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Abstract 

Backgrounds: Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide that is difficult to diagnose 
during the early stages and its tumors are recurrent. Long non-coding RNAs (lncRNAs) have increasingly been 
associated with tumor biomarkers for diagnosis and prognosis. This study attempts to explore the potential 
clinical significance of lncRNA DUXAP8 and its co-expression related protein coding genes (PCGs) for HCC. 
Method: Data from a total of 370 HCC patients from The Cancer Genome Atlas were utilized for the analysis. 
DUXAP8 and its top 10 PCGs were explored for their diagnostic and prognostic implications for HCC. A risk 
score model and nomogram were constructed for prognosis prediction using prognosis-related genes and 
DUXAP8. Molecular mechanisms of DUXAP8 and its PCGs involved in HCC initiation and progression were 
investigated. Then, potential target drugs were identified using genome-wide DUXAP8-related differentially 
expressed genes in a Connectivity Map database.  
Results: The top 10 PCGs were identified as: RNF2, MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, 
CNTNAP4, MAGEA6, MALRD1, and DGKI. Diagnostic analysis indicated that DUXAP8, MEGEA1, MKRN3, and 
DGKI show diagnostic implications (all area under curves ≥0.7, p≤0.05). Prognostic analysis indicated that 
DUXAP8 and RNF2 had prognostic implications for HCC (adjusted p=0.014 and 0.008, respectively). The risk 
score model and nomogram showed an advantage for prognosis prediction. A total of 3 target drugs were 
determined: cinchonine, bumetanide and amiprilose and they may serve as potential therapeutic targets for 
HCC.  
Conclusion: Functioning as an oncogene, DUXAP8 is overexpressed in tumor tissue and may serve as both a 
diagnostic and prognosis biomarker for HCC. MEGEA1, MKRN3, and DGKI maybe potential diagnostic 
biomarkers and DGKI may also be potentially prognostic biomarkers for HCC. 
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Introduction 
By 2018, it was estimated that nearly 841,800 new 

liver cancer cases and 781,631 deaths due to liver 
cancers were recorded across 20 world regions (1). 
Hepatocellular carcinoma (HCC) accounts for 
approximately 80% of primary liver cancers, and 
ranks fifth among the most common malignancies 
and the third leading cause of cancer-related mortality 
worldwide (2, 3). Hepatitis B or C (HBV) viral 
infections are known to cause chronic liver cirrhosis 

and account for approximately 80-90% of all the HCC 
cases (4). Other risk factors include excessive alcohol 
consumption, obesity, aflatoxin B contamination, iron 
overload, and environmental pollutants (5, 6). HCC is 
a fatal malignancy characterized by high metastasis 
and recurrence after surgery leading to poor 
prognosis and very low survival rates (7, 8). Several 
treatments including hepatic resection, liver 
transplantation, image-guided tumor ablation, 
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transcatheter tumor therapy, and systemic therapy 
have been developed to control HCC (9). However, 
patient survival rates are still low despite these 
treatments. The 5-year survival rate of HCC is about 
7% (10). Identification of novel diagnostic biomarkers 
and therapeutic targets is crucial for improving 
prognosis of HCC patients. 

Long non-coding RNAs (lncRNAs) regulate 
normal cellular functions (11, 12). They also 
participate in various biological and pathological 
processes such as tumorigenesis (13). Overexpression 
of CCAT2 suppresses cell migration, invasion, and 
growth, and induce early apoptosis of glioma cells 
(14). LncRNAs have been reported to regulate 
pathogenesis of HCC (15). For instance, HULC (16) 
and LINC00974 (17) have been reported to participate 
in HCC development and progression. LINC00673 
regulates HCC carcinogenesis via microRNA-205 and 
is upregulated in HCC tissues and cell lines (12).  

DUXAP8, a pseudogene derived from lncRNA, 
promotes growth of pancreatic carcinoma cells by 
epigenetically silencing CDKN1A and KLF2 (18). It 
has also been found to enhance renal cell carcinoma 
by downregulating microRNA-126 (19). DUXAP8 is 
differentially expressed in bladder cancer, its 
downregulation inhibits cell invasion and 
proliferation and leads to cell apoptosis (20). Lijuan et 
al. reported that DUXAP8 expression was positively 
correlated with lymph node metastasis and clinical 
stage in esophageal cancer (21). This suggested that 
DUXAP8 is up-regulated and increases metastasis of 
renal cell carcinoma cells (22). DUXAP8 knockdown 
resulted in clear cell cycle arrest at the G0/G1 phase 
(23). This showed that DUXAP8 may be an effective 
prognostic biomarker and treatment target in 
non-small cell lung cancer (23). Genome-wide 
analysis showed that DUXAP8 was not only 
differentially expressed in esophageal cancer but was 
a diagnostic and therapeutic target for cancer (24). 
Despite these studies, little is known about the 
association between DUXAP8 and HCC. Therefore, 
we assessed the diagnostic and prognostic 
implications, molecular mechanism and potential 
target drugs of DUXAP8 in HCC. 

