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Abstract: In sporadic Creutzfeldt-Jakob disease, molecular subtypes are neuropathologically well
identified by the lesioning profile and the immunohistochemical PrPd deposition pattern in the grey
matter (histotypes). While astrocytic PrP pathology has been reported in variant CJD and some
less frequent histotypes (e.g., MV2K), oligodendroglial pathology has been rarely addressed. We
assessed a series of sCJD cases with the aim to identify particular histotypes that could be more
prone to harbor oligodendroglial PrPd. Particularly, the MM2C phenotype, in both its more “pure”
and its mixed MM1+2C or MV2K+2C forms, showed more frequent oligodendroglial PrP pathology
in the underlying white matter than the more common MM1/MV1 and VV2 histotypes, and was
more abundant in patients with a longer disease duration. We concluded that the MM2C strain was
particularly prone to accumulate PrPd in white matter oligodendrocytes.

Keywords: Creutzfeldt-Jakob disease; CJD; PrP; prion; histotype; glia; oligodendrocytes

1. Introduction

In human prion diseases, attention has been mainly focused on neuronal dysfunction,
as PrPc is enriched in synapses and its pathology positively correlates with the neurodegen-
erative process and clinical symptoms [1]. Astroglial pathology is an important feature of
variant CJD and pathological astroglial PrP deposits represent, in addition to florid plaques,
a key histopathological hallmark [2]. Moreover, the deposition of disease-associated PrP
(PrPd) has been described in astrocytes [3], particularly in MV2K cases [4]. In contrast,
oligodendrocytic PrP pathology has rarely been described. Fernandez-Vega et al. [5] re-
ported the presence of nuclear and perinuclear PrPd in oligodendrocytes in the frontal
white matter in a 66-year-old man with an otherwise classical VV2-histotype, who had a
disease duration of 4,5 months. We also observed the presence of oligodendroglial PrPd

pathology in the white matter of some sporadic CJD cases. This finding prompted us
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to analyze in more detail whether some specific CJD histotypes might be more prone to
accumulate PrPd in this particular glial cell type.

2. Materials and Methods

We screened the different basic histotypes of sporadic CJD: 20 MM/MV1, 10 VV2,
15 mixed MM/MV1 + 2C, 10 mixed MV2K + 2C and 10 MM2C. Demographical details
of the patients and disease duration are given in Table 1. We assessed formalin-fixed,
formic-acid-decontaminated, and paraffin-embedded tissue sections from the frontal and
occipital lobe and paid particular attention to white matter pathology. Immunohistochem-
istry was performed by applying the anti-PrP 12F10 antibody (1:1000, epitope aa 142–160,
CEA, Gif-sur-Yvette Cedex, France), after appropriate tissue pretreatment. This included a
three-tiered tissue pretreatment based on 10 min hydrated autoclaving at 121 ◦C, 5 min,
96% formic acid, and 5 min proteinase K (5 µg/mL in TRIS) at 4 ◦C, prior to anti-PrP
antibody incubation. In parallel we evaluated the PrPd deposition pattern in the overly-
ing cortex as synaptic, perineuronal, patchy perivacuolar, plaque-like and/or Kuru-type
plaques, and assessed its intensity in a semiquantitative scale as follows: 0 = absent,
1 = mild, 2 = moderate, 3 = extensive. In selected cases that harbored oligodendroglial
PrPd pathology, we extended the anti-PrP antibody panel and included the monoclonal
antibody 3F4 (1:500, epitope 109–112, Senetek PLC, CA, USA), 6H4 (1:500, epitope 144–152,
Prionics, Schlieren ZH, Switzerland), KG9 (1:1000, epitope 140–180, TSE Resource Centre,
Edinburgh, UK), and L42 (1:300, epitope 141–159 IgG1 FRC for Virus Diseases of Animals,
sheep recPrP; Dr. M.H. Groschup, Tübingen, Germany). The Dako Envision Kit (DAKO,
Glostrup, Denmark) was used as secondary system and diaminobenzidine as chromogen.
Double immunofluorescence was performed on selected cases combining anti-PrP 12F10
and the oligodendroglia marker anti-TPPP/p25 (anti-tubulin polymerization promoting
protein TPPP/p25, a protein that was expressed mainly in differentiated oligodendrocytes
of the CNS [6], non-commercial antibody, rabbit, 1:250) as well as anti-PrP 12F10 and
anti-GFAP antibodies (rabbit, 1:1500, DAKO), applying Alexa Fluor 488 goat-anti-mouse
antibody (1:800, Jackson Immunoresearch, PA, USA) and Cy3 goat-anti-rabbit (1:1000,
Jackson Immunoresearch, PA, USA) as secondary antibodies, in addition to DAPI nuclear
stain (1 µg/mL, Thermo Fisher Scientific, MA, USA). Incubation of the antibodies was
performed overnight at 4 ◦C. Autofluorescence was blocked with 1% aqueous sodium
borohydride solution (4 min) and 1% sudan black B solution (5 min).

