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Abstract

Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the
neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin
spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer
and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular
minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the
URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary
elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising
contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin
boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal
end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit
chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae
minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular
DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.
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Introduction

The DNA in the nuclei of eukaryotic cells is packed into

nucleosomes, establishing the primary level of chromatin packing.

The DNA transcription, replication, recombination, and repair

processes occur in the context of DNA packed into nucleosome

arrays [1,2]. The structural-functional relationship between

chromatin packing and DNA transcription is manifested by

segregation of nuclear chromatin into the open and active

euchromatin and the condensed and repressed heterochromatin

[3,4]. The question how the transcriptionally active euchromatin is

functionally separated from the inactive heterochromatin has been

of considerable interest.

Previous research has focused on identifying cis-acting genetic

elements termed ‘‘boundary elements’’ that demarcate the

heterochromatin from the euchromatin [5,6]. Such DNA elements

were identified in evolutionary diverse organisms ranging from

yeast to humans [7–9]. The heterochromatin boundary elements

establish boundaries of chromatin domains by limiting the spread

of silencing signals to the adjoining regions [10]. These elements

are especially important when transcriptionally active genes are

surrounded by condensed heterochromatin as they stop the

incursion of silencing signals from the surrounding regions thereby

protecting the genes from position-dependent variegation.

Similar to positional effects in higher eukaryotes, in the budding

yeast Saccharomyces cerevisiae the telomeres and the silent mating-

type loci (HML and HMR), all represent well-defined heterochro-

matin domains, where genes are transcriptionally silent. The

transcriptionally silent copies of the mating-type genes are located

at the HML and HMR silent loci near telomeres. The HML and

HMR silent loci are flanked by ‘‘Essential’’ (E) and ‘‘Important’’ (I)

silencer elements [11–14]. The cis-acting E and I elements are

necessary and sufficient for initiating and mediating silencing in an

orientation-dependent manner by interacting with a large number

of trans-acting factors to repress transcription [11,13,15,16].

Transcriptional repression at HM loci is a gene-nonspecific event

and the silencers can repress any reporter gene [17,18].

The silent chromatin structure does not extend indefinitely and

is restricted within the HM loci and telomeres by the

heterochromatin boundary elements that block silencer-mediated
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repression of the gene in mating-type loci as well as shield

repressive positional effects of telomeric heterochromatin [7,19–

21]. It has been suggested that the HML-I silencer may itself

establish a heterochromatin boundary by organizing heterochro-

matin in a uni-directional manner within the HML locus [22].

Furthermore, a tRNA gene surrounding the HMR locus in S.

cerevisiae has been shown to have barrier activity and restrict the

spread of silencing from the HMR locus [7,8]. In addition, two

special heterochromatin boundary elements, STAR and TEF2-

UASrpg, were shown to have boundary activity in S. cerevisiae

genome [19,20].

In S. cerevisiae, the chromosomal ends contain the X and/or Y’

subtelomeric repeat elements abutting the telomeric repetitive

DNA. Sequences within these X and Y’ subtelomeric repeats block

silencing, exhibiting heterochromatin barrier activity and thus are

named subtelomeric anti-silencing regions (STAR). The STAR

boundary element has also been shown to counteract the silencer-

driven repression of reporter genes at the HML locus in the

genome, when interposed between the silencer and the reporter

gene without transcriptional activation of the reporter [20,23].

The TEF2-UASrpg located on Chromosome II in S. cerevisiae is

an example of heterochromatin boundary element. It was

identified by the silencer-blocking assay by positioning the

boundary element between the silencer and the reporter gene to

test its ability to counteract the silencing mechanism. The TEF2

gene encodes the translational elongation factor-1alpha and the

upstream activation sequence of TEF2 is able to block the silencing

activity and the spread of heterochromatin without transcriptional

activation. In the genome, when the TEF2-UASrpg was placed at

the HML locus it was able to resist transcriptional silencing of

native or reporter genes in a position and orientation dependent

manner [19,24].

Distinct models have been suggested for chromatin boundary

formation. In one model, boundary elements act by creating

nucleosomal gaps and establishing barriers for example when

placed between the silencer and the regulated gene but not

upstream of the silencer or downstream of the gene [24,25,26]. In

the other model, the boundary element could form loops reaching

out to and inhibiting silencers. Within this model the boundary

elements may act independently of their position versus the

silencer element and are assigned to have a desilencing or anti-

silencing rather than barrier activity [27–31]. The exact molecular

mechanism may vary between distinct boundary elements and

different organisms and still remains largely unknown.

In order to understand the molecular mechanism of barrier

formation by STAR and TEF2-UASrpg, two distinct heterochro-

matin boundary elements, we turned to the yeast minichromo-

some system. Yeast minichromosomes are multi-copy circular

plasmids that assemble into chromatin in-vivo [32] and have been

used to study nucleosome positioning, chromatin remodeling, and

interaction of trans-acting factors with cis-acting elements [33–36].