Materials and Methods 
Data processing and identification of 
protein-coding gene (PCG)  

HCC patient expression data was downloaded 
from The Cancer Genome Atlas database (TCGA, 
https://cancergenome.nih.gov/). Criteria of patient 
selection as following: patients were pathologically 
diagnosed primary HCC, vital data including HBV 
infection status, alcohol history, vascular invasion and 

radical resection should be collected, all the patients 
have definite alive/die status and survival time. 
LncRNAs function together with their 
co-expression-related PCGs and co-expression 
coefficient. Therefore, evaluated to acquire its PCGs 
was conducted using R 3.5.0 (https://www.r- 
project.org/) (25, 26). The top 10 PCGs and DUXAP8 
underwent further analysis. In addition, low and high 
expressions of DUXAP8 and the top 10 PCGs were 
used as cut-off median expressions of DUXAP8. 

Body distribution, tumor, and non-tumor 
expression 

 Body distribution of DUXAP8 and its top 10 
PCGs were obtained from the Gene Expression 
Profiling Interactive Analysis database (GEPIA, 
http://gepia.cancer-pku.cn/index.html) (27). Scatter 
plots of the tumor and non-tumor tissues were plotted 
using Graphpad 7.0. 

Determination of diagnostic and prognostic 
significance of DUXAP8 and its PCGs 

Diagnostic Receiver Operating Characteristic 
(ROC) curves of DUXAP8 and the PCGs were 
depicted using data from tumor and non-tumor tissue 
expressions using Graphpad 7.0. An Area Under 
Curve (AUC) value ≥ 0.7 represented high diagnostic 
significance. The joint-effect analysis was performed 
using the diagnosis-related lncRNA and genes.  

In addition, prognostic significance was 
calculated and visualized using Kaplan-Meier plots. 
Multivariate analysis was performed using 
prognosis-related clinical factors. The joint-effect 
analysis was also performed using prognosis-related 
lncRNA and genes. 

Construction of the risk score model and 
nomogram 

A risk score model and nomogram were 
constructed for HCC prognosis prediction. Risk 
scores, patient survival status, DUXAP8 gene 
expression heat maps, Kaplan-Meier plot, and 
time-dependent ROC curves were entered into the 
model. The risk score was formulated as follows: risk 
score = expression of gene1 x β1 of gene1 + expression 
of gene2 x β2 of gene2 +… + expression of genen x βn of 
genen (28, 29). Contribution coefficients (β) were 
obtained from the multivariate Cox proportional 
hazards regression model.  

The nomogram was constructed using 
prognosis-related genes, DUXAP8, and clinical 
factors. Differential expressions and clinical factors 
indicate varied points. The 1, 3-, and 5- year overall 
survivals (OS) were included in the nomogram. OS 
prediction at 1, 3, and 5 year can be found accordingly 
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from the points. 

Gene set enrichment analysis (GSEA) 
GSEA was performed to assess molecular 

mechanisms of DUXAP8 and the PCGs. Gene 
ontologies (GOs), including biological processes (BP, 
c5.bp.v6.1.symbols.gmt,), cellular components (CC, 
c5.cc.v6.1.symbols.gmt), molecular functions (MF, 
c5.mf.v6.1.symbols.gmt), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG, c2.cp.kegg.v6.1. 
symbols.gmt) pathway sets were used to find the 
biological processes associated with DUXAP8 and its 
PCGs. 

Co-expression matrix, gene-gene interaction 
(GGI) and protein-protein interaction (PPI) 
network  

The co-expression matrix for DUXAP8 and its 
PCGs of Pearson correlation were constructed using R 
3.5.0. Different colors indicate either positive or 
negative correlations. The GGI network was 
constructed and their co-expression relationship with 
other genes was determined using the geneMANIA 
plugin of Cytoscape software (30, 31). The PPI 
network was constructed using the STRING database 
(https://string-db.org/) (32). Co-expression and 
co-occurrence interactions are presented using 
STRING.  

Pharmacological target drug identification and 
enrichment analysis 

Genome-wide differentially expressed genes 
(DEGs) in volcano plots and heatmaps were 
determined and plotted using the edgeR method (33). 
Results with a ∣Fold change∣ of ≥ 2 and a p-value of 
≤0.5 were used for further analysis. Target drugs were 
then acquired using these DEGs obtained from the 
Connectivity Map database (https://portals. 
broadinstitute.org/cmap/). Positively correlated 
drugs were considered as potential targets. The 2D 
and 3D structure of the target drugs were obtained 
from PubChem Compound (https://www.ncbi.nlm. 
nih.gov/pccompound/).  

Enriched metabolic pathways and biological 
processes were analyzed using the Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID, https://david.ncifcrf.gov/) (34, 35). 
Visualization of GO was performed using the BinGO 
plugin of Cytoscape software (36).  

Validations of PCGs in public databases 
For further confirming potential values of these 

PCGs in HCC, we further used HCCDB (37) 
(http://lifeome.net/database/hccdb/home.html) 
and oncomine (38, 39) (https://www.oncomine.org/ 

resource/main.html) databases to confirm our results. 

