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Abstract

In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the

immune system using a reaction-diffusion model in order to understand the dynamical

behavior of complex patterns and control the dynamics of different patterns. Through control

theory and linear stability analysis of local equilibrium, we obtain the optimal condition under

which the system loses stability and a Turing pattern occurs. By combining mathematical

analysis and numerical simulation, we show the possible patterns and how these patterns

evolve. In addition, we establish a bridge between the complex patterns and the biological

mechanism using the results from a previous study in Nature Cell Biology. The results in this

paper can help us better understand the biological significance of the immune system.

Introduction

For a reaction-diffusion system, the biological mechanism of pattern formation was proposed

by Turing [1]. Recently, the study of pattern dynamics about secondary bifurcation, Turing

bifurcation and amplitude equations, etc has attracted more attention [2–5] and be used in

different fields [6–8]. It turned out that external periodic forcing and dynamical parameters

affected the shape and type of patterns [9]. And research on the robustness problem with

respect to biological systems had also been reported [10]. The cross-diffusion, one species

affects other species in concentration gradient, had been considered in some fields [11–13].

And noise is an important way to explain synthetic systems and understand organismal phe-

notypes [14, 15]. Then Turing instability on networks was proposed to understand multicellu-

lar morphogenesis [16]. In addition, Turing patterns in large random networks was studied to

show the significant difference with classical systems [17–19]. However, control theory was sel-

dom used to study pattern dynamics.

Controllability and observation, which are the central concepts in control theory, are vital

in designing a controller of a dynamical system [20]. Maidi and Corriou studied the controlla-

bility of a particular class of distributed parameter systems described by a partial differential

equation (PDE) [21]. And the development of a mathematical model for minimizing quadratic

functionals in infinite time was investigated [22], then the stability of nonlinear dynamical

systems was analyzed [23, 24]. In addition, stochastic control problems have attracted
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considerable research interest [25–27]. Regarding immunity, the immune system provides the

body with both non-specific and specific defense against pathogens and distinguishes between

foreign and native species [28–30]. Wood disclosed the mechanism of the immediate response

[31], and Cho studied the heritable immune system [32]. In addition, the Biological Immune

System/ Human Immune System (BIS/HIS) has many desirable features, such as adaptability,

robustness, homeostasis, memory, and immunity [33–36], which can be used to solve various

computational problems.

The feedback control was studied, which means nonlinear control achieves significantly

better attenuation of the effect of bifurcations [37]. And Soh et al. illustrated that reaction-dif-

fusion processes was of importance in intracellular transport and control [38]. Then a control

design about a heat equation to stabilize an unstable parabolic PDE was designed [39]. More-

over, the spatiotemporal dynamics of a predator-prey system was studied in presence of addi-

tional food (controller) existing for predators [40] and these patterns may be controlled by

external perturbation [41]. The pattern transitions was proved to be controlled in spatial epi-

demics, which provided valuable insights into disease prevention and control [42]. In addition,

the controllable nonlinear diffusion processes was considered [43]and the completely observ-

able stochastic control problems for diffusion processes was dealt [44], the control of one-

dimensional diffusion processes was discussed [45]. However, the controller was seldom

designed to investigate the pattern formation.

Recently mathematical models is often utilized to find the main properties of biological sys-

tem and explain some biological phenomenon [46]. Adhesion proteins are known to be essen-

tial for the formation of normal epithelial tissues [47]. In the absence of adhesion proteins,

genes in cell will diffuse rapidly, which causes disease. In this paper, we attempt to study pat-

tern formation under the condition of Turing instability by modern control theory to better

understand the mechanism of the immune system and present a detailed process for designing

a controller. Then, we considered pattern formation with/without a controller under the criti-

cal value of Turing instability which provides a new tool to study pattern dynamics by modern

control theory, especially explaining the biological mechanism of pattern formation. Finally,

we establish a bridge between the complex patterns and the biological mechanism and use the

above results to control the proliferation of cancer cells with medicine. These results will help

us understand the immune system and will provide a theoretical method to guide clinical med-

ication for the treatment of some conditions.