To dissect the topographic relationship of the silencers and

boundary elements on a minichromosome, we generated a

number of minichromosomal constructs containing different

combinations of the ‘‘E’’ and ‘‘I’’ silencers from the HML locus

with STAR and TEF2-UASrpg heterochromatin boundary

elements. The URA3 has been used as the reporter gene and the

TRP1 as the selection marker in all the minichromosome

constructs examined. Identification of whether the URA3 reporter

gene is ON/OFF has been tested using 5-FOA biochemical

selection screen in addition to growth on Uracil-deficient media.

We report here that the URA3 reporter gene was efficiently

silenced by the E and/or I silencers in the absence of

heterochromatin boundary elements and the URA3 reporter was

de-repressed in the presence of STAR and TEF2-UASrpg

elements in circular minichromosomes similar to previous studies

in the yeast genome [19,20]. However, our findings showed that

the STAR and TEF2-UASrpg elements exhibit an antisilencing

rather than boundary activity in S. cerevisiae minichromosomes. We

propose that the topology of circular minichromosomes may help

to bypass the strict positional requirements of chromatin

boundaries that operate in linear chromosomes.

Results

Characterization of URA3-based reporter
minichromosomes

The minichromosome constructs generated were tested for their

functionality upon transformation into trp1- and ura3- deficient

yeast strains. The dependence upon TRP1 selection marker has

been used as a control for all experiments and the URA3 served as

a reporter gene for transcriptional silencing in this study

(Figure 1A). Cell growth on 5-FOA [37] and inability to grow

on URA- media [38] indicates that the URA3 is repressed and

therefore the cells are 5-FOA resistant, allowing us to identify

whether the URA3 reporter is silenced in the presence of silencer

elements and expressed in the presence of boundary elements.

Recent reports point out to a potential problem with 5-FOA

screenings, due to metabolic changes caused by the 5-FOA and

suggest to check the reporter gene expression for epigenetic

mechanisms or heterochromatic silencing studies [39,40]. How-

ever, in our study we have also directly assessed the URA3 reporter

gene activity in medium lacking uracil for analysis of URA3

expression in the presence or absence of silencers and boundary

elements independently of the 5-FOA assays.

We checked the S. cerevisiae strain YPH499 (a-cells) for its

genotype. These cells were only able to grow on complete

synthetic media (CSM) without any dropouts, but could not grow

on any selective media such as TRP2 or TRP2/URA2 or TRP2/

5-FOA+ media (Figure 2A). In the presence of the TRP1 marker,

the cells were able to grow on CSM, TRP- and TRP-/5-FOA+
selective media being 5-FOA resistant, but were unable to grow on

TRP-/URA- due to the absence of URA3 gene product

(Figure 2B). In the presence of both TRP1 marker and URA3

reporter, the cells were able to grow on CSM, TRP- and TRP-/

URA- selective media, but were unable to grow on TRP-/5-

FOA+ plates due to the presence of a functional URA3 gene

product the cells exhibited sensitivity to 5-FOA (Figure 2C).

Efficient ten-fold serial dilutions were established to cover the

range of selection from ,26107 cells/ml to ,26103 cells/ml in

the spotting assays. The copy numbers of the multi-copy S. cerevisiae

minichromosomes were tested throughout this work and were

found to be constant for different minichromosome constructs.

The numbers of minichromosomes were determined to be ,20

copies compared to the genomic copy by southern hybridization

with specific TRP1-ARS1 probe and (Figure 2M) and quantified

using the ImageQuant software (Figure 2N).

Establishment of silencing in circular multi-copy
minichromosomes

In order to study heterochromatin barrier function we had to

establish robust silencing in the S. cerevisiae minichromosome

system. Earlier reports indicate that silencing of a gene placed

between the two silencer elements, HML – E and I, in the yeast

genome is uniformly high and does not depend on the

chromosomal context beyond the silenced locus [15,22,41].