Statistical analysis 
Survival and statistical analyses were performed 

using SPSS 16.0 (IBM, Chicago, IL). Median survival 
time, log-rank p-value, adjusted p-value, 95% 
confidence interval (CI) and hazard ratio (HR) were 
calculated using the Kaplan-Meier method and Cox 
proportional hazards regression model. A p-value of 
≤ 0.05 was statistically significant. 

Results  
Demographic characteristics and 
co-expression-related PCGs of DUXAP8 

A total of 370 HCC patients were enrolled in this 
study. Clinical factors found to be linked with HCC 
were HBV infection, radical resection, and tumor 
stage OS (p<0.0001, =0.007, and <0.0001, respectively). 
Detailed demographic characteristics are shown in 
Supplementary Table 1. Co-expression-related PCGs 
were identified and are shown in Supplementary 
Table 2. The top 10 PCGs were; RNF2, MAGEA1, 
GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, 
MAGEA6, MALRD1, and DGKI (Table 1). Pearson 
correlation coefficient R was used to evaluate the 
correlation between these PCGs and DUXAP8. PCGs 
with an ∣R∣ value of ≥0.2 were visualized in the 
network (Figure 7B).  

 

Table 1. Top 10 protein-coding genes with DUXAP8 

LncRNA  PCG Correlation  95% CI P value 
DUXAP8 RNF2 0.43 0.35-0.51 1.90E-18 
DUXAP8 MAGEA1 0.42 0.33-0.5 4.86E-17 
DUXAP8 GABRA3 0.41 0.32-0.49 4.55E-16 
DUXAP8 MKRN3 0.39 0.30-0.47 8.87E-15 
DUXAP8 FAM133A 0.38 0.29-0.47 2.30E-14 
DUXAP8 MAGEA3 0.38 0.29-0.46 4.70E-14 
DUXAP8 CNTNAP4 0.36 0.27-0.44 1.38E-12 
DUXAP8 MAGEA6 0.36 0.26-0.44 1.53E-12 
DUXAP8 MALRD1 0.36 0.26-0.44 1.84E-12 
DUXAP8 DGKI 0.35 0.26-0.44 3.35E-12 

Note: PCG: protein-coding gene, CI: confidence interval. 
 

Body maps, expression of DUXAP8 and the 
top 10 PCGs  

Body maps of DUXAP8 and the top 10 PCGs 
showed that DUXAP8 and RNF2 were highly 
expressed in liver in comparison to other PCGs 
(Figure 1). In comparison, DUXAP8 and RNF2 were 
highly expressed in kidney, lungs, and intestines 
relative to other PCGs. Except MALRD1, DUXAP8 
and the other 9 PCGs were differentially expressed 
between tumor and non-tumor tissues (Figure 2). All 
PCGs and DUXAP8 were overexpressed in tumor 
tissues.  
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Figure 1. Body map of the expressions of DUXAP8 and its co-expression-related protein-coding genes. A-K: Body map of the expressions of DUXAP8, RNF2, MAGEA1, GABRA3, 
MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, and DGKI, respectively. 

 
Figure 2. Scatter plots of DUXAP8 and its co-expression-related protein-coding genes in tumor and non-tumor tissues. A-K: Scatter plots of DUXAP8, RNF2, MAGEA1, GABRA3, 
MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, and DGKI, respectively. 

 

Diagnosis, prognosis and joint-effect analysis of 
DUXAP8 and the top 10 PCGs 

In the diagnosis analysis, DUXAP8, MEGEA1, 
MKRN3, and DGKI were found to be potential 

diagnostic markers (AUC=0.798, 0.805, 0.763 and 
0.905, respectively; p<0.0001, <0.0001, <0.0001, 
=0.0001 and <0.0001, respectively, (Figure 3). Other 
PCGs showed no diagnostic significance (all 
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AUC<0.7). The joint-effect analysis of DUXAP8, 
MEGEA1, MKRN3, and DGKI indicated that their joint 
effect provided better diagnostic significance than 
when applied individually (AUC=0.847, 0.817, 0.947, 
0.961 and 0.946, respectively; all p<0.0001; Figure 4), 
except for MAGEA1 and MKRN3. The AUC value of 
this combination was equal to that of MAGEA1 alone 
(both AUC=0.805, 95%CI=0.760-0.850; Figure 3C, 4D).  

In the prognostic analysis, DUXAP8, RNF2, and 
GABRA3 showed prognostic value in univariate 
analysis (crude p=0.001, 0.003, and 0.006, respectively; 
Figure 5, Table 2). However, only DUXAP8 and RNF2 
showed prognostic value in multivariate analysis, 
after adjustment for tumor stage, HBV infection, and 
radical resection factors (adjusted p=0.014 and 0.008, 
respectively; Table 2). Also, combination of DUXAP8 
and RNF2 showed better prognostic value than 
individual effects (crude p<0.0001; adjusted p=0.001; 
Figure 5L, Table 3).  