Table 1. Demographic and neuropathological characteristics of patients included in the study.

Case no. Sex
Age at
Death
(years)

Disease
Duration
(months)

Histotype
Oligodendroglial

PrPd White
Matter

Main PrPd

Pattern Frontal
Main PrPd

Pattern Occipital
Intensity PrPd

Deposits

1 f 72 3 MM/MV1 no diffuse synaptic diffuse synaptic extensive

2 m 71 3 MM/MV1 no diffuse synaptic
deep laminar diffuse synaptic

mild frontal,
extensive
occipital

3 m 72 3 MM/MV1
isolated frontal
(severe cortical
degeneration)

diffuse synaptic diffuse synaptic extensive

4 m 73 5 MM/MV1 no Diffuse synaptic
deep laminar

diffuse synaptic
deep laminar moderate

5 f 63 1.5 MM/MV1 no diffuse synaptic diffuse synaptic extensive

6 m 62 6 MM/MV1 no diffuse synaptic
laminar

diffuse synaptic
laminar mild

7 f 57 3 MM/MV1 no diffuse synaptic diffuse synaptic extensive
8 m 75 2 MM/MV1 no diffuse synaptic diffuse synaptic mild

9 m 72 2 MM/MV1 no diffuse synaptic diffuse synaptic
moderate

frontal,
extensive
occipital

10 m 72 2 MM/MV1 no diffuse synaptic diffuse synaptic moderate
11 f 74 6 MM/MV1 no diffuse synaptic diffuse synaptic extensive
12 f 67 2 MM/MV1 no diffuse synaptic diffuse synaptic moderate
13 m 63 1 MM/MV1 no diffuse synaptic diffuse synaptic moderate
14 f 67 3 MM/MV1 no diffuse synaptic diffuse synaptic moderate
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Table 1. Cont.

Case no. Sex
Age at
Death
(years)

Disease
Duration
(months)

Histotype
Oligodendroglial

PrPd White
Matter

Main PrPd

Pattern Frontal
Main PrPd

Pattern Occipital
Intensity PrPd

Deposits

15 m 59 3.5 MM/MV1 no diffuse synaptic diffuse synaptic
moderate

frontal,
extensive
occipital

16 m 56 2 MM/MV1 no diffuse synaptic diffuse synaptic moderate
17 f 65 2 MM/MV1 no diffuse synaptic diffuse synaptic extensive

18 f 54 2 MM/MV1 no diffuse synaptic diffuse synaptic
moderate,
extensive
occipital

19 m 77 2 MM/MV1 no diffuse synaptic diffuse synaptic
extensive

frontal, mild
occipital

20 f 65 1.5 MM/MV1 no diffuse synaptic diffuse synaptic moderate

1 f 66 5 VV2 no deep
perineuronal deep perineuronal moderate

2 m 62 3 VV2 no deep
perineuronal deep perineuronal moderate

3 m 62 4 VV2 no deep
perineuronal deep perineuronal extensive

4 f 69 6 VV2 no deep
perineuronal

deep perineuronal
+ plaque-like extensive

5 f 74 3 VV2 no
deep

perineuronal +
plaque-like

deep perineuronal
+ plaque-like moderate

6 m 81 2 VV2 no
deep

perineuronal +
plaque-like

deep perineuronal mild

7 m 74 3 VV2 no
deep

perineuronal +
plaque-like

deep perineuronal
+ plaque-like

extensive
frontal, mild

occipital

8 m 78 4 VV2 no deep
perineuronal deep perineuronal

extensive
frontal,

moderate
occipital

9 f 75 5 VV2 no deep
perineuronal deep perineuronal

moderate
frontal, mild

occipital

10 f 80 3 VV2 no deep
perineuronal deep perineuronal moderate

1 m 74 7 MM/MV1+2C yes, isol diffuse synaptic
+ focal patchy

diffuse synaptic +
patchy

moderate-
extensive

2 m 65 17 MM/MV1+2C no diffuse synaptic diffuse synaptic +
focal patchy

extensive
synaptic

frontal, mild
synaptic
occipital

3 f 77 2 MM/MV1+2C no diffuse synaptic diffuse synaptic +
focal patchy moderate

4 m 59 3 MM/MV1+2C no diffuse synaptic
+ focal patchy

diffuse synaptic +
focal patchy

mild synaptic
frontal,

moderate
synaptic
occipital

5 m 81 2 MM/MV1+2C no diffuse synaptic diffuse synaptic +
focal patchy mild synaptic