The silencer minichromosome construct (Figure 1B) has been

designed to study the effects of both the HML ‘‘E’’ and the ‘‘I’’

Heterochromatin Boundaries in Yeast Minichromosome
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silencer elements on silencing the expression of the URA3 reporter

gene. The differences in growth phenotypes and the silencing of

the URA3 reporter gene were studied in the absence (Figure 2C) or

presence of both the HML-E and the HML-I silencers placed on

either side of the URA3 reporter gene to reproduce the genomic

topography as closely as possible (see schemes in Fig. 2D). Serial

dilutions of the strains constructed were spotted for assaying the

silencing efficiency under different selective media conditions

(Figure 2C and 2D). Both HML – E and I silencers were capable of

silencing the expression of the URA3 reporter gene, so these cells

were unable to grow on TRP-/URA- and are 5-FOA resistant

(Figure 2D). Using serial dilution assay, we observed that URA3

gene was repressed strongly enough to mimic the URA-

phenotype of the control plasmid indicating that the silencers

repressed the reporter gene completely. In contrast, the TRP1

marker gene located upstream of the HML – I silencer was not

silenced by either E or I silencer in the circular minichromosomes,

apparently because both HML – E and I silencers have

directionality in the minichromosomes as seen in the genome

and only silence the expression of genes positioned in between the

silencers in an orientation-dependent manner [15,22,41]. As an

additional control we also placed HIS3 marker gene upstream of

the HML – E silencer and downstream of the I silencer, and we

found that neither E nor I silencer were able to silence the

expression of the HIS3 gene (Figure 3A and 3B).

STAR and TEF2-UASrpg inhibit silencing of the reporter
on yeast minichromosomes irrespective of its orientation

We examined if the URA3 reporter gene would be protected

from silencing by two heterochromatin boundary elements, STAR

and TEF2-UASrpg that are able to counteract the silencing in an

orientation-dependent manner in the yeast genome [19,20]. Here,

we found that either two STAR elements (Figure 1C, 2E–H) or

two TEF2-UASrpg elements (Figure 2I–L) bracketing the URA3

reporter gene were able to inhibit the silencing by the HML-E and

HML-I silencers in an orientation-independent manner in S.

cerevisiae minichromosomes (Figure 2E–L). There were no

significant differences observed in the efficiency of the cell growth

on TRP-/URA- selective media and growth inhibition on TRP-/

5-FOA+ media. Thus in yeast minichromosome system, unlike the

genomic studies [19,20], the two boundary elements STAR and

TEF2-UASrpg can block both the HML-E and HML-I silencers in

an orientation-independent manner.

Combination of STAR and TEF2-UASrpg boundary
elements on minichromosomes

To determine if two identical boundary elements are required at

both ends to protect the URA3 reporter from the silencing effects

of the HML - E and I silencer elements we have placed STAR on

one end and TEF2-UASrpg heterochromatin boundary element at

the other end. We found that all possible combinations of STAR

and TEF2-UASrpg boundary elements on either ends of the URA3

in different orientations were able to protect the reporter gene

from being silenced (Figure 3C–J). Thus in the context of

minichromosomes two identical boundary elements at either end

of the reporter gene are not required to counteract HML-E and

HML-I driven silencing, and a combination of STAR and TEF2-

UASrpg boundary elements are able to protect the URA3 from

being silenced.

A single boundary element is sufficient to block a single
silencer

We asked if a single silencer either E or I is sufficient to silence

the expression of the URA3 reporter gene in our minichromosome

system. This was important to examine since due to limiting Sir

protein concentrations (amount of silencing factors) in the yeast

cells we expected a weaker silencing activity for the multi-copy

minichromosomes than a single-copy silenced domain in the

genome [42]. We first tested a minichromosome where only the

HML–E silencer element has been inserted upstream of the URA3

reporter gene (Figure 4A). We found that the HML–E alone was

capable of silencing the expression of the URA3 reporter gene,

therefore these cells were unable to grow on TRP-/URA- plates

and they are 5-FOA resistant due to the absence of the functional

URA3 gene product (Figure 4A). It has been reported earlier that

in the genome, the HML-E and the HML-I silencer elements were

capable of silencing alone [19,20,43]. By series of dilutions, we

have confirmed here that the HML-E silencer alone was able to

Figure 1. Schematic representation of the reporter, silencer,
and boundary minichromosomal constructs. A: Physical map of
the Reporter construct containing URA3 reporter gene, TRP1-ARS1 for
selection and propagation in S. cerevisiae, and AmpR for modifications
in E. coli. B: Physical map of the Silencer construct containing the HML -
E and I silencer elements with flanking sequences on either side of the
URA3 reporter gene. C: Physical map of one of the Boundary constructs.
This example contains the STAR boundary element. Other boundary
constructs may contain either TEF2-UASrpg or STAR element or both
positioned either downstream or upstream of the silencing elements in
different orientations (see schemes in Figures 2–6).
doi:10.1371/journal.pone.0024835.g001
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silence the URA3 reporter gene on a minichromosome as

efficiently as a pair of two silencers.

In another series of experiments we observed similar results with a

single HML–I silencer element has been inserted downstream of the

URA3 reporter gene (Figure 4F). Thus the minichromosome-borne

E and I silencers are both functional and efficient in silencing URA3

reporter gene on multi-copy circular minichromosomes. Each single

silencer, either E or I, is capable and sufficient to silence the reporter

gene even in the absence of the other silencer in the minichromo-

some constructs.