Construction of risk score model and 
nomogram 

A risk score model was constructed using risk 
scores, patient survival status, and expressions levels 
DUXAP8 and RNF2 (Figure 6A, Table 4). low 
DUXAP8 and RNF2 expressions were associated with 
low risk and hence better prognosis (Figure 6A-B, 
Table 5). Time-dependent ROC curves suggested that 
the risk score model could predict the 1 and 3 years 
survival rate (AUC=0.705 and 0.644, respectively; 
Figure 6C). A nomogram was constructed using 
tumor stage, HBV infection status, radical resection 
status, and expressions of DUXAP8 and RNF2 (Figure 
7A). Low expressions of DUXAP8 and RNF2, tumor 
stage I, without HBV infection and radical resection, 
were correlated with low-risk scores, and hence better 
patient survival.  

 

 
Figure 3. Diagnostic receiver operator curves of DUXAP8 and its co-expression-related protein-coding genes. A-K: Diagnostic receiver operator curves of DUXAP8, RNF2, 
MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, and DGKI, respectively. 

 
Figure 4. Joint-effect analysis of diagnostic receiver operator curves of DUXAP8 and diagnosis-related genes. A-F: Diagnostic receiver operator curves of DUXAP8 and 
MAGEA1; DUXAP8 and MKRN3; DUXAP8 and DGKI; MAGEA1 and MKRN3; MAGEA1 and DGKI; and MKRN3 and DGKI, respectively.  
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Figure 5. Kaplan-Meier plots of DUXAP8 and its co-expression-related protein-coding genes and joint-effect analysis of DUXAP8 and RNF2. A-L: Kaplan-Meier plots of 
DUXAP8, RNF2, MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, DGKI, and joint-effect analysis plot of DUXAP8 and RNF2, respectively. 

 

Table 2. Prognostic analysis of DUXAP8 and target genes for overall survival  

Long non-coding RNA  Patients Overall survival 
(n=370) No. of event MST (days) HR (95%CI) Crude P value HR (95%CI) Adjusted P value§ 

DUXAP8        
Low expression 185 56 2131 Ref. 0.001 Ref. 0.014 
 High expression 185 74 1372 1.768 (1.247-2.507)  1.632 (1.104-2.412)  
RNF2        
Low expression 185 57 2131 Ref. 0.003 Ref. 0.008 
 High expression 185 73 1372 1.704 (1.199-2.420)  1.700 (1.146-2.519)  
MAGEA1        
Low expression 185 59 2456 Ref. 0.194 Ref. 0.480 
 High expression 185 71 1397 1.258 (0.889-1.780)  1.147 (0.784-1.678)  
GABRA3        
Low expression 185 55 2486 Ref. 0.006 Ref. 0.103 
 High expression 185 75 1372 1.631 (1.149-2.313)  1.378 (0.937-2.026)  
MKRN3        
Low expression 185 58 2116 Ref. 0.180 Ref. 0.672 
 High expression 185 72 1560 1.267 (0.896-1.792)  1.086 (0.740-1.595)  
FAM133A        
Low expression 185 61 1852 Ref. 0.110 Ref. 0.472 
 High expression 185 69 1397 1.325 (0.938-1.872)  1.152 (0.784-1.694)  
MAGEA3        
Low expression 185 57 2486 Ref. 0.068 Ref. 0.207 
 High expression 185 73 1490 1.381 (0.976-1.955)  1.280 (0.872-1.878)  
CNTNAP4        
Low expression 185 65 1694 Ref. 0.608 Ref. 0.952 
 High expression 185 65 1624 1.094 (0.776-1.544)  0.988 (0.675-1.446)  
MAGEA6        
Low expression 185 56 1791 Ref. 0.056 Ref. 0.186 
 High expression 185 74 1560 1.404 (0.992-1.988)  1.298 (0.882-1.909)  
MALRD1        
Low expression 185 61 1852 Ref. 0.315 Ref. 0.707 
 High expression 185 69 1423 1.194 (0.845-1.686)  1.076 (0.734-1.577)  
DGKI        
Low expression 185 61 2116 Ref. 0.973 Ref. 0.170 
 High expression 185 69 1624 1.006 (0.712-1.421)  0.763 (0.518-1.123)  

Note: §: P values were adjusted for radical resection, tumor stage and HBV infection; Bold indicates significant P values, NA: not available; MST: median survival time; HR: 
hazard ratio; 95%CI: 95% confidence interval. 
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Table 3. Joint-effect analysis of DUXAP8 and RNF2 for overall survival 

Group DUXAP8 expression RNF2 Overall survival 
 Events/total MST (Days)  Crude HR (95%CI) Crude P value Adjusted HR (95%CI) Adjusted P valueɸ 

A Low Low 39/120 2116 Ref. <0.0001 Ref. 0.001 
B Low High 35/130 2542 1.001 (0.633-1.584) 0.995 1.030 (0.626-1.694) 0.908 
 High Low       
C High High 56/120 837 2.268 (1.498-3.433) <0.001 2.184 (1.364-3.497) 0.001 

Note: ɸ: P values were adjusted for radical resection, tumor stage and HBV infection; Bold indicates significant P values, NA: not available; MST: median survival time; HR: 
hazard ratio; 95%CI: 95% confidence interval. 