6 m 55 9 MM/MV1+2C no diffuse synaptic
+ patchy diffuse synaptic

moderate
frontal,

extensive
synaptic
occipital

7 f 68 1 MM/MV1+2C no diffuse synaptic
+ focal patchy

diffuse synaptic +
focal patchy

extensive
synaptic

8 f 51 5 MM/MV1+2C yes, few frontal patchy
perivacuolar

diffuse synaptic +
focal patchy

extensive
patchy frontal,

extensive
synaptic
occipital

9 f 79 5 MM/MV1+2C yes, few frontal patchy
perivacuolar

diffuse synaptic +
focal patchy

extensive
patchy frontal,

extensive
synaptic
occipital
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Table 1. Cont.

Case no. Sex
Age at
Death
(years)

Disease
Duration
(months)

Histotype
Oligodendroglial

PrPd White
Matter

Main PrPd

Pattern Frontal
Main PrPd

Pattern Occipital
Intensity PrPd

Deposits

10 m 74 2 MM/MV1+2C no diffuse synaptic
+ focal patchy

diffuse synaptic +
focal patchy

moderate
synaptic

11 m 70 2 MM/MV1+2C no diffuse synaptic diffuse synaptic +
focal patchy

extensive
synaptic
frontal,

moderate
synaptic
occipital

12 m 62 5 MM/MV1+2C no diffuse synaptic diffuse synaptic +
focal patchy extensive

13 m 62 2 MM/MV1+2C no diffuse synaptic diffuse synaptic moderate

14 f 55 2 MM/MV1+2C yes, few occipital diffuse synaptic
+ patchy

diffuse synaptic +
patchy

moderate
frontal,

extensive
patchy

occipital

15 f 96 n.a. MM/MV1+2C no diffuse synaptic
+ focal patchy

diffuse synaptic +
patchy

moderate-
extensive

1 m 66 3 MV2K+C no mild mild mild

2 m 62 7 MV2K+C yes patchy
perivacuolar

patchy
perivacuolar extensive

3 f 62 13 MV2K+C no patchy
perivacuolar

patchy
perivacuolar moderate

4 m 78 8 MV2K+C yes, few occipital patchy
perivacuolar

patchy
perivacuolar extensive

5 f 77 12 MV2K+C yes, few occipital patchy
perivacuolar

patchy
perivacuolar extensive

6 m 70 18 MV2K+C yes, isolated patchy
perivacuolar

patchy
perivacuolar moderate

7 * m 63 31 MV2K+C yes patchy
perivacuolar

patchy
perivacuolar extensive

8 m 57 2 MV2K+C no deep
perineuronal

patchy
perivacuolar +

synaptic

moderate
frontal,

extensive
occipital

9 f 73 9 MV2K+C yes, few

moderate deep
laminar +

extensive patchy
perivacuolar

moderate deep
laminar +

extensive patchy
perivacuolar

moderate-
extensive

10 m 57 57 MV2K+C yes, isolated

moderate deep
laminar + focal

patchy
perivacuolar

moderate deep
laminar +

extensive patchy
perivacuolar

moderate
frontal,

extensive
occipital

1 f 79 5 MM2C + 1 yes patchy
perivacuolar

patchy
perivacuolar extensive

2 f 52 58 MM2C yes, extensive patchy
perivacuolar

patchy
perivacuolar extensive

3 f 80 2 MM2C yes, few patchy
perivacuolar

patchy
perivacuolar

moderate
frontal,

extensive
occipital

4 m 78 22 MMC yes patchy
perivacuolar

patchy
perivacuolar extensive

5 f 60 11 MM2C + 1 yes patchy
perivacuolar

patchy
perivacuolar +

synaptic
extensive

6 f 76 12 MM2C yes, few patchy
perivacuolar

patchy
perivacuolar moderate

7 f 77 3 MM2C no patchy
perivacuolar

patchy
perivacuolar

moderate-
extensive

8 f 64 12 MM2C yes patchy
perivacuolar

patchy
perivacuolar

moderate
frontal,

extensive
occipital

9 f 60 2 MM2C + 1 yes patchy
perivacuolar

patchy
perivacuolar +

synaptic

extensive
frontal,

moderate
occipital

10 f 51 11 MM2C yes patchy
perivacuolar

patchy
perivacuolar extensive

* Patient in Figure 1M–O.
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3. Results