Figure 2. Boundary elements STAR and TEF2-UASrpg block the activity of the E and I silencers irrespective of their orientations. A:
Strain YPH499 (trp-, ura-) can grow on CSM, but is unable to grow on selective media conditions [TRP-; TRP-/URA-; TRP-/5-FOA+]. B: Minichromosome
containing the TRP1 marker gene is able to grow on CSM; TRP-; unable to grown on TRP-/URA- (due to lack of URA3) and is 5-FOA resistant. C:
Minichromosome containing both the TRP1 marker and the URA3 reporter genes is able to grow on CSM; TRP-; TRP-/URA- and is 5-FOA sensitive (due
to the presence of the functional URA3 product). D: Minichromosome containing the HML-E and I silencer elements is able to silence the URA3
reporter gene and the cells are able to grow on CSM; TRP-; unable to grown on TRP-/URA- (due to lack of URA3) and is 5-FOA resistant. E–L: Two
boundary elements (shown by arrows) STAR (S) and TEF2-UASrpg (T) were examined in different orientations in the presence of both the HML – E and
I silencer elements. The URA3 reporter gene expression status (on or off) was assayed by the growth phenotypes of S. cerevisiae cells containing
various minichromosome constructs tested in different selective media by serial dilutions. M: Southern blot of linearized minichromosomal and
genomic DNA probed with radiolabeled TRP1-ARS1 containing fragment. Five independent clones transformed with minichromosome construct
containing TEF2-UASrpg (left panel) and STAR (right panel). N: Graphic representation of minichromosome copy numbers quantified by scanning of
the Southern blots (such as shown in Figure 2M) and normalized to the genomic TRP1-ARS1 signal. Error bars represent Standard Deviations.
doi:10.1371/journal.pone.0024835.g002

Heterochromatin Boundaries in Yeast Minichromosome
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Next, we examined if a single heterochromatin boundary

element, either STAR or TEF2-UASrpg, was sufficient to block

silencing imposed by HML-E or HML-I on circular minichromo-

somes. The boundary elements STAR or TEF2-UASrpg were

positioned between either the HML-E or HML-I silencer elements

and the URA3 reporter. As observed in the genome, we found that

a single boundary element STAR or TEF2-UASrpg was sufficient

in blocking the silencing imposed by a single silencer either HML-

E or HML-I in any orientation (Figure 4B–E and G–J).

A single boundary is sufficient to protect URA3 from
silencing in presence of two silencer elements in circular
minichromosomes

To determine if the STAR or TEF2-UASrpg elements behave

as barriers in minichromosomes or they are able to overcome the

silencing of both the E and I silencers in the presence of only one

boundary element, we positioned a single boundary element

downstream of either the E or the I silencer, leaving the other

silencer upstream or downstream of the URA3 reporter intact

(Figure 5A–D and E–H). We found that a single boundary element

was able to overcome the silencing of both the E and I silencer

elements on the URA3 reporter, even though the URA3 was

protected only from one side and there was an equal opportunity

for URA3 to be silenced by the other silencer. This finding is in

striking contrast to the previous studies in linear chromosomes

where the reporter gene had to be bracketed by two boundary

elements to prevent the silencing in presence of both the silencers

[19,20].

STAR and TEF2-UASrpg sequences are specific in
blocking of silencing

To confirm the specificity of the STAR and TEF2-UASrpg

sequences in inhibiting silencing in the context of minichromo-

somes we used DNA sequences of similar length from the Leu2

ORF in different orientations replacing the ,300 bp of STAR

and ,150 bp of TEF2-UASrpg sequences. The control sequences

Figure 3. Combination of two different boundary elements blocks the silencing of the reporter from both E and I silencers. A:
Control showing that E silencer in the minichromosome has directionality similar to the genome and only silences URA3, but not the HIS3 gene
placed upstream of the E silencer. These cells are able to grow on CSM and HIS-/TRP-, but are unable to grow on URA- media. B: Control showing that
I silencer in the minichromosome also has directionality similar to the genome (like the E silencer) and only silences URA3, but not the HIS3 gene
placed upstream of the I silencer. These cells are able to grow on CSM and HIS-/TRP-, but are unable to grow on URA- media. C–J: Combination of
two BE - boundary elements (shown by arrows) STAR (S) and TEF2-UASrpg (T) were examined in different positions and orientations in the presence
of both the E and I silencers. The URA3 reporter gene expression status (on or off) was assayed as in Figure 2.
doi:10.1371/journal.pone.0024835.g003

Figure 4. A single boundary element can counteract the silencing of the URA3 reporter by either E or I silencer. Single BE (shown by
arrows) either STAR (S) or TEF2-UASrpg (T) were examined in the presence of a single E silencer (A–E) or a single I silencer (F–J) in different
orientations. The URA3 reporter gene expression status (on or off) was assayed as in Figure 2.
doi:10.1371/journal.pone.0024835.g004
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PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24835



inserted either between the HML-E or the HML-I silencer and the

URA3 reporter gene were unable to block the silencing mediated

by the silencers and the URA3 reporter was completely repressed

by either E or I silencer elements (Figure 6A–D). Thus, blocking of

the silencing activity is specific for the STAR and TEF2-UASrpg

DNA sequences in the minichromosomes, as random sequences of

similar length to STAR or TEF2-UASrpg were unable to protect

URA3 reporter from being silenced.

STAR and TEF2-UASrpg boundary elements exhibit
antisilencing activity in S. cerevisiae minichromosomes

To further dissect the mechanism of inhibition of silencing, we

conducted a genetic test showing whether STAR and TEF2-

UASrpg act as barriers or exhibit antisilencing activity in

minichromosomes. The anti-silencing activity is defined as an

ability of a boundary element to block the silencing independently

of its position in relation to the silencer or the reporter distinct

from the desilencing activity [28,30]. We therefore positioned the

STAR and TEF2-UASrpg elements downstream of the HML-E or

the HML-I silencers (Figure 6E–H). We found that either STAR

or TEF2-UASrpg was able to protect the URA3 from being

silenced even though they were not interposed between the

silencer and the reporter, but was instead placed downstream of

the silencers (Figure 6E–H).

Unlike the position downstream of the silencer elements, at

which there is a possibility of competition between the boundary

and the silencer to either activate or repress URA3, we next placed

the STAR and TEF2-UASrpg upstream of the HML-E or the

HML-I silencers and the URA3 reporter gene where the silencer is

in closer proximity to the reporter than the boundary. We found

that in this setting the STAR and TEF2-UASrpg displayed a

strong antisilencing activity (Figure 6I–L) as effectively as it had

Figure 5. A single boundary efficiently blocks the silencing of the URA3 reporter from both the E and I silencers. Single BE (shown by
arrows) either STAR (S) or TEF2-UASrpg (T) were examined in the presence of both the HML – E and I silencer elements, placing the BE between E and
URA3 reporter (A–D) or between I and URA3 reporter (E–H) in different orientations and the reporter gene on/off was determined by the growth
phenotypes of the yeast cells tested in different selective media.
doi:10.1371/journal.pone.0024835.g005

Figure 6. STAR or TEF2-UASrpg activity is sequence-specific and acts by imposing antisilencing. A–D: Minichromosome constructs with
,300 bp or ,150 bp of Leu2 ORF sequences replacing the STAR or TEF2-UASrpg boundary element were positioned in between the E silencer or the
I silencer and the URA3 reporter. The E or I silencers was capable of silencing the expression of the URA3 reporter gene. The cells were able to grow on
TRP- and TRP-/5-FOA+ media being 5-FOA resistant, but unable to grow on TRP-/URA- selective media. E–H: Boundary elements positioned
downstream of the silencer and the URA3 reporter gene are able to block the silencing of the URA3 reporter independent of its position unlike in the
genome. These cells are able to grow on TRP- and TRP-/URA- media, but are unable to grow on TRP-/5-FOA+, as the URA3 gene is not repressed and
exhibits sensitivity to 5-FOA. I–L: STAR and TEF2-UASrpg are positioned upstream of the HML-E and I silencer and the URA3 reporter gene. Unlike in
the genome where the BE has to be positioned in between the reporter and the silencer, in minichromosomes the upstream BE is able to counteract
silencing exhibiting antisilencing mechanism. These cells are able to grow on TRP- and TRP-/URA- media, but are unable to grow on TRP-/5-FOA+, as
the URA3 gene is not repressed and exhibits sensitivity to 5-FOA.
doi:10.1371/journal.pone.0024835.g006

Heterochromatin Boundaries in Yeast Minichromosome
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already been observed with positioning STAR and TEF2-UASrpg

downstream of the silencers. Only one copy of either STAR or

TEF2-UASrpg irrespective of its position in relation to the

silencers or the reporter was sufficient to stop the silencing of the

URA3 reporter. Thus, in contrast to linear chromosomes where

the STAR or TEF2-UASrpg boundary elements show a position-

and orientation-dependent barrier function [19,20], in the S.

cerevisiae minichromosomes these elements restrict silencing in a

position and orientation independent manner and exhibit an

antisilencing rather than barrier activity.