 

Table 4. Construction of risk score model 

Variables  β SE Wald P value HR (95% CI) 
 Tumor stage I   11.611 0.003  
 Stage II 0.153 0.268 0.328 0.567 1.166 (0.690-1.970) 
 Stage III + IV 0.734 0.224 10.683 0.001 2.083(1.341-3.233) 
 Radical resection 0.068 0.356 0.037 0.848 1.071(0.533-2.152) 
 HBV infection  -0.896 0.264 11.545 0.001 0.408(0.244-0.685) 
DUAXP8 0.382 0.206 3.432 0.064 1.465(0.978-2.195) 
 RNF2 0.433 0.207 4.366 0.037 1.542(1.027-2.315) 

Note: SE: standard error, HR: hazard ratio, CI: confidence interval. 
 

Table 5. Overall survival analysis of risk score model 

Group Overall survival 
Events/total MST (Days)  Crude HR (95%CI) Crude P value Adjusted HR (95%CI) Adjusted P valueɸ 

Risk score model       
Low risk 54/185 2131 Ref. 0.001 Ref. 0.010 
High risk 76/185 1271 1.808 (1.274-2.565)  1.672 (1.130-2.477)  

Note: ɸ: P values were adjusted for radical resection, tumor stage and HBV infection; Bold indicates significant P values. 
Abbreviations: NA: not available; MST: median survival time; HR: hazard ratio; 95%CI: 95% confidence interval. 

 
 

 
Figure 6. Risk score model, Kaplan-Meier plot, and time-dependent ROC curves. A: risk score model constructed using risk scores, patient survival status, DUXAP8 and RNF2 
expression heat maps; B: Kaplan-Meier plot of low and high risk groups; C: Time-dependent ROC curves of 1, 3, and 5year OS. 
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Figure 7. Nomogram and co-expression network of DUXAP8 and co-expression-related protein-coding genes. A: Nomogram constructed using DUXAP8, RNF2, tumor stage, 
radical resection, and hepatitis B virus infection status; B: Co-expression network between DUXAP8 and the co-expression-related protein-coding genes. 

 

Assessment of molecular mechanism using 
GSEA 

GSEA analysis of GO terms for DUXAP8 
revealed that it was enriched in mitotic nuclear 
division, cell cycle phase transition, positive 
regulation of cell cycle phase transition, meiotic cell 

cycle, cell division, centrosome, chromosome 
condensation, and histone binding (Figure 8A-I). 
KEGG pathway analysis revealed that DUXAP8 was 
associated with fatty acid metabolism, tryptophan 
metabolism, and the citrate cycle (TCA cycle) 
pathways (Figure 8J-L). For RNF2, GO analysis 
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revealed that it enriched in cell division, mitotic 
nuclear division, cell cycle checkpoint, sister 
chromatid segregation, chromatin modification and 
histone binding (Figure 9A-I). KEGG pathways 
analysis showed that RNF2 was associated with 
oxidative phosphorylation, PPAR signaling pathway, 
and the TCA cycle pathways (Figure 9J-L). 

Construction of co-expression matrix, GGI 
and PPI network  

The co-expression matrix of DUXAP8 and PCGs 
revealed that most of them were positively correlated 

with each other. In the matrix, deep blue color 
indicated highly and positively correlated interactions 
(Figure 10A). The GGI network indicated that 
CNTNAP4, MKRN3, DGKI, GABRA3, MAGEA6, and 
MAGEA1 were co-expressed with other genes (Figure 
10B). Many MAGE family members interacted with 
them. Proteins encoded by CNTNAP4, GABRA3, 
DGKI, MAGEA6, MAGEA3 and MAGEA1 genes show 
co-expressional and co-occurrence relationship 
(Figure 10C).  

 

 
Figure 8. Gene set enrichment analysis of DUXAP8 of gene ontologies and KEGG pathways. A-I: Gene ontology results of DUXAP8; J-L: KEGG pathway results of DUXAP8. 
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Figure 9. Gene set enrichment analysis of RNF2 of gene ontologies and KEGG pathways. A-I: Gene ontology results of RNF2; J-L: KEGG pathway results of RNF2. 

 

Identification of pharmacological targets  
DEGs were identified using edgeR and 

presented in heatmap and volcano plots as shown in 
Figure 11. Potential drugs targeting the DEGs were: 
cinchonine, bumetanide and amiprilose (Table 6). 
Detailed drug information is provided in 
Supplementary Table 3. The 2D and 3D structures of 
these three chemical compounds are in Figure 12. GO 
analysis was performed for the DEGs and results are 
shown in Figure 13. The DEGs were enriched in the 
synapse, extracellular region, postsynaptic 

membrane, ion channel complex, multicellular 
organismal development, and extracellular 
ligand-gated ion channel activity. The top 10 GO 
terms and KEGG pathways were: chemical synaptic 
transmission, ligand-gated ion channel activity, 
extracellular region, postsynaptic membrane, 
extracellular ligand-gated ion channel activity, 
neuroactive ligand-receptor interaction, and 
retrograde endocannabinoid signaling (Table 7). 
Detailed results of GO terms and KEGG pathways 
enrichment are shown in Supplementary Tables 4 
and 5, respectively.  
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Figure 10. Co-expression matrix and gene-gene interaction and protein-protein interaction networks of LINC00668 and co-expression-related protein-coding genes. A: 
Co-expression matrix among DUXAP8, RNF2, MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, and DGKI; B: Co-expression network of gene-gene 
interactions among protein-coding genes; C: Protein-protein interaction network among RNF2, MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, 
and DGKI. 