We identified PrPd pathology in white matter glial cells with oligodendroglia mor-
phology only in cases with the MM2C (+1) (90% MM2C, 27% MM1 + 2C) and the mixed
MV2K+C histotype (70%). The oligodendroglial pathology was particularly evident in
cases with extensive patchy-perivacuolar PrP deposits in the overlying cortex (Figure
1H,I). The deposits were primarily cytoplasmatic and ring- or comma-shaped (Figure 1J–L),
and were associated with fine-punctuate PrPd deposits in the white matter reminiscent of
axonal deposits. Moreover, oligodendroglial PrPd deposits were comparable with coiled
bodies observed in the four-repeat tauopathies, such as progressive supranuclear palsy,
corticobasal degeneration or argyrophilic grain disease, or even glial cytoplasmic alpha-
synuclein inclusions of MSA, as some PrPd aggregates appeared coarser or microglobular.
We did not observe an obvious nuclear PrPd immunoreactivity. In contrast to tau and alpha-
synuclein inclusions in oligodendroglia, white matter oligodendroglial PrPd pathology was
not visible in immunostaining for p62/ubiquitin and these deposits were not argyrophilic.

A comparable immunoreactivity pattern was identified when applying different anti-
PrP antibodies directed to different epitopes such as KG9, 6H4 and L42, while they were
not well identified with the 3F4 antibody, which had a poorer performance globally. In
mixed MM/MV1+2C cases, only when a high amount of patchy-perivacuolar deposits
were present did single oligodendrocytes harbor ring-shaped and granular cytoplasmic
PrPd immunoreactivity. In contrast, cases with only focal confluent vacuoles and focal
patchy PrPd deposits had no obvious oligodendroglial PrP inclusions (Table 1).

Oligodendroglial PrPd accumulation was observed only in the subcortical white matter
along axonal profiles, but was not visible in perivascular oligodendrocytes or perineuronal
satellite oligodendrocytes within the cortex. Double immunofluorescence combining
anti-TPPP/p25 and PrP (12F10) antibodies supported the oligodendroglial nature of cells
harboring PrPd aggregates (Figure 1M,N). In contrast, GFAP+ astrocytes did not show
PrPd accumulation within their cytoplasm (Figure 1O). The presence of oligodendroglial
pathology was not related to age or sex, but was more frequently observed in cases with a
longer disease duration. We could not identify oligodendroglial inclusions in MM/MV1,
VV2 or pure MV2K cases. In MM/MV1 cases with extensive diffuse synaptic PrP deposits
and prominent spongiform change, neuronal loss and gliosis, some ramified microglial
cells at the cortico-subcortical boundary contained granular cytoplasmic PrP, but were not
seen beyond that boundary.
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Patchy perivacuolar pattern, characteristic of MM2C histotype, can appear as a focal feature ((G), usually in mixed 

MM1+2C forms) or be widespread in bona fide MM2C (H). In some cases with very extensive cortical pathology, there 

might be a blurring of the grey/white matter boundary (I) and pathological PrP deposits can be abundant in the underlying 

white matter. (J–L): At higher magnification, PrP deposits can be identified in single (J) or multiple (K,L) white matter 

glial cells with oligodendroglial morphology. These aggregates show ring-like, coiled-body-like or more amorphous mor-
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Figure 1. PrPd immunoreactivity patterns. A-C (MM1/MV1): Diffuse synaptic pattern, characteristic of MM/MV1 histotype
ranging from mild (A) to extensive (B) deposits. (C) A relatively distinct border between cortical grey matter (upper part)
and white matter (lower part) is observed in this subtype. No oligodendroglial pathology is usually detected. (D–F)
(VV2/MV2): Perineuronal pattern, characteristic of VV2 (and MV2K) histotype in its milder (D) and more intense (E) form.
This pattern has a typical deep laminar distribution (F). Here also, the border between cortical grey and white matter is
relatively sharp, although some neuronal processes extend into the immediately underlying white matter. G-I (MM2C):
Patchy perivacuolar pattern, characteristic of MM2C histotype, can appear as a focal feature (G), usually in mixed MM1+2C
forms) or be widespread in bona fide MM2C (H). In some cases with very extensive cortical pathology, there might be a
blurring of the grey/white matter boundary (I) and pathological PrP deposits can be abundant in the underlying white
matter. (J–L) At higher magnification, PrP deposits can be identified in single (J) or multiple (K,L) white matter glial cells
with oligodendroglial morphology. These aggregates show ring-like, coiled-body-like or more amorphous morphologies.
(M–O) Double immunofluorescence: semilunar or ring-like glial PrPd deposits (green signal) were clearly within TPPP/p25
positive oligodendrocyte (M, N: red signal; Patient 7/MV2K+2C from Table 1) but not within GFAP positive astrocytes
(O, red signal); true co-localization of PrPd, however, occurred rarely with TPPP/p25 (lower panel in N). Scale bars: A, G:
50 µm; B, D, E, H: 20 µm; C, F, I: 100 µm; J: 15 µm; K, L, M, N, O: 10 µm.
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4. Discussion