Discussion

The objective of this study is creating a minichromosome model

system recapitulating functional and spatial relationships between

genetic elements controlling heterochromatin in yeast and

facilitating its topographic analysis. We conducted a detailed

characterization of STAR and TEF2-UASrpg heterochromatin

boundary elements in minichromosomes in S. cerevisiae to

determine if these elements act as barriers separating an active

locus from silenced locus or are they able to inhibit silencing where

their topology is not essential. We found that S. cerevisiae can

maintain and pack episomal DNA into chromatin and mini-

chromosomes at a stable copy number and thus provide a robust

model for studying relationships between the heterochromatin

elements and gene regulation independently of the chromosomal

context. Our newly established minichromosome system can be

employed as a screen for testing other candidate barriers elements

such as tRNA genes and positioned nucleosomes.

We used the HML-E and HML-I silencer elements for our

study, since both the E and I silencers at the HML locus are

equally capable in silencing, unlike the silencers at the HMR locus

[11,17] and as the HML silencers have been used in previous

experiments with STAR and TEF2-UASrpg barriers [19,20]. In

the genomic HM loci the E and I silencers are ,3.5 Kb apart and

the silencing is known to work if that distance is increased only up

to a certain extent (,6–7 Kb), after which the silencing activity

decreases [7,17,29,44,45] as it is limited by the silencing

propagating factors such as Sir3 [45]. In this study, in the

minichromosome context, the silencing-initiating HML– E and I

elements are ,2 Kb apart but with ,20 copies of the

minichromosome the total DNA length through which silencing

is propagated in the minichromosomes exceeds ,10-fold the

effective spreading length limit between the HML- E and I silencer

elements in the genome. We found that the URA3 reporter gene

was completely repressed in all the ,20 minichromosomal copies

in the yeast cells, since expression of only one gene copy was

sufficient for growth on URA- media as well as for inhibiting

growth on 5-FOA. As the plasmid-borne silencers are less

constrained than those in the genome, the silencers on

minichromosomes can effectively silence the reporter genes and

efficiently maintain a total length of ,40 Kb silenced loci on

minichromosomes. Similar to earlier reports, the silencing in the

minichromosomes is much more robust and multi-fold higher than

seen in the genome [46]. Furthermore, consistent with earlier

reports [11,47], stating that a single silencer element is capable of

acting alone in the genome, we have shown for the first time that a

single silencer element (either HML – E or I) is sufficient in

silencing the URA3 reporter gene even in circular multi-copy

minichromosomes. Thus we were able to construct a circular

minichromosome model system where both HML- E and I

silencers were functional and efficient in silencing the URA3

reporter gene in multi-copy minichromosomes in the yeast cells.

Surprisingly, in sharp contrast to the genome, where the STAR

or TEF2-UASrpg are known to block the spreading of silencing

acting as barriers, i.e. only when interposed between a silencer and

the reporter gene [19,20] with minichromosomes, we found that

both STAR and TEF2-UASrpg were able to inhibit the silencing

of URA3 irrespective of their orientations and positions in relation

to the silencer or the reporter. In minichromosomes the STAR

and TEF2-UASrpg exhibit position-independency and antisilen-

cing activity where only one copy of either the STAR or TEF2-

UASrpg is sufficient in inhibiting silencing of the URA3 reporter

gene. Although the silencer elements exhibit efficient silencing of

the reporter gene in a direction-dependent manner, similar to

what is exhibited by silencer elements in the genome, we cannot

rule out that the altered function of barrier elements on

minichromosomes is (at least partially) due to the altered

properties of the silencer.

To explain the antisilencing mechanism observed in the circular

minichromosomes, we propose that within a minichromosome, its

circular topology would promote interactions between the

boundary element and the silencer bypassing the topographical

constraints (Figure 7). This would allow the boundary element to

block silencing of the URA3 reporter gene by the E silencer,

irrespective of the position of the boundary element in relation to

the silencer or the reporter. Thus unlike in the genome, the STAR

or TEF2-UASrpg elements in the S. cerevisiae minichromosomes

Figure 7. Model illustrating antisilencing activity of boundary element facilitated by minichromosome looping. Top panels: Within
the genome, the boundary element (BE) would block silencing when located between the silencer (E) and the URA3 gene but not upstream of the
silencer. Bottom panels: In the minichromosomes, a close contact between the silencer (E) and the boundary element - BE (either STAR or TEF2-
UASrpg) established by looping would prevent the silencing of the URA3 reporter by the silencer (E) irrespective of the position of the boundary
element in relation to either the silencer or the URA3 reporter gene.
doi:10.1371/journal.pone.0024835.g007
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are capable of inhibiting the silencing of the URA3 reporter gene

by the HML-E and HML-I silencers in a position independent

manner.

