
entropy

Editorial

Information Theory in Neuroscience

Eugenio Piasini 1,* and Stefano Panzeri 2,*
1 Computational Neuroscience Initiative and Department of Physics and Astronomy, University of Pennsylvania,

Philadelphia, PA 19104, USA
2 Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano

di Tecnologia, 38068 Rovereto (TN), Italy
* Correspondence: epiasini@sas.upenn.edu (E.P.); stefano.panzeri@iit.it (S.P.)

Received: 26 December 2018; Accepted: 9 January 2019; Published: 14 January 2019
����������
�������

Abstract: This is the Editorial article summarizing the scope and contents of the Special Issue,
Information Theory in Neuroscience.
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As the ultimate information processing device, the brain naturally lends itself to be studied with
information theory. Because of this, information theory [1] has been applied to the study of the brain
systematically for many decades and has been instrumental in many advances. It has spurred the
development of principled theories of brain function [2–8]. It has led to advances in the study of
consciousness [9]. It has also led to the development of many influential neural recording analysis
techniques to crack the neural code, that is to unveil the language used by neurons to encode and
process information [10–15].

The influence of information theory on the study of neural information processing continues
today in many ways. In particular, concepts from information theory are beginning to be applied to
the large-scale recordings of neural activity that can be obtained with techniques such as two-photon
calcium imaging to understand the nature of the neural population code [16]. Advances in experimental
techniques enabling precise recording and manipulation of neural activity on a large scale now enable
for the first time the precise formulation and the quantitative test of hypotheses about how the brain
encodes and transmits across areas the information used for specific functions, and information theory
is a formalism that plays a useful role in the analysis and design of such experiments [17].

This Special Issue presents twelve original contributions on novel approaches in neuroscience
using information theory, and on the development of new information theoretic results inspired by
problems in neuroscience. The original contributions presented in this Special Issue span a wide range
of topics.

Two papers use the concept of maximum entropy [18] to develop maximum entropy models
to measure the existence of functional interactions between neurons and understand their potential
role in neural information processing [19,20]. Kitazono et al. [21] and Bonmati et al. [22] develop
concepts relating information theory to measures of complexity and integrated information. These
techniques have potential for a wide range of applications, not least of which is the study of how
consciousness emerges from the dynamics of the brain. Other work uses information theory as a tool to
investigate different aspects of brain dynamics, from latching in neural networks [23], to the long-term
development dynamics of the human brain studied using functional imaging data [24], to rapid
information processing possibly mediated by the synfire chains [25] that have been reported in studies
of simultaneously-recorded spike trains [26]. Other studies attempt to bridge between information
theory and the theory of inference [27] and of categorical perception mediated by representation
similarity in neural activity [28]. One paper [29] uses the recently-developed framework of partial

Entropy 2019, 21, 62; doi:10.3390/e21010062 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-0384-7699
https://orcid.org/0000-0003-1700-8909
http://www.mdpi.com/1099-4300/21/1/62?type=check_update&version=1
http://dx.doi.org/10.3390/e21010062
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 62 2 of 3

information decomposition [30] to investigate the origins of synergy and redundancy in information
representations, a topic of strong interest for the understanding of how neurons in the brain work
together to represent information [31]. Finally, the two contributions of Samengo and colleagues
examine applications of information theory to two specific problems of empirical importance in
neuroscience: how to define how relevant specific response features are in a neural code [32], and what
the code used by neurons in the temporal lobe to encode information is [33].
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