Our findings demonstrate that particular CJD histotypes, mainly those dominated
by PrPd type 2 with abundant patchy-perivacuolar deposits in the cortex (M2C “strain”),
may be prone to accumulate PrPd in oligodendroglial cells, particularly in patients with a
long disease duration, and support earlier evidence of oligodendroglial involvement in
some CJD cases. The presence of oligodendroglial PrPd was not related to the cortical area
analysed (frontal or occipital) but to the PrPd deposition pattern and its intensity in the
overlying cortex.

MM2C patients typically manifest disease at older ages, present with progressive
dementia, and have longer disease durations than classical MM1 or VV2 patients [7,8]. The
total amounts of 14-3-3 and tau proteins are usually increased in CSF, but the RT-QuIC
assay for PrP may result negative [9]. Patients are therefore frequently misdiagnosed
with Alzheimer’s disease or vascular/mixed dementia [8]. Neuropathological studies
reveal prominent cortical pathology with large confluent vacuoles and patchy-perivacuolar
PrPd deposits with a relative sparing of the brainstem and cerebellum. Cortical MRI
hyperintensities correlate well with this anatomical distribution. About one third of
MM/MV1 patients also show focal areas of confluent vacuoles with a patchy-perivacuolar
PrP deposition pattern [10], but are clinically indistinguishable from more “pure” MM1
cases, except maybe for the presence of more pronounced cortical hyperintensities in MRI
in the areas with mixed pathology. MM2C features can also accompany some MV2K
cases and here again, cortical hyperintensities may correlate to the foci of large confluent
vacuoles [11,12].

By PrPd immunohistochemistry, the cortical–subcortical boundary appears relatively
sharply demarcated in typical MM/MV1 (Figure 1C), while in extensive MM2C patterns
it appears blurred and PrPd deposits frequently extend into the white matter (Figure 1I).
The deep laminar perineuronal pattern in VV2 may also project the delicate neuronal
processes into the underlying white matter (Figure 1F) or show plaque-like or coarse
deposits along the axons, but PrPd does not accumulate in oligodendroglial cytoplasm. At
the cortico–subcortical boundary of some MM1/MV1 cases with extensive PrPd pathology,
microglia may harbor PrP deposits, as they do in the cortex [3,13]. However, in more distant
white matter, we observed non-argyrophilic and p62/ubiquitin negative, morphologically
“coil-like” bodies in oligodendrocytes only in M2C cases.

Glial cells play an important role in neuronal homeostasis, connectivity and plas-
ticity [14–16]. Oligodendrocytes, besides insulating and supporting axons through the
myelin sheath are also important regulators of signal transmission and synaptic function.
Oligodendrocytes also interact with GABAergic interneurons of the cortex, which repre-
sent almost 50% of myelin content in the upper cortical layers [17–19], and are frequently
affected in the early disease stages of CJD [20–23]. As both oligodendrocytes and axons
need their mutual input for proper functioning, it may be that the toxic properties of
aggregated PrPd or the loss of PrPc function alter the axon–oligodendrocyte interaction. We
observed PrPd aggregates in oligodendrocytes in white matter, but not in cortical satellite
oligodendrocytes. White matter myelin is traditionally considered to ensheath the axons
of pyramidal neurons. Therefore, PrPd aggregates transported along the axon might be
taken-up by oligodendrocytes, a mechanism that has been suggested for oligodendrocyte
alpha-synuclein accumulation in multiple system atrophy [24]. The axonal transport of
PrPd is also known to occur in the VV2 subtype where PrPd accumulation can be identified
along white matter axons and in perivascular areas [7,25,26]. Whether the MM2C patchy
perivacuolar pattern affects a particular neuronal subtype that interacts more closely with
oligodendrocytes, or whether in the M2C strain-specific PrPd molecules transported from
these cortical deposits in axons are more prone to be taken up by oligodendroglia in the
white matter, is not clear and deserves further investigation.

In the late 1990s, El Hachimi et al. [27] identified PrPd deposits in the white matter
along myelin sheaths and in oligodendrocytes in four CJD cases (unspecified subtypes).
Ultrastructural studies revealed the presence of dense osmiophilic, amorphous, partly
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fibrillar material associated with the lysosomes of oligodendrocytes. Moreover, Andres
Benito et al. [28] reported an altered gene expression profile specific to astrocytes, oligoden-
drocytes and myelin in the frontal cortex of sCJD (7 MM1, 10 VV2), supporting the notion
that molecular deficits linked to energy metabolism and solute transport in astrocytes and
oligodendrocytes, in addition to neurons, may be relevant in the pathogenesis of cortical
lesions in CJD. The authors also made similar observations in a murine CJD model [29].

In animals, a ramified astroglial PrP pattern is described for BSE and scrapie [20–32].
Particularly, in experimental TSE, the H-type BSE cases have been reported to show
widespread glial labelling throughout the white matter of the spinal cord and the cere-
bellum [33]. Whether the similarities with some particular human disease forms with
rare phenotypes might indicate some environmental influence on the disease phenotype
remains unclear.

5. Conclusions

Oligodendroglial PrPd pathology may be detected in the white matter of sCJD, partic-
ularly in those subtypes with abundant patchy-perivacuolar PrP type 2 aggregates (M2C
“strain”), which are usually, but not necessarily, associated with longer disease duration.
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4. Bošnjak, M.; Zupan, A.; Fiorini, M.; Popović, K.Š.; Popović, M. A case of MV2K subtype of sporadic Creutzfeldt-Jakob disease
with florid-like plaques: Similarities and differences to variant Creutzfeldt-Jakob disease. Neuropathology 2020, 40, 389–398.
[CrossRef]

5. Fernández-Vega, I.; Díaz-Lucena, D.; Azkune Calle, I.; Geijo, M.; Juste, R.A.; Llorens, F.; Vicente Etxenausia, I.; Santos-Juanes, J.;
Zarranz Imirizaldu, J.J.; Ferrer, I. Sporadic Creutzfeldt-Jakob disease with glial PrPRes nuclear and perinuclear immunoreactivity.
Neuropathology 2018, 38, 561–567. [CrossRef]

6. Lehotzky, A.; Lau, P.; Tokési, N.; Muja, N.; Hudson, L.D.; Ovádi, J. Tubulin polymerization-promoting protein (TPPP/p25) is
critical for oligodendrocyte differentiation. Glia 2010, 58, 157–168. [CrossRef]

7. Parchi, P.; Giese, A.; Capellari, S.; Brown, P.; Schulz-Schaeffer, W.; Windl, O.; Zerr, I.; Budka, H.; Kopp, N.; Piccardo, P.; et al.
Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann. Neurol.
1999, 46, 224–233. [CrossRef]

8. Krasnianski, A.; Meissner, B.; Schulz-Schaeffer, W.; Kallenberg, K.; Bartl, M.; Heinemann, U.; Varges, D.; Kretzschmar, H.A.; Zerr,
I. Clinical features and diagnosis of the MM2 cortical subtype of sporadic Creutzfeldt-Jakob disease. Arch. Neurol. 2006, 63,
876–880. [CrossRef]

9. Abu-Rumeileh, S.; Baiardi, S.; Polischi, B.; Mammana, A.; Franceschini, A.; Green, A.; Capellari, S.; Parchi, P. Diagnostic value
of surrogate CSF biomarkers for Creutzfeldt-Jakob disease in the era of RT-QuIC. J. Neurol. 2019, 266, 3136–3143. [CrossRef]
[PubMed]

10. Parchi, P.; Strammiello, R.; Notari, S.; Giese, A.; Langeveld, J.P.; Ladogana, A.; Zerr, I.; Roncaroli, F.; Cras, P.; Ghetti, B.; et al.
Incidence and spectrum of sporadic Creutzfeldt-Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types:
An updated classification. Acta Neuropathol. 2009, 118, 659–671. [CrossRef]

11. Grau-Rivera, O.; Sánchez-Valle, R.; Bargalló, N.; Lladó, A.; Gaig, C.; Nos, C.; Ferrer, I.; Graus, F.; Gelpi, E. Sporadic MM2-
thalamic + cortical Creutzfeldt-Jakob disease: Utility of diffusion tensor imaging in the detection of cortical involvement In Vivo.
Neuropathology 2016, 36, 199–204. [CrossRef] [PubMed]