Why do boundary elements act so differently on a minichromo-

some as compared to the genome? In the genome, the silent loci

are known to have an altered chromatin organization that, in

addition to spreading of the silencing complex and histone

deacetylation, also involves chromatin higher-order structural

transitions [44,48–50]. In the genome, the boundary elements

need to be positioned between the silencer element and the

promoter because otherwise they will be spatially hindered from

the silenced region that forms a stable fold-back loop. Perhaps, this

is not the case with the minichromosome where sliding of the

interwound DNA helices of the covalently closed supercoiled DNA

ring against each other ‘‘slithering’’ [51] facilitates DNA

interaction at a distance and brings distal regulatory elements

into close contact [52]. Furthermore, on a minichromosome

associated with nucleosomes, the nucleosomal folding per se

promotes contacts between the distal regulatory elements without

supercoiling [53]. Looping of the telomeric heterochromatin has

been shown to facilitate transcription by bringing Upstream

Activating Sequences in a close contact with promoter [54] when

the former was positioned downstream of the gene. We suggest

that a facilitated looping may explain the more efficient

functioning of the boundary elements in the minichromosome

where they could find an easier access to the promoter (Figure 7)

and out-compete silencers even when positioned downstream of

the gene or upstream of the silencer. Based on the study of DNA

minicircles excised from the yeast genome, it has been previously

shown that DNA topology changes are associated with silencing

[55]. Here we propose that DNA topology may regulate

interactions between the boundary and silencing elements in the

genome and its effect on silencing can be functionally dissected in

the minichromosome system.

It is known that plasmid-borne silencers exhibit very strong

silencing [46], similarly we show here that the STAR and TEF2-

UASrpg may exhibit robust antisilencing in a minichromosomal

environment. This ‘‘easy come – easy go’’ mode of silencing on a

minichromosome implies that in this system the heterochromatin

structure is relatively relaxed compared to the more rigid

chromatin organization in the genome. The yeast minichromo-

some system that we have genetically characterized here is

especially suited for isolating of the minichromosome in different

functional states [32,56] for subsequent ultrastructural analysis

that may finally clarify the actual 3D chromatin organization of

the silent and active minichromosomes.

Materials and Methods

Minichromosome Constructs
A) Reporter constructs:. The URA3 reporter minichromo-

some construct was generated by inserting ,1.3 kb FspI DNA

fragment from the YIp5 plasmid containing ,800 bp URA3

reporter gene (GenBank accession number NC_001137.3, Chro-

mosome V, 116167 to 116970). The URA3 reporter gene (FspI

fragment) is cleaved from YIp5 plasmid and inserted at the

multiple cloning site (SmaI) of the ALT (ARS1, lac-operator, TRP1)

plasmid. All minichromosome shuttle vectors contain an auto-

nomously replicating sequence - ARS1 (GenBank accession

number NC_001136.10, Chromosome IV, 462354 to 463192),

and a selectable marker - TRP1 gene for selection in S. cerevisiae

[56] (GenBank accession number NC_001136.10, Chromosome

IV, 461842 to 462516) and a pBR322 vector-derived sequence

with an AmpR gene for selection and ColE1 origin for propagation

in E. coli. The URA3 reporter is adjacent to the TRP1 marker gene

and in the same orientation in all the minichromosomal constructs

(Figure 1A).

B) Silencer constructs:. The silencer constructs were gene-

rated by inserting HML-E and HML-I silencer elements into the

minichromosome backbone. An ,500 bp fragment containing the

‘‘E silencer’’ with ,200 bp upstream and downstream flanking

sequences (GenBank accession number NC_001135.5; chromosome

III, 10966 to 11499), were PCR amplified from the HML locus using

genomic DNA and primers with unique SacI and XhoI restriction

enzyme sites for integrating into the minichromosome (Table S1).

Similarly an ,500 bp fragment containing the ‘‘I silencer’’ with

,200 bp upstream and downstream flanking sequences (GenBank

accession number NC_001135.5, Chromosome III, 14364 to

14912), were PCR amplified from the HML locus using genomic

DNA and primers with unique NotI and KpnI restriction enzyme sites

(Table S1) for integrating into the minichromosome and were

verified by DNA sequencing. The PCR products were cloned into

pGEMT vectors. The silencer elements were excised from the

pGEMT vectors and ligated into the minichromosome constructs.

The SacI site in the minichromosome vector was too close to the XhoI

site, this problem was overcome by adding a short DNA linker

containing a SacI site. The HML - E and I silencer elements have the

same directionality in the minichromosome as in the genome

(Figure 1B). The control HIS3 gene (GenBank accession number

NC_001147.6, Chromosome XV, 721946 to 722608) was PCR

amplified from pRS413 vector (ATCC pRS series) and inserted at

the SacI restriction site upstream of the E silencer or at the BamHI

restriction site upstream of the I silencer. The HIS3 is in the same

orientation as the TRP1 and the URA3 in the minichromosome

constructs.