 

Table 6. Top 7 pharmacological target and drugs of DUXAP8 

Name  PubChem CID Mean  Enrichment P value 
D-Cinchonine 90454 -0.411 -0.755 0.00734 
Bumetanide  2471 -0.407 -0.708 0.01486 
Scopolamine  300322 0.383 0.694 0.01842 
Trolox C 40634 0.164 0.690 0.01920 
Harmaline  3564 0.430 0.660 0.03083 
Cefotetan  53025 0.504 0.736 0.03609 
Amiprilose  9798098 -0.413 -0.641 0.03981 

 

Validations of potential significance of PCGs in 
public databases 

Then, we further validated the potential 

significance of PCGs in HCC using HCCDB and 
oncomine databases. The diagnostic significance of 
MAGEA1, MKRN3, and DGKI was validated using 
oncomine database, which suggested diagnostic 
significance of MAGEA1 (AUC=0.737, P=0.024, 
Supplementary Figure 1A, D) and DGKI (AUC=0.726, 
P=0.031, Supplementary Figure 1C, F), but not MKRN 
(AUC=0.655, P=0.058, Supplementary Figure 1B, E). 
The prognostic significance of RNF2 was consistently 
validated in HCCDB, demonstrating the prognostic 
values of it in HCC (Log-rank P=0.001, 0.044, 
respectively, Supplementary Figure 1G-H). 
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Table 7. Top 10 gene ontologies and KEGG pathways of differentially expressed genes 

Category Term Count % P value 
BP GO: 0007268~chemical synaptic transmission 19 4.241071429 3.86E-06 
MF GO: 0015276~ligand-gated ion channel activity 8 1.785714286 6.26E-06 
CC GO: 0005576~extracellular region 62 13.83928571 9.28E-06 
BP GO: 0035094~response to nicotine 8 1.785714286 1.08E-05 
CC GO: 0045211~postsynaptic membrane 17 3.794642857 1.40E-05 
CC GO: 0005615~extracellular space 53 11.83035714 2.78E-05 
MF GO: 0005230~extracellular ligand-gated ion channel activity 7 1.5625 4.40E-05 
BP GO: 0007586~digestion 9 2.008928571 5.29E-05 
MF GO: 0005179~hormone activity 10 2.232142857 1.13E-04 
BP GO: 0007271~synaptic transmission, cholinergic 7 1.5625 1.16E-04 
KEGG pathway hsa04080: Neuroactive ligand-receptor interaction 30 6.696428571 1.09E-14 
KEGG pathway hsa04972: Pancreatic secretion 10 2.232142857 5.19E-05 
KEGG pathway hsa04723: Retrograde endocannabinoid signaling 9 2.008928571 5.48E-04 
KEGG pathway hsa05033: Nicotine addiction 6 1.339285714 8.05E-04 
KEGG pathway hsa04727: GABAergic synapse 8 1.785714286 9.70E-04 
KEGG pathway hsa04974: Protein digestion and absorption 8 1.785714286 0.001191854 
KEGG pathway hsa05032: Morphine addiction 7 1.5625 0.006772348 
KEGG pathway hsa05218: Melanoma 5 1.116071429 0.042731956 
KEGG pathway hsa04725: Cholinergic synapse 6 1.339285714 0.055498778 
KEGG pathway hsa00053: Ascorbate and aldarate metabolism 3 0.669642857 0.089180199 

Note: KEGG, Kyoto Encyclopedia of Genes and Genomes, BP: biological process, CC: cellular component, MF: molecular function, FDR: false discovery rate. 
 

 
Figure 11. Heatmap and volcano plot of differentially expressed genes of DUXAP8. A: Heatmap of differentially expressed genes of DUXAP8; B: Volcano plot of differentially 
expressed genes of DUXAP8. 
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Figure 12. 2D and 3D structure of the chemical compound of the 3 target drugs. A-C: 2D structure of cinchonine, bumetanide and amiprilose, respectively; D-F: 3D structure 
of cinchonine, bumetanide and amiprilose, respectively. 

 
Figure 13. Enriched gene ontology terms network using differentially expressed genes. 

 

Discussion  
The present study investigated the prognostic 

value of DUXAP8 and its PCGs. We found that 

DUXAP8, RNF2, MAGEA1, GABRA3, MKRN3, 
FAM133A, MAGEA3, CNTNAP4, MAGEA6, and DGKI 
are differentially expressed in liver tissues and are 
overexpressed in tumor tissues. Diagnostic analysis 
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indicated that DUXAP8, MEGEA1, MKRN3, and 
DGKI are potential diagnostic biomarkers of HCC 
while DUXAP8 and RNF2 are potential prognostic 
biomarkers of HCC. The joint-effect analysis of 
DUXAP8 and the PCGs showed better diagnostic and 
prognostic value compared to individual application. 
The constructed risk score model and nomogram 
showed good prediction for HCC prognosis. 
Molecular mechanism analyses revealed that 
DUXAP8 and RNF2 are involved in mitotic nuclear 
division, cell division, regulation of cell cycle, phase 
transition, histone binding, oxidative 
phosphorylation, PPAR signaling pathway, and the 
TCA cycle. In addition, three target drugs; cinchonine, 
bumetanide, and amiprilose, were identified as 
targets of DUXAP8 using the Connectivity Map 
database. They are therefore likely to be ideal 
treatments for HCC treatment. Then, diagnostic and 
prognostic significance of PCGs were validated in 
HCCDB and oncomine databases. 