The paper is organized as follows. In Section 2, we provide an immune system model and

obtain the condition of Turing instability. In Section 3, we study the reaction-diffusion equa-

tion by modern control theory. In Section 4, we show the numerical analysis of the model.

Finally, we summarize our results and draw conclusions.

The model

As we all know that immune cell plays an important role in healthy body, some methods was

proposed to cure some diseases by medicine. In this section, we consider a two species compe-

tition model with finite carrying capacities about cancer cell and immune cell [48] and an

effective treatment was obtained by controlling the amount of a medicine. In general, it can be

written as follows:

@P
@t ¼ f ðP;QÞ;

@Q
@t ¼ gðP;QÞ:

ð1Þ

where f(P,Q) = αP − βP2 − γPQ, g(P,Q) = θQ − δPQ − ηQ2, P is the density of cancer cells, and
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Q is the density of immune cells. The meaning of the parameters can be obtained in reference

[49].

Diffusion is known to often be caused by the intensity of pressure and density and thus can

sometimes destabilize the stable equilibrium state. Then the diffusion of cancer cell with little

adhesion proteins will make organism worse and the diffusion of immune cell also occurs to

protect organism in Fig 1. Therefore, we should consider the effect of diffusion on the model.

In this paper, we modified the system (1), added the diffusion term to the system and obtained

a reaction-diffusion system with zero boundary conditions as follows:

@P
@t ¼ f ðP;QÞ þ d1r

2P;

@Q
@t ¼ gðP;QÞ þ d2r

2Q:
ð2Þ

Here, we take the equilibrium ðP0;Q0Þ ¼
gy� Za

gd� Zb
; ad� by

gd� Zb

� �
, which satisfies f(P0, Q0) = 0,

g(P0, Q0) = 0.

And it is easy to know that the Jacobian matrix at equilibrium (P0, Q0) is as follows:

A ¼
a11 a12

a21 a22

� �

; ð3Þ

where a11 = α − 2βP0 − γQ0, a12 = −γP0, a21 = −δQ0, anda22 = θ − δP0 − 2ηQ0.

Then the standard form of the linear system of (2) can be written

@

@t
P
Q

� �

¼ A
P
Q

� �

þ Dr2
P
Q

� �

: ð4Þ

In the standard way, we assume that (P, Q) takes the following form in Fourier space:

P
Q

� �

¼
ck

1

ck
2

� �

elktþikrðk ¼ 1; 2; 3Þ:

Fig 1. Cancer cell and immune cell with diffusion.

https://doi.org/10.1371/journal.pone.0190176.g001
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Substituting the above formulation into (4) provides the characteristic equation

lk � a11 þ k2D1 � a12

� a21 lk � a22 þ k2D2

�
�
�
�

�
�
�
� ¼ l

2

k � Trklþ dðk2Þ ¼ 0;

where

Trk ¼ a11 þ a22 � k2ðD1 þ D2Þ;

dðk2Þ ¼ a11a22 � a12a21 � ða11D2 þ a22D1Þk2 þ D1D2k4:

and the roots of the characteristic equation are

lk ¼
1

2
ðTrk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr 2

k � 4dk

p
Þ:

Finally, we get the critical value k2
c ¼

a11D2þa22D1

2D1D2
and a necessary condition of Turing instabil-

ity

dðk2
c Þ ¼ a11a22 � a12a21 � ða11D2 þ a22D1Þk2 þ D1D2k4 < 0:

Clearly, we can validate the result in Fig 1 by selecting the appropriate parameter.