C) Boundary constructs:. The heterochromatin boundary

element constructs were generated by inserting TEF2-UASrpg and

STAR boundary elements in the minichromosome. The ,150 bp

TEF2-UASrpg (GenBank accession number NC_001134.8,

Chromosome II, 477109 to 477257) and ,300 bp STAR

(GenBank accession number NC_001143.9, Chromosome XI,

70 to 345) were PCR amplified from genomic DNA using specific

primer sets with unique restriction enzyme sites (Table S1) and

verified by DNA sequencing. The PCR products were cloned into

pGEMT vectors. The boundary elements were excised from the

pGEMT vectors and ligated into the minichromosome constructs.

The TEF2-UASrpg and STAR boundary elements has XhoI ends

inserted in between the E-silencer and the URA3-reporter and has

NotI ends inserted in between the I-silencer and URA3-reporter in

the minichromosomes (Figure 1C). The STAR and TEF2-UASrpg

were also positioned upstream of the E or the I silencer using SacI

and BamHI restriction sites. The TEF2-UASrpg and the STAR

boundary elements have been inserted in both orientations and in

different positions in the various minichromosome constructs. The

control sequences of ,300 bp (similar to STAR in length) and the

,150 bp (similar to TEF2-UASrpg in length) were PCR amplified

from Leu2 ORF (GenBank accession number NC_001135.5) from

pRS415 vector (ATCC pRS series) and inserted at the XhoI or NotI

restriction sites between the E or I silencer and the URA3 reporter

replacing STAR or TEF2-UASrpg boundary elements.

Yeast strains and media
All minichromosome constructs were transformed into E. coli

DH5a competent cells and bacterial colonies were screened using

restriction enzyme digests, PCR analysis and DNA sequencing.

The minichromosome constructs isolated from bacteria were re-

transformed into S. cerevisiae a-cells YPH499 strain (MATa, ade2–

101u, his3-D200, leu2-D1, lys2–801a, trp1-D63, ura3–52) [57].
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Yeast colonies grown on complete synthetic media lacking

tryptophan (TRP-) were selected for all minichromosome

constructs containing TRP1 marker gene in the construct

backbone. The functionality of the regulatory elements in various

minichromosome constructs and the expression of the URA3

reporter gene in the presence or absence of the HML-E and I

silencer elements and STAR or TEF2-UASrpg boundary elements

were determined using different selective media. The yeast

colonies were grown on CSM (complete synthetic media, TRP-

(lacking tryptophan), TRP-/URA- (lacking both tryptophan and

uracil), TRP-/5-FOA+ (lacking tryptophan, but containing 5-

fluro-orotic acid) and HIS- (lacking histidine).

Southern Hybridization
The minichromosome DNA integrity and copy number were

examined by Southern blotting. DNA was purified, linearized with

XmnI restriction enzyme digestion, subjected to electrophoretic

separation on 1% agarose gel, and then transferred to Hybond-

NX membrane (Amersham Biosciences), as per standard proce-

dures [58]. The DNA was cross-linked to the membranes with UV

light, and hybridized with TRP1-ARS1 specific minichromosome

probe (,1.4 kb EcoRI fragment) that was gel purified and random

primer labeled with [a-32P] dATP. After hybridization and

washing the membranes were exposed to imaging screen (Bio-

Rad) and the signal intensities were analyzed using Typhoon 9400

Phosphoimager (Amersham Biosciences) and quantified by the

ImageQuant 5.2 software (Molecular Dynamics). The genomic

hybridization signal was normalized to the size of the genomic

TRP1-ARS1 fragment recognized by the probe to determine the

copy numbers.

Spotting Assay
All yeast strains containing different minichromosomal con-

structs were grown to mid-log phase (A600 of ,1.0) in liquid TRP-

media with 2% dextrose at 30uC with aeration by shaking at 250

RPM. The a-cells not containing any minichromosome construct

were grown in CSM. The optical density of all yeast cultures were

adjusted to absorbance 1 at 600 nm wavelength containing

,26107 cells/ml. Ten-fold serial dilution up to ,26103 cells/

ml of each strain was made for the spotting assay to assess URA3

expression for assaying the silencing and insulating efficiency of the

strains under different growth conditions [20,46]. For each strain

at least 6 independent transformants were verified by Southern

blot analysis. Transformed cells from isolated colonies were

inoculated and grown in TRP- liquid medium and spotted on to

different selective media CSM, TRP-, TRP-/URA- (to check if 5-

FOA resistance is due to silencing and not due to URA3 mutation),

and TRP-/5-FOA+ [Toronto Research Chemicals]. Cells with

repressed URA3 are able to form colonies in the presence of 5-

FOA compound known to be toxic for cells expressing a functional

URA3 gene [38]. The selective media plates were spotted with 5 ml

cells per spot and grown for 2 days at 30uC prior to imaging the

plates to study the differences in growth phenotypes.

Supporting Information

Table S1 List of primers used in this study.
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