Accumulating evidence indicates that 
non-coding RNAs regulate several physiological and 
pathological biological processes (40, 41). LncRNAs 
have been proposed to be potential diagnostic 
markers and therapeutic agents for various diseases 
(42). Dysregulation of lncRNAs may alter 
development of tumors (42). For instance, it is 
emerging that lncRNAs participate in tumorigenesis 
more actively than has been previously reported (42). 
Differential expression patterns of lncRNAs affect cell 
transformation, tumorigenesis, and metastasis (43). 
For instance, H19, HOTAIR, MALAT1, TUG1, GAS5, 
and CCAT1, were found to play important roles in 
tumor initiation and development (44-49). Numerous 
cancer-related lncRNAs modulates tumor invasion 
and metastasis processes (50-52). The transforming 
growth factor-β promotes the expression of ATB 
lncRNA in HCC cell lines, hence enhancing 
mesenchymal cell transition, cell invasion, and organ 
colonization of HCC cell lines (53).  

DUXAP8, a 2107 bp RNA, was initially found to 
be overexpressed in gastric cancer (GC) tissues, its 
overexpression resulted in larger tumor size, 
advanced tumor stage, lymphatic metastasis, and 
poor prognosis of GC patients (54). It has been 
reported that DUXAP8 enhances GC cell proliferation 
and tumorigenesis, partly by epigenetically silencing 
PLEKHO1 expression through binding to PRC2, 
making it a potential biomarker for GC diagnosis and 
therapy (54). Hongzhi et al. found that DUXAP8 was 
overexpressed in pancreatic cancer (PC) tissues 
indicating poor OS in PC patients making it a 
potential therapeutic target (18). They also reported 
that DUXAP8 overexpression resulted in larger tumor 
size, advanced pathologic stage and poor OS of PC. 

This accelerates cell proliferation and tumorigenesis, 
partly by epigenetically silencing transcription of 
CDKN1A and KLF2, and by binding to EZH2 and 
LSD1 (18). Comprehensive profiling analysis revealed 
that DUXAP8 is upregulated in Bladder Cancer (BC). 
Its downregulation decreases cell growth, colony 
formation, invasion capacity and induces apoptosis of 
BC cells (20). Enrichment analysis of SNHG12 and 
DUXAP8 co-expressed PCGs found that they are 
involved in the cell cycle, focal adhesion, and 
PI3K-AKT signaling pathways (20). They also 
reported that DUXAP8 may regulate tumorigenesis 
and progression of BC (20).  

Zheng et al. found that DUXAP8 is upregulated 
in renal cell carcinoma (RCC) tissues and promotes 
the proliferation and invasion of RCC cells by 
downregulating microRNA-126 expression (19). They 
also reported that DUXAP8 positively regulated RCC 
tumorigenesis and development (19). Elsewhere, 
DUXAP8 was found to be highly expressed in 
esophageal squamous cell cancer (ESCC) tissues and 
was associated with tumor stage, lymph node 
metastasis, and correlated with poor survival of ESCC 
patients (21). Functional experiments suggest that 
DUXAP8 modulates the occurrence of ESCC via the 
Wnt-β-catenin pathway. Specifically, it promotes cell 
proliferation, colony formation, and invasion of ESCC 
cells (21).  

A genome-wide analysis revealed that DUXAP8 
was highly expressed in esophageal cancer. GO 
enrichment analysis for DUXAP8 and its 
co-expressing PCGs showed that they were enriched 
in the cell cycle, cell division and DNA repair, 
suggesting an important role in the tumorigenesis and 
progression of esophageal cancer (24). It has been 
reported that knockdown of DUXAP8 resulted in 
clear cell cycle arrest in the G0/G1 phase ini 
non-small lung cancer cell lines, H1299, and H1975, 
which further decreased cyclin D1, CDK2, CDK4 and 
CDK6 expression in cell cycle process (23). Similarly, 
DUXAP8 was up-regulated in pancreatic cancer 
tissues. Knockdown of DUXAP8 expression arrested 
the cell cycle at the G0/G1 phase and induced 
apoptosis of pancreatic cancer cell lines (18). 
DUXAP8, SNHG12, and their PCGs were enriched in 
the cell cycle, focal adhesion, and PI3K-Akt signaling 
pathway (20). However, Hong-wei Ma’s study using 
cell apoptosis and cell cycle regulation as factors 
reflecting cell growth of gastric cancer, revealed that 
the proportion of apoptotic cells were significantly 
decreased but not in the proportion in different 
phases (54).  