Control effort

It is well known that the elimination of cancer cells relies on not only immune cells but also

medicament control. In this section, a controller of adjuvant therapy will be designed [50]

based on the system 4. And the reaction-diffusion system with a controller can be written

d
dt

P
Q

� �

¼ ðA � Dk2Þ
P
Q

� �

þ Bu;R ¼ C
P
Q

� �

: ð5Þ

where Dk2 is obtained by substituting the type of solution in Fourier space into the Laplace

operator and rewriting the type of solution.

In general, the performance indicator functional can be written as

J ¼ 1

2

R1
0
ðRTMRþ uTNuÞdt;

where M = CTM1C is positive semidefinite, N is positive definite and J minimizes the output

and controller.

In order to derive the control function in the following section, we denote

x ¼
P
Q

� �

; ð6Þ

and

_x ¼ Ax þ Bu;
R ¼ Cx:

ð7Þ

where A = A − Dk2.

To solve the optional problem, we introduce the Hamilton function

H ¼ 1

2
ðxTMx þ uTNuÞ þ l

T
ðAx þ BuÞ: ð8Þ

and have the control function

@H
@u ¼ Nu þ BTl ¼ 0: ð9Þ
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Then,

u ¼ � N � 1BTl:

and co-state function

_l ¼ � @H
@x ¼ � Mx � ATl: ð10Þ

Assume

l ¼ Lx:

and

u ¼ � N � 1BTl ¼ � N � 1BTLx ¼ � Kx:

where

K ¼ N � 1BTL:

So the state function can be noted as

_x ¼ ðA � BKÞx: ð11Þ

and

_l ¼ � Mx � ATLx ¼ _Lx þ L _x ¼ _Lx þ LðA � BN � 1BTLÞx: ð12Þ

then obtain the following equation by eliminating x(x 6¼ 0)

_L ¼ � LA � ATLþ LBN � 1BTL � M: ð13Þ

Because L(1) = const or the zero boundary _L ¼ 0, the Riccati algebraic equation can be

written as

� LA � ATLþ LBN � 1BTL � M ¼ 0: ð14Þ

d
dt ðx

TLxÞ ¼ _xTLx þ xT _Lx þ xTL _x: ð15Þ

The derivation of xT Lx is given by

d
dt ðx

TLxÞ ¼ � xTMx � uTNu: ð16Þ

Upon integrating both sides, we get

J ¼ 1

2

R1
0
ðRTMRþ uTNuÞdt ¼ 1

2
xð0ÞTLxð0Þ:

and obtain the minimum functional value, which is

J� ¼ 1

2
xð0ÞTLxð0Þ:

In addition, we assume that the Lyapunov function is V(x) = xT Px

_V ¼ � xTMx � uTNu < 0:

and it is easy to know it is stable.
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Finally, the reaction-diffusion equation with a controller can be written as

@

@t
P
Q

� �

¼ ðA � BKÞ
P
Q

� �

þ Dr2
P
Q

� �

: ð17Þ

and

@P
@t ¼ f ðP;QÞ þ d1r

2P þ u;

@Q
@t ¼ gðP;QÞ þ d2r

2Q � u:
ð18Þ

The above process is the implementation of control to reaction diffusion that we proposed.

We can also validate the result in the following simulation [Figs 2–6] by selecting the appropri-

ate parameter.

Numerical simulation

In this section, the immune model is simulated numerically by the finite difference method in

two spatial dimensions. We set the time step and space step as 0.02 and 1, respectively, and

select coefficients of diffusion d1 ¼
1

2
and d2 = 2, with each frame being 360 � 360 space units.

Assuming that an immune cell can kill a cancer cell and that y = P −Q is an output, we choose

parameters B = [1 − 1]T, C = [1 − 1] and (α, β, γ, δ, θ, η) = (1.2, 1.5, 2, 2, 1, 2.4). Clearly, the sys-

tem is the observation. For the first test, we simulate the process from system (4) without a

controller. We can thus obtain k2
c ¼ 1:95 and dðk2

c Þ ¼ � 1:8225, which indicates that the

Turing instability and cancer cell cannot be eliminated by an immune cell [Fig 2]. For

Fig 2. Turing instability without a controller. (a) Dispersion curve indicating the occurrence of Turing instability. (b) Pattern

formation of the output (positive) without a controller. (c) Pattern formation of cancer cells without a controller. (d) Pattern

formation of immune cells without a controller.

https://doi.org/10.1371/journal.pone.0190176.g002
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Fig 3. The distribution curves and controller. (a) Cancer cell and immune cell distribution curves for System (5). (b) Curve

(controller) showing how much medicine should be given.

https://doi.org/10.1371/journal.pone.0190176.g003

Fig 4. The pattern formation with a controller. (a) Pattern formation of output when the curative medicine is taken. (b) The

optimal trajectory. (c) Pattern formation of cancer cells. (d) Pattern formation of immune cells.

https://doi.org/10.1371/journal.pone.0190176.g004

Pattern dynamics of the reaction-diffusion immune system

PLOS ONE | https://doi.org/10.1371/journal.pone.0190176 January 31, 2018 7 / 11

https://doi.org/10.1371/journal.pone.0190176.g003
https://doi.org/10.1371/journal.pone.0190176.g004
https://doi.org/10.1371/journal.pone.0190176


Fig 5. The pattern formation with a controller when α = 8. (a) Pattern formation of output. (b) Pattern formation of cancer

cells. (c) Pattern formation of immune cells.

https://doi.org/10.1371/journal.pone.0190176.g005

Fig 6. The pattern formation with a controller when d1 = 2.5. (a) Pattern formation of output. (b) Pattern formation of cancer

cells. (c) Pattern formation of immune cells.

https://doi.org/10.1371/journal.pone.0190176.g006
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System (5), we take k2 ¼ k2
c and obtain Jmin = 0.9751 and K = [0.9084 − 0.5143]; therefore,

u = −Kx = 0.5143Q − 0.9082P. The cell density with a controller and the amount of medicine

are shown in Fig 3. Pattern formation is also shown in Fig 4, which indicates the effective cure

when medicament control is used. In addition, we found that the spot pattern [Fig 5] suggest-

ing a worse outcome when the proliferation of the cancer cells is faster occurs when the diffu-

sion of the cancer cells is faster [Fig 6]. Here, the sign ± is only the representative of density.

Discussion

Reaction-diffusion system have often been studied [1–20], and more complex patterns involv-

ing some biological mechanisms have merged. Understanding how to control these pattern

is very important. Therefore, introducing control theory to a reaction-diffusion system is

required. Adhesion proteins are known to be essential for the formation of normal epithelial

tissues and are tumor suppressors [47]. Cancer cells diffuse easily when the spot pattern is iso-

lated, and normal cells are fixed because the stripe-like pattern links them with each other. In

this article, we present systematical analysis of how to control pattern formation under the

condition of Turing instability [Fig 2] where the cancer cells are in the ascendancy. Then, we

provide a theoretical method to make the immune system effective [Fig 4] using medicine [Fig

3] together with modern control theory, which can be used to cure some diseases. Moreover,

by performing a series of numerical simulations, it is found that a system with a regulator has

rich spatial dynamics [Figs 2 and 4] and can be treated as the coexistence of cancer cells and

immune cells, which can be controlled. However, the pattern formed is the spot pattern[Figs 5

and 6], in which the spot-like terrain is the worst [51]. Although medicine was taken, the con-

dition will worsen when the proliferation and diffusion of cancer cells are faster. Consequently,

we provide a way to guide clinical medication for the treatment of some conditions. In addi-

tion, this research represents an important advancement in the research of reaction-diffusion

equations, especially with regard to the development of nonlinear patterns in complex system.

Furthermore, these efforts will improve our understanding of the biological mechanism of pat-

tern formation using control theory in a specific model and will determine the key points to

provide possible advice by regulating the main properties of biological systems.
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