12. Iwasaki, Y.; Saito, Y.; Aiba, I.; Kobayashi, A.; Mimuro, M.; Kitamoto, T.; Yoshida, M. An autopsied case of MV2K+ C-type sporadic
Creutzfeldt-Jakob disease presenting with widespread cerebral cortical involvement and Kuru plaques. Neuropathology 2017, 37,
241–248. [CrossRef] [PubMed]

13. Franceschini, A.; Strammiello, R.; Capellari, S.; Giese, A.; Parchi, P. Regional pattern of microgliosis in sporadic Creutzfeldt-Jakob
disease in relation to phenotypic variants and disease progression. Neuropathol. Appl. Neurobiol. 2018, 44, 574–589. [CrossRef]
[PubMed]

14. Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.-W.; et al.
Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nat. Cell Biol. 2012, 487, 443–448. [CrossRef]

15. Jang, M.; Gould, E.; Xu, J.; Kim, E.J.; Kim, J.H. Oligodendrocytes regulate presynaptic properties and neurotransmission through
BDNF signaling in the mouse brainstem. eLife 2019, 8, e42156. [CrossRef] [PubMed]

16. Fawcett, J.W.; Oohashi, T.; Pizzorusso, T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal
function. Nat. Rev. Neurosci. 2019, 20, 451–465. [CrossRef]

17. Micheva, K.D.; Wolman, D.; Mensh, B.D.; Pax, E.; Buchanan, J.; Smith, S.J.; Bock, D.D. A large fraction of neocortical myelin
ensheathes axons of local inhibitory neurons. eLife 2016, 5, e15784. [CrossRef]

18. Habermacher, C.; Angulo, M.C.; Benamer, N. Glutamate versus GABA in neuron–oligodendroglia communication. Glia 2019, 67,
2092–2106. [CrossRef]

19. Turko, P.; Groberman, K.; Browa, F.; Cobb, S.; Vida, I. Differential Dependence of GABAergic and Glutamatergic Neurons on Glia
for the Establishment of Synaptic Transmission. Cereb. Cortex 2019, 29, 1230–1243. [CrossRef] [PubMed]

20. Ferrer, I.; Casas, R.; Rivera, R. Parvalbumin-immunoreactive cortical neurons in Creutzfeldt-Jakob disease. Ann. Neurol. 1993, 34,
864–866. [CrossRef] [PubMed]

21. Guentchev, M.; Groschup, M.H.; Kordek, R.; Liberski, P.P.; Budka, H. Severe, early and selective loss of a subpopulation of
GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol. 1998, 8, 615–623.
[CrossRef]

22. Belichenko, P.V.; Miklossy, J.; Belser, B.; Budka, H.; Celio, M.R. Early destruction of the extracellular matrix around parvalbumin-
immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol. Dis. 1999, 6, 269–279. [CrossRef]

23. Guentchev, M.; Hainfellner, J.A.; Trabattoni, G.R.; Budka, H. Distribution of parvalbumin-immunoreactive neurons in brain
correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J. Neuropathol. Exp. Neurol. 1997, 56,
1119–1124. [CrossRef] [PubMed]

24. Wenning, G.K.; Stefanova, N.; Jellinger, K.A.; Poewe, W.; Schlossmacher, M.G. Multiple system atrophy: A primary oligoden-
drogliopathy. Ann. Neurol. 2008, 64, 239–246. [CrossRef] [PubMed]

25. Parchi, P.; de Boni, L.; Saverioni, D.; Cohen, M.L.; Ferrer, I.; Gambetti, P.; Gelpi, E.; Giaccone, G.; Hauw, J.J.; Höftberger, R.; et al.
Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: An inter-rater
study among surveillance centres in Europe and USA. Acta Neuropathol. 2012, 124, 517–529. [CrossRef] [PubMed]

26. Kovacs, G.G.; Head, M.W.; Bunn, T.; Laszlo, L.; Will, R.G.; Ironside, J.W. Clinicopathological phenotype of codon 129 valine
homozygote sporadic Creutzfeldt-Jakob disease. Neuropathol. Appl. Neurobiol. 2000, 26, 463–472. [CrossRef] [PubMed]

http://doi.org/10.1111/neup.12652
http://doi.org/10.1111/neup.12505
http://doi.org/10.1002/glia.20909
http://doi.org/10.1002/1531-8249(199908)46:2&lt;224::AID-ANA12&gt;3.0.CO;2-W
http://doi.org/10.1001/archneur.63.6.876
http://doi.org/10.1007/s00415-019-09537-0
http://www.ncbi.nlm.nih.gov/pubmed/31541342
http://doi.org/10.1007/s00401-009-0585-1
http://doi.org/10.1111/neup.12261
http://www.ncbi.nlm.nih.gov/pubmed/26542448
http://doi.org/10.1111/neup.12350
http://www.ncbi.nlm.nih.gov/pubmed/28568896
http://doi.org/10.1111/nan.12461
http://www.ncbi.nlm.nih.gov/pubmed/29345730
http://doi.org/10.1038/nature11314
http://doi.org/10.7554/eLife.42156
http://www.ncbi.nlm.nih.gov/pubmed/30998186
http://doi.org/10.1038/s41583-019-0196-3
http://doi.org/10.7554/eLife.15784
http://doi.org/10.1002/glia.23618
http://doi.org/10.1093/cercor/bhy029
http://www.ncbi.nlm.nih.gov/pubmed/29425353
http://doi.org/10.1002/ana.410340617
http://www.ncbi.nlm.nih.gov/pubmed/8250537
http://doi.org/10.1111/j.1750-3639.1998.tb00188.x
http://doi.org/10.1006/nbdi.1999.0245
http://doi.org/10.1097/00005072-199710000-00005
http://www.ncbi.nlm.nih.gov/pubmed/9329455
http://doi.org/10.1002/ana.21465
http://www.ncbi.nlm.nih.gov/pubmed/18825660
http://doi.org/10.1007/s00401-012-1002-8
http://www.ncbi.nlm.nih.gov/pubmed/22744790
http://doi.org/10.1046/j.1365-2990.2000.00279.x
http://www.ncbi.nlm.nih.gov/pubmed/11054187


Viruses 2021, 13, 1796 10 of 10

27. El Hachimi, K.H.; Chaunu, M.P.; Brown, P.; Foncin, J.F. Modifications of oligodendroglial cells in spongiform encephalopathies.
Exp. Neurol. 1998, 154, 23–30. [CrossRef]

28. Andres Benito, P.; Dominguez Gonzalez, M.; Ferrer, I. Altered gene transcription linked to astrocytes and oligodendrocytes in
frontal cortex in Creutzfeldt-Jakob disease. Prion 2018, 12, 216–225. [CrossRef]

29. Andrés-Benito, P.; Carmona, M.; Douet, J.Y.; Cassard, H.; Andreoletti, O.; Ferrer, I. Differential astrocyte and oligodendrocyte
vulnerability in murine Creutzfeldt-Jakob disease. Prion 2021, 15, 112–120. [CrossRef]

30. Casalone, C.; Caramelli, M.; Crescio, M.I.; Spencer, Y.I.; Simmons, M.M. BSE immunohistochemical patterns in the brainstem:
A comparison between UK and Italian cases. Acta Neuropathol. 2006, 111, 444–449. [CrossRef]

31. Simmons, M.M.; Spiropoulos, J.; Webb, P.R.; Spencer, Y.I.; Czub, S.; Mueller, R.; Davis, A.; Arnold, M.E.; Marsh, S.; Hawkins, S.A.;
et al. Experimental classical bovine spongiform encephalopathy: Definition and progression of neural PrP immunolabeling in
relation to diagnosis and disease controls. Vet. Pathol. 2011, 48, 948–963. [CrossRef]

32. Spiropoulos, J.; Casalone, C.; Caramelli, M.; Simmons, M.M. Immunohistochemistry for PrPSc in natural scrapie reveals patterns
which are associated with the PrP genotype. Neuropathol. Appl. Neurobiol. 2007, 33, 398–409. [CrossRef] [PubMed]

33. Konold, T.; Bone, G.E.; Clifford, D.; Chaplin, M.J.; Cawthraw, S.; Stack, M.J.; Simmons, M.M. Experimental H-type and L-type
bovine spongiform encephalopathy in cattle: Observation of two clinical syndromes and diagnostic challenges. BMC Vet. Res.
2012, 8, 22. [CrossRef] [PubMed]

http://doi.org/10.1006/exnr.1998.6894
http://doi.org/10.1080/19336896.2018.1500076
http://doi.org/10.1080/19336896.2021.1935105
http://doi.org/10.1007/s00401-005-0012-1
http://doi.org/10.1177/0300985810387072
http://doi.org/10.1111/j.1365-2990.2007.00800.x
http://www.ncbi.nlm.nih.gov/pubmed/17617872
http://doi.org/10.1186/1746-6148-8-22
http://www.ncbi.nlm.nih.gov/pubmed/22401036

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