We found cinchonine, bumetanide, and 
amiprilose as the potential drugs targeting DUXAP8 
in HCC. Cinchonine (C19H22N2O) is a natural 
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compound used as an antimalarial drug (55). It exerts 
antitumor effects with high activity and low toxicity 
(56). Moreover, cinchonine inhibited cell proliferation 
and promoted apoptosis by activating caspase-3 
dependence in human liver cancer cells (57). 
Similarly, it was reported that cinchonine induced 
apoptosis of Hela and A549 cells by targeting TRAF6, 
suggesting that cinchonine has antitumor effects (58). 
Bumetanide is a commonly used diuretic drug in 
clinical practice. A previous study showed that 
bumetanide, a SLC12A1 antagonist, inhibited cell 
proliferation, tumorigenesis, and metastasis in HCC 
cell lines (59). The study also suggested that 
bumetanide slows down tumor growth by interfering 
with the cell cycle rather than by inducing cytotoxicity 
(59). Studies testing the ability of bumetanide to 
enhance tumor necrosis in a rat model of N1-S1 HCC. 
They found that bumetanide treatment increased 
tumor necrosis in N1-S1 HCC during transarterial 
embolization compared to during transarterial 
embolization alone (60). Amiprilose is a synthetic 
carbohydrate used for patients with rheumatoid 
arthritis. It has anti-inflammatory and 
immunomodulatory properties (61). None has 
reported whether it has any effects on liver cancer. 
Our findings showed that cinchonine, bumetanide, 
and amiprilose are candidate drugs that target 
DUXAP8 in HCC. However, the specific mechanisms 
of action of these drugs in HCC deserves further 
studies.  

Our study indicates that higher expression of 
DUXAP8 correlated with poor prognosis in HCC. We 
also found that DUXAP8 is involved in the mitotic 
nuclear division, cell division, regulation of cell cycle 
phase transition, histone binding, oxidative 
phosphorylation, and the TCA cycle pathways. 
Therefore, we infer that DUXAP8 functions as an 
oncogene in HCC. This conclusion is in agreement 
with previous reports in ESCC, PC, BC, GC, and RCC. 

Live cell imaging or readouts of active cellular 
processes have revealed that lncRNAs play various 
roles in cellular pathologies and can influence the 
efficacy of new therapeutic targets for cancer (62). Our 
study identified three potential drugs targeting 
DUXAP8 in HCC. Although several related studies 
focusing on DUXAP8 in HCC were previously 
reported (63-65), our study has several main findings 
that could distinguished from them, such as in both 
diagnostic and prognostic significance of DUXAP8 
and it-related PCGs, construction of risk score model 
and nomogram, potential target drugs toward 
DXUAP8 aspects. 

We show that SNF2 is overexpressed in tumor 
tissues leading to poor patient survival. Molecular 
mechanism results demonstrate that SNF2 is involved 

in cell division, mitotic nuclear division, cell cycle 
checkpoint, sister chromatid segregation, chromatin 
modification, histone binding, oxidative 
phosphorylation, PPAR signaling pathway, and the 
TCA cycle. Therefore, we speculate that SNF2 is an 
oncogene in HCC A recent study showed that 
downregulation of SNF2, a co-expression-related gene 
of DUXAP8, decreases cell growth and metastases of 
HCC cells. (66). The study showed that RNF2 
promoted HCC cell proliferation by accelerating cell 
cycle progression (66). Similar findings have been 
reported for SNF2 in several malignancies(67). In 
conclusion, our study is consistent with previous 
studies showing that SNF2 is an oncogene in HCC.  

 This study for the first time demonstrates the 
oncogenic role, diagnostic and prognostic value of 
DUXAP8 in HCC. This study has some limitations 
that need to be recognized. First, our findings 
concerning DUXAP8 and its PCGs need to be 
validated using a larger population. Second, 
well-designed functional trials are necessary to 
identify deeper mechanisms of DUXAP8 and its PCG 
in HCC. Thus, further clinical trials are required to 
assess the translational potential of DUXAP8. 

Conclusions 
This study investigated the functions of 

DUXAP8 and its PCGs in HCC. We found that 
DUXAP8 and its PCGs are differentially expressed in 
the liver and overexpressed in tumor tissues. 
Diagnostic and prognostic analysis indicated that 
DUXAP8, MEGEA1, MKRN3, and DGKI can be used 
to diagnosis HCC, while DUXAP8 and RNF2 can be 
used to predict the prognosis of HCC. In addition, we 
found that DUXAP8 and its PCGs demonstrated 
better diagnostic and prognostic performance when 
these factors were used jointly as opposed to single 
application. A risk score model and nomogram 
exhibited good prognostic prediction performance of 
DUXAP8 and its PCGs in HCC. Molecular analyses 
revealed that DUXAP8 and PCGs are involved in 
mitotic nuclear division, cell division, regulation of 
cell cycle phase transition, oxidative phosphorylation, 
and PPAR signaling pathway. Furthermore, three 
potential target drugs; cinchonine, bumetanide, and 
amiprilose, which were identified as candidate drugs 
targeting DUXAP8 in HCC. This study for the first 
time demonstrates the oncogenic role, diagnostic and 
prognostic value of DUXAP8 in HCC. Thus, further 
clinical trials are required to assess the translational 
potential of DUXAP8. 
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