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The human genome contains microRNAs (miRNAs), small noncoding RNAs that orchestrate a number of physiologic processes
through regulation of gene expression. Burgeoning evidence suggests that dysregulation of miRNAs may promote disease
progression and cancer pathogenesis. Virus-encoded miRNAs, exhibiting unique molecular signatures and functions, have been
increasingly recognized as contributors to viral cancer pathogenesis. A large segment of the existing knowledge in this area has been
generated through characterization of miRNAs encoded by the human gamma-herpesviruses, including the Kaposi’s sarcoma-
associated herpesvirus (KSHV). Recent studies focusing on KSHV miRNAs have led to a better understanding of viral miRNA
expression in human tumors, the identification of novel pathologic check points regulated by viral miRNAs, and new insights
for viral miRNA interactions with cellular (“human”) miRNAs. Elucidating the functional effects of inhibiting KSHV miRNAs
has also provided a foundation for further translational efforts and consideration of clinical applications. This paper summarizes
recent literature outlining mechanisms for KSHV miRNA regulation of cellular function and cancer-associated pathogenesis, as
well as implications for interactions between KSHV and human miRNAs that may facilitate cancer progression. Finally, insights
are offered for the clinical feasibility of targeting miRNAs as a therapeutic approach for viral cancers.

1. Introduction

MicroRNAs (miRNAs) are small (19–24 nucleotides in
length), noncoding RNAs that bind both untranslated and
coding regions of target mRNAs, marking them for degra-
dation or posttranscriptional modification. The biogenesis
of miRNAs begins in the nucleus where RNA polymerase
II generates primary miRNA (pri-miRNA) transcripts.
Subsequently, pri-miRNAs are processed by the RNase
III enzyme Drosha, generating precursor miRNAs (pre-
miRNAs). Nuclear pre-miRNAs are then transported to the
cytoplasm by exportin/Ran-GTP where they are cleaved by
the cytoplasmic RNase III enzyme Dicer, generating mature
miRNAs which are incorporated into the RNA-induced

silencing complex (RISC). This directs RISC to the target
mRNA based on sequence complementarity, resulting in
gene silencing [1, 2]. miRNAs are encoded by many different
organisms and regulate a variety of cellular processes, in-
cluding cell proliferation, apoptosis, differentiation, and de-
velopment [3].

Viruses encode miRNAs whose sequences and functions
are unique from human miRNAs and miRNAs encoded by
human herpesviruses have been increasingly well character-
ized [4]. Herpesviruses are enveloped, double-stranded DNA
viruses, and the human gamma-herpesviruses, Epstein-Barr
virus (EBV) and Kaposi’s sarcoma-associated herpesviruses
(KSHV), are the etiologic agents of several forms of cancer.
As with other herpesviruses, the KSHV lifecycle involves
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Table 1: Overview of KSHV miRNAs regulatory functions and targets.

Functions KSHV miRNAs Validated targets References

KSHV entry
miR-K12-1 — [20]

miR-K12-9 — [20]

miR-K12-11 BACH-1 [20, 22, 23]

Induction of reactive nitrogen species (RNS) miR-K12-1, 9 and 11 — [20]

Endothelial cell reprogramming miR-K12-6 and 11 MAF [24]

KSHV gene expression

miR-K12-7 RTA [37]

miR-K12-9 RTA/BCLAF1 [38, 39]

miR-K12-4 Rbl2 [40]

miR-K12-1 IκBα [41]

miR-K12-3 Nuclear factor I/B [42]

miR-K12-5 BCLAF1 [39]

miR-K12-11 IKKε [43]

miR-K12-10 and 12 — [18]

Cytokine secretion
miR-K12-3 and 7 — [44]

miR-K12-11 C/EBPβ [45]

miR-K12-10 TWEAKR [46]

Immune escape miR-K12-7 MICB [47]

Cell survival
miR-K12-10 TWEAKR [46]

miR-K12-1 p21 [48]

two distinct phases: latent and lytic. During latency (the
predominant phase in the majority of infected cells) only a
limited number of viral genes are expressed. Provocation by a
variety of stimuli induces lytic replication, resulting in virion
assembly and release of infectious viral particles[5]. Existing
data suggest that the oncogenic potential of KSHV is largely
dependent upon genes expressed during latency, although
“low level” replication occurring in a small minority of
cells is also critical for infection of naı̈ve cell targets,
maintenance of the KSHV reservoir, and tumor pathogenesis
[6–8]. Cancers caused by KSHV, including multicentric
Castleman’s disease (MCD), primary effusion lymphoma
(PEL), and Kaposi’s sarcoma (KS), arise preferentially in the
setting of immune suppression as seen with HIV infection
and provision of immunosuppressive medications in the
context of solid organ transplantation [9–11].

Thus far, 12 KSHV pre-miRNAs, encoding 18 mature
miRNAs, have been identified [12–14]. Within the KSHV
genome, miRNAs are located in the KSHV latency-associated
region (KLAR). Other proteins encoded within the KLAR
are critical for maintenance of the viral episome and KSHV
oncogenesis, