have shown, objective performance in a visual task can be
above chance while the subject claims to have no awareness of
seeing a stimulus. Thus, it is thought that a higher-level, meta-
representation of a first-order representation of a sensory
stimulus should be needed for consciousness. This idea is
closely related to the notion of higher-order theories of con-
sciousness (Carruthers 2005; Rosenthal 2006; Lau and Rosenthal
2011). In line with higher-order theories, confidence ratings are
often used as a proxy measure for the presence of conscious
perception (Fleming and Lau 2014; Sherman et al. 2015).

These two aspects of consciousness, i.e., broadcasting of in-
formation and metacognition, have been summarized in a re-
cent paper (Dehaene et al. 2017) as C1 and C2, respectively. The
functions of consciousness discussed in this Opinion article
mainly concerns C1, and our information generation hypothesis
proposes that what underlies a variety of cognitive functions
such as short-term memory, intention, and planning is the ca-
pability of generating fictional representations using internal,
sensorimotor models.

Taken together, we propose that a key function of conscious-
ness is to allow non-reflexive behavior such as responding after
a delay, or executing an action based on internally generated
plans. Is there a computational mechanism that is common
across a variety of non-reflexive behavior?

Here, we suggest that a common thread across those examples
of non-reflexive behavior is information generation. It’s the
ability to internally generate sensory representations that are
not direct reflections of the current sensory input. They could
be counterfactual representations since information main-
tained over time in short-term memory from the past or predic-
tions of sensory consequences of unexecuted future actions do



not necessarily correspond to events actually happening in the
present environment.

Our hypothesis is that this ability to generate possibly coun-
terfactual representations using internal models learned
through interactions with the environment is the function of
consciousness. This hypothesis, which we call information gen-
eration hypothesis, helps us understand functional advantages
of consciousness and predict under what kind of tasks con-
sciousness would be required.

The ability to generate internal representations independent
of current sensory inputs allows an agent to engage with possi-
bly counterfactual states not happening at the present moment.
This enables an agent to detach itself from the environment
and perform non-reflexive behavior such as planning future
actions through mental simulations of the environment (Grush
2004). Furthermore, it allows an agent even to learn from fic-
tional scenarios it has never experienced (Ha and Schmidhuber
2018). This capability provides an enormous advantage to
organisms for survival.

Counterfactuals in model-based reinforcement learning

The functional advantage of internal simulation is also appar-
ent in reinforcement learning. In the literature of reinforcement
learning, learning strategy is divided into model-free and
model-based (Dayan and Berridge 2014). Model-free reinforce-
ment learning such as Q-learning learns to derive the best ac-
tion under the current state but does not involve direct learning
of the structure of the environment. Model-based reinforcement
learning captures the sequential contingencies of events and
actions, namely, the predictive model of future states for a
given action. This model-based approach allows an agent to use
the knowledge of the structure of the environment to plan a
course of action. For example, a bird’s eye model of a maze
would allow an agent to plan for the optimal path through an
internal simulation. The model-based approach thus affords an
agent with the ability to compute an optimal sequence of
actions through mental simulation using their internal models.
In both biological and artificial intelligence, generative models
of action-state sequences play an essential role in model-based
reinforcement learning. For example, Dyna proposed by Sutton
(1991) adopts the idea that planning is “trying things in your
head.” Crucially, the model-based approach allows an agent to
adapt to new goals flexibly because it can use the internal
model to optimize its behavior without trial and error.

Intrinsic motivation, saliency, and infotaxis

Predictions of future states are useful for sampling information
from the environment efficiently. This is because such gener-
ated future states allow an agent to estimate various statistical
quantities of interest in a given context. For example, an agent
can compute in a model-based manner what would be the
expected information gain (Schmidhuber 1991, 2010) or other
forms of intrinsic motivation (Oudeyer 2007) in response to fu-
ture (and therefore counterfactual) actions. The framework of
active inference (Friston et al. 2012, 2013, 2015) promises to treat
future actions in a similar way as other counterfactual events
like hidden causes and infer them by conditioning on an opti-
mized utility function. While this utility function usually corre-
sponds to expected free energy it has been shown that the same
approach can be equally applied to various other intrinsic moti-
vations (Biehl et al. 2018). This suggests that the information

generation perspective may be able to naturally incorporate cur-
rent research on intrinsic motivations as well.

In the context of attention and eye movement, expected in-
formation gain can be considered as a saliency map (Friston
et al. 2012). Such formulation is considered model-based in the
sense that the saliency (i.e. expected decrease in the entropy of
hidden states) is computed based on a generative model of the
sensory input given the underlying hidden cause. Infotaxis is
another such example where search behavior is guided by
expected information gain given an action and is likely to be
found in many creatures (Vergassola et al. 2007). These model-
based search strategies are important when signals are sparse,
and highlight the utility of counterfactual predictions in biologi-
cal systems (Friston et al. 2015).

Taken together, our analysis suggests that the ability to gen-
erate information enables an agent to perform mental simula-
tions for planning future action sequences, which would be
otherwise difficult only with a collection of reflexive behaviors.
This ability underlies model-based reinforcement learning and
intrinsic motivations such as curiosity and infotaxis.

So far, we have argued that the ability to generate counterfac-
tual representations is the core function of consciousness,
allowing an agent to perform non-reflexive behaviors. However,
we have not specified what kind of neural processing should be
considered as generating information.

Here, we argue that information generation can be seen as
production of sensory representations using internal models.
This is achieved by reversing the process of representation
learning, which is projection from sensory inputs to internal
models. In what follows, we will illustrate the concept of infor-
mation generation using modern approaches to constructing
generative models with deep neural networks.

Generative models in deep neural networks

Many sophisticated methods such as generative adversarial
networks (Goodfellow et al. 2014; Gulrajani et al. 2017; Hindupur
2017) or variational autoencoders (VAEs) (Kingma and Welling
2013) for training models for generating sensory representations
have been developed in recent years, but they have not received
sufficient attention in the context of neuroscience. While the
concept of learning a generative model—statistical model of the
process of how sensory data are generated from a set of hidden
causes—is common in interpreting computational principles of
the brain, what it means for the brain to use generative models
for producing representations has rarely been considered. Here,
we illustrate the idea of information generation using the (vari-
ational) autoencoder as a metaphor and relate it to the predic-
tive coding architecture in the brain.

VAEs are a class of neural networks consisting of an en-
coder/inference network and a decoder/generative network
(Fig. 1a). The encoder works as data compression by transform-
ing the input data (e.g. image) to abstract, latent representations
of low dimensionality (i.e. parameters of a Gaussian distribu-
tion). The decoder then converts the abstract representation
back to the original data space as the output. The networks are
trained so that the output matches the input as closely as possi-
ble, namely, maximizing the lower bound of the probability of
generating real data samples. Once trained successfully, the de-
coder network can be used independently of the encoder
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Figure 1. Comparison of information generation in (a) autoencoder
and (b) predictive coding. (a) In autoencoders, the encoder part
(shown in red) compresses sensory information to compact repre-
sentations in a latent space. This representation is decoded into sen-
sory data format. The decoder (shown in blue) can be used for
counterfactual information generation using a seed chosen from the
latent space. The variables z; and z, represent the latent variables.
(b) In the predictive coding hypothesis of the biological brain, bot-
tom-up error signals (shown in red) correspond to data compression
or encoding in autoencoders, whereas top-down predictions (shown
in blue) correspond to information generation. Note that in predic-
tive coding, our hypothesis predicts that the top-down predictions
generate conscious experience

network, and thus without the input, to generate representa-
tions in the data space (e.g. see Fig. 1). This property of the de-
coder network enables production of novel and counterfactual
representations based on previous experiences. The loss func-
tion of VAE is known as the evidence lower bound and is related
to in Friston’s free energy principle (Friston 2009, 2010).

Under the computational scheme of VAEs, the decoder/gen-
erative and encoder/inference networks correspond to the gen-
eration and processing of information, respectively (Fig. 1a). The
decoder/generative network can be used for generating

representations in the data space by choosing a state in the la-
tent space, which allows production of counterfactual represen-
tations including those the agent has never encountered before.
From the architecture of VAEs, we can formulate information
generation in terms of mapping from an abstract low-dimen-
sional representation to a high-dimensional representation in
the data (i.e. sensory) space.

Predictive coding framework of the brain

However, the architecture of the VAEs does not resemble the
networks found in the biological brain. How do those encoder
and decoder networks in VAEs correspond to the network archi-
tectures in biological brains? To establish correspondences with
the brain, we consider hierarchical predictive coding (Rao and
Ballard 1999; Friston and Kiebel 2009; Hohwy 2014). According to
this view, representations at a higher layer serve as a prediction
for a lower layer, and this is communicated via top-down sig-
nals, whereas prediction errors (i.e. the discrepancy between
the top-down prediction and bottom-up signals) are communi-
cated back to the higher layer to update the prediction.

At a conceptual level, the reciprocal interactions between
top-down prediction and bottom-up prediction error in the pre-
dictive coding framework can be roughly mapped to the decoder
and encoder in VAEs, respectively (Fig. 1b). While whether the
brain utilizes the predictive coding architecture is still a matter
of debate, and there are multiple ways to implement similar
architectures (e.g. Heeger 2017), the framework provides a link
between the encoder/decoder scheme presented above and pos-
sible counterparts in the biological brain. That is, information
generation, which we claim to be crucial for consciousness, is
mediated by top-down prediction, whereas the bottom-up mes-
sage passing of prediction errors corresponds to encoding (or
data compression). By interpreting feedback predictions as in-
formation generation, our current hypothesis predicts that con-
sciousness is generated by the feedback predictions. This is in
line with multiple observations that reports of conscious per-
ception is associated with additional feedback activations from
higher sensory areas to lower sensory areas (Lamme et al. 2000;
Supér et al. 2001; Manita et al. 2015).

Note, however, that information generation could in princi-
ple occur both in feedforward and feedback networks, as the ex-
ample of VAE consists of purely feedforward networks.
Recurrent connections are just a specific case of implementing
information generation in the brain and are not a prerequisite
for information generation. Therefore, the information genera-
tion hypothesis predicts that consciousness could be also pro-
duced in simple networks like the VAE as long as they generate
information (see next section for a related issue). While we ac-
knowledge that some readers might find it unlikely that such a
simple network possesses consciousness, we leave this possi-
bility open for future discussion.

Information generation from an intrinsic perspective

We have attributed information generation to the decoder/gen-
erative network in VAEs and top-down feedback in predictive
coding networks. However, these attributions are made from an
extrinsic viewpoint. If we are given an arbitrary network of neu-
rons, it would be difficult to determine which part of the net-
work corresponds to a decoder or an encoder. Is there a
principled way to determine whether a system is generating in-
formation? One noticeable characteristic that distinguishes the
decoder network from the encoder network is that in the



decoder, the network has a divergent structure from a low-di-
mensional representation to a higher dimensional representa-
tion, whereas in the encoder network, the network has a
convergent structure. Further work is needed to determine
which part of a network should be considered as generating in-
formation from an intrinsic perspective without requiring an
extrinsic interpreter.

In this Opinion paper, we argued that a potential function of
consciousness is to generate potentially counterfactual repre-
sentations, and this function allows flexible response mecha-
nisms for various forms of non-reflexive, goal-directed
behavior. As discussed earlier, our idea is compatible with puta-
tive functions of consciousness proposed by various authors in
the context of the global workspace theory (Dehaene et al. 1998;
Baars 2005), V1 hypothesis (Crick and Koch 1995), and the three
laws of qualia (Ramachandran and Hirstein 1997), in which flex-
ible use of sensory information is thought to be a key element
of consciousness. Also, a very similar idea has been proposed by
Pennartz that consciousness is for deliberate decision making
on goal-directed behavior requiring internal generation of rep-
resentations (Pennartz 2018). In what follows, we briefly over-
view other theories that are relevant to our current hypothesis.

Semantic pointer competition

A notion similar to the decoder networks in our hypothesis has
been proposed in the context of the semantic pointer competi-
tion (SPC) hypothesis (Thagard and Stewart 2014). SPC proposes
that consciousness is supported by representations, semantic
pointers, and competition among semantic pointers. In brief,
SPC posits that neural representations constructed for each mo-
dality (e.g. sensory, motor, and emotional) are combined to
form the so-called semantic pointer, which works as a symbol
that bundles associated representations coming from multiple
modalities. The content of consciousness is determined
through competitive mechanisms among semantic pointers to-
wards a limited capacity. In this hypothesis, semantic pointers
play two functions. One is to make predictions/inferences about
other semantic pointers and the other is to unpack specific con-
tents in the representation coming from a specific modality. A
key theoretical difference is that the information generation hy-
pothesis claims that this unpacking process corresponds to the
generation of conscious experience, whereas SPC takes the
whole architecture consisting of the three components (i.e. rep-
resentations, semantic pointers, and competition) to be the
foundation of consciousness.

Regret

Frith and Metzinger (2016) proposed that a function of con-
sciousness is associated with the notion of regret. Regret
implies extension of the self across time because regret is about
the action taken in the past or anticipation of regret in the fu-
ture. This hypothesis built around the notion of regret also
includes other functions of consciousness such as the ability to
communicate subjective experience with others, the ability to
distinguish the real present from imaginary possible desirable
states as used in future planning, and persistence of the self
across time through the model of the self. Information genera-
tion discussed in our paper should be considered as a way to
implement mechanisms to compute regret through production

of and interactions with counterfactual past and future. The
ability to evaluate counterfactual regret would serve the pur-
pose of learning causal relationship between action and conse-
quences (Pearl and Mackenzie 2018).

Qualia: factual versus counterfactual representations

Several authors have argued that one important function of
conscious experience is the ability to distinguish between repre-
sentations of factual reality of the here and now and counter-
factual possibilities (Gregory 1998; Kanai and Tsuchiya 2012;
Frith and Metzinger 2016). While we have emphasized the link
between potentially counterfactual representations and con-
sciousness, conscious experience is more vivid for the actual
sensory input. How can the information generation hypothesis
explain the stronger conscious experience for factual events
than those for counterfactual possibilities?

Our interpretation is that conscious experience of the cur-
rent sensory input is also a product of the internal, generative
models. But instead of generating counterfactual events, the
same generative networks produce a representation of the cur-
rent input. The differences in vividness of experience come
from the differences in the degree of details produced by the
generative models (D’Argembeau and Van der Linden 2006;
Dijkstra et al. 2017; Pearson 2019). When counterfactual repre-
sentations are generated (e.g. imagining a face), generative net-
works can specify only up to a certain level of details, whereas
when bottom-up signals are available (e.g. seeing a face), gener-
ative networks can utilize those signals to produce representa-
tions with finer details. We speculate that this difference in the
level of details in internally generated images corresponds to
the differences in the vividness between actual and counterfac-
tual experiences and serves the purpose of distinguishing fac-
tual and counterfactual representations.

Furthermore, there has been a suggestion that counterfac-
tual representations implicit in the internal models of sensori-
motor contingencies contribute to the “presence” of an object of
perception (Seth 2014). According to this theory, the perceived
presence associated with a stimulus is supported by counterfac-
tually rich generative models that have learned sensorimotor
contingencies. Given the importance of perceptual presence in
conscious experience of here and now, numerous possibilities
stored in the structure of the generative models may shape the
ineffable richness of qualia.

However, vividness of experience does not always guarantee
that the sensation reflects the reality. In situations such as vi-
sual illusions, hallucinations, and dreams, we can have vivid
experience of counterfactual events in the sense that they are
not veridical to the external physical reality. For example, expe-
riences generated by hallucinations are vivid and therefore
should be considered as qualia even though we know that they
are internally generated and hence counterfactual. Thus,
whether an experience counts as a quale is not determined by
whether it is counterfactual or factual, but to what extent
details of the experience are produced by generative models.
This leads to an interpretation of why dreams feel more vivid
than imagination. While dreaming, bottom-up signals would be
missing due to the absence of input stimuli. Therefore, top-
down generative signals can produce more details without
interruptions from bottom-up signals which would be present
during awake states. This would lead to higher degrees of
details in generated images in dreams and hence more vivid
sensation despite the fact that all the images are internally
generated.



Relation to Integrated Information Theory

How is our hypothesis related to Integrated Information Theory
(IIT) proposed by Tononi and colleagues (Tononi 2004, 2008;
Oizumi et al. 2014, 2016; Tononi et al. 2016; Tajima and Kanai
2017)? The idea that information generation lies at the core of
consciousness is compatible with the main tenet in IIT that con-
sciousness is information. However, the notion of information
generation is different between these two theories. In our infor-
mation generation hypothesis, information generation refers to
the offline use of generative models so that the agent can inter-
act with potentially counterfactual situations. Therefore, the
hypothesis assumes the presence of an internal model. On the
other hand, information generation in the context of IIT is a
more general concept in which information is generated due to
a specific state of the system which is causally linked with the
past and the future and hence possesses information about
them. As such, IIT does not assume the presence of an internal
model or any specific structure. However, a possible link be-
tween the two theories is that a system with the ability to en-
gage in an internal simulation using internal models may also
integrate information because internal simulations require a
loop structure where generative models are used recursively,
and internal models need to reflect the complex dynamics of
the environment. Further research is needed to explore this
possibility to establish the relationship between the two
theories.

Algorithmic information theory of consciousness

Another information-theoretic approach to consciousness is
Kolmogorov Theory (KT) of consciousness (Ruffini 2017). KT pro-
poses consciousness is generated by compressive models of the
world. This is similar to our theory in the sense that specific in-
formation processes in the internal models are associated with
production of consciousness. However, a key difference from
our hypothesis is that KT emphasizes the compression process
performed by internal models. However, we argue that the com-
pressive processes are not associated with consciousness, and
instead decompression (i.e. generation) is linked with
consciousness.

Origins of conscious mind

While consciousness and intelligence are generally distin-
guished as separate entities, our hypothesis suggests a possible
link between the intelligent behavior endowed by flexible use of
internal sensorimotor models and consciousness.

What is the functional benefit of having the ability to gener-
ate counterfactual representations? Dennett’s formulation of
stages of evolution of minds (Dennett 1996) illustrates the bene-
fit of counterfactuals in evolution and intelligence. Dennett pro-
posed useful distinctions among different stages of the
evolution of creatures. These include the following four types of
creatures.

The first stage of creatures is called Darwinian. Darwinian
creatures are the most primitive form of creatures. The organ-
isms at this stage do not learn from experiences but have a fixed
set of behaviors determined by their genetic composition. They
adapt to the environment only as a species through natural se-
lection and mutation to their genes. Thus, learning occurs at a
population level but not as individual agents.

The second stage is called Skinnerian. Skinnerian crea-
tures—named after the psychologist Skinner—learn from their
own experience through associative learning. If a particular

action led to a reward (e.g. food), then that action is reinforced,
whereas an action that led to an aversive result will be avoided.
Skinnerian creatures can adapt to the environment during the
lifetime of individual organisms through trial and error.
However, there is a limitation in that they can only learn from
their own experiences. They would have to learn danger from
surviving dangerous situations.

Then, there comes the third stage of creatures—Popperian
creatures named after the philosopher Popper. They have inter-
nal simulation of the environment and select an action based
on predictions about simulated consequences of repertoires of
future action sequences. This ability allows Popperian creatures
to learn from their simulated, counterfactual experience, and to
select reasonable actions even in a new environment when
their internal model approximates it reasonably well. Moreover,
the ability to form counterfactual representations of sensory
consequences contingent upon their future action is the core
function of intention. The information generation theory of
consciousness suggests that consciousness appears at this
stage of the evolution of the mind. In other words, our theory
suggests the origin of consciousness is the functional advantage
of having counterfactual predictions using an internal model of
the environment, as it allows Popperian creatures to simulate
consequences of possible actions and avoid executing actions
that could be dangerous for survival.

Finally, the fourth stage is called Gregorian. Gregorian crea-
tures can learn from their cultural environment through words
and language. This requires the ability to run a simulation of
the environment using information they learned through books
and the Internet. In Popperian creatures, internal models had to
be built upon their own experiences. Gregorian creatures on the
other hand can improve their internal models through commu-
nication with other agents, which endows them with an addi-
tional leverage of intelligence. Here, the ability to internally
represent counterfactual states is a prerequisite.

Our current hypothesis predicts that the presence of con-
sciousness should be measured by the presence of internal gen-
erative models of the environment and the self. Moreover, the
hypothesis predicts that model-based action selection should
require consciousness. Is model-based reinforcement learning
or other forms of model-based decision making possible with-
out consciousness? One important future direction suggested
by these predictions is to establish a formal computational and
experimental framework to determine whether a given system
relies on information generated by its internal generative mod-
els. In the example of VAE, we argued that dimensional expan-
sion might be the essence of information generation. However,
we need to define information generation more formally as an
intrinsic property of a system. Further work is needed to estab-
lish such formalisms.

To recapitulate, we set off to identify functions of consciousness
by examining cognitive tasks that appear to require conscious-
ness. Based on a few examples such as trace conditioning and
delayed, non-reflexive responses, we aimed to extract func-
tional essences underlying those tasks, and hypothesized that a
function of consciousness is to bridge the temporal gap by inter-
nally generating representations of stimuli that are no longer
present in the proximal environment. While the hypothesis em-
phasized the counterfactual aspect of generated information, it
considers the conscious perception of current stimuli also as a
product of internal generation. To illustrate the processes



underlying information generation, we discussed information
generation in the decoder networks in VAEs and speculated
that in the brain, feedback connections should correspond to
such processes. Finally, we reversed the logic of necessity and
sufficiency and postulated a stronger version of our hypothesis
that a system with the ability to generate representations de-
tached from the current sensory input must have
consciousness.

Note that there are two levels of hypotheses within our in-
formation generation hypothesis. A weak version of the hypoth-
esis simply claims that a function associated with conscious
experience is to generate and maintain representations of
events detached from the current sensory input. This version
predicts that tasks in which correct responses are not immedi-
ately available thereby requiring interactions with internally
generated representations depend on consciousness. In other
words, the weaker version claims that information generation
is necessary for a system to perform consciousness dependent
tasks. As such, the ability to perform a task that require internal
generation of information is considered as an indicator of
consciousness.

On the other hand, a stronger version of the hypothesis goes
further and predicts that machines with similar functionalities
would also possess consciousness even if they are relatively
simple to build. This implies that all tasks that require counter-
factual information generation also require consciousness.
Therefore, consciousness and counterfactual information gen-
eration cannot be distinguished and we consider them identi-
cal. In other words, the stronger version claims that
counterfactual information generation is sufficient for a system
to be conscious. While readers may find this possibility unlikely,
we argue that this possibility should be left open for further
studies and the conceptual distinction of the two versions of
the hypothesis would be useful for further examining this hy-
pothesis in light of future research.

In the present paper, we discussed functions of conscious-
ness. However, the term “function” was used in two different
senses, i.e., teleological functions and functions in the sense of
(mechanistic) functionalism. To avoid confusion, we would
like to clarify how these two meanings of function are related
to the weaker and the stronger claim of the hypothesis
discussed above. The weaker claim, namely, the necessity of
information generation concerns the teleological, purpose-
related functions of consciousness. We discussed task condi-
tions in which the presence of consciousness is required for
successful performance and argued that what is common
among those conditions is the function to generate potentially
counterfactual events internally using generative models. The
stronger claim on the other hand concerns a form of function-
alism (i.e. mechanistic functionalism) in which specific func-
tional mechanisms of cognition correspond to conscious mind
(Piccinini and Craver 2011). Specifically, we proposed that
mechanisms of information generation are sufficient for con-
sciousness. While it is premature to provide a formal, mathe-
matical definition of information generation, we expect that
there be a specific network structure (i.e. a mechanism) that
allows an agent to use generative models recursively in an off-
line manner.

In summary, we proposed that the ability to generate possibly
counterfactual information underlies a variety of cognitive
functions enabled by consciousness such as intention,

imagination, planning, short-term memory, attention, curiosity,
and creativity, all of which contribute to non-reflexive, behav-
ioral flexibility. We further hypothesized that information gener-
ation corresponds to feedback predictions in the brain using the
predictive coding framework as a model of the brain. Further
studies are needed to formally define information generation as
an intrinsic property of biological and artificial systems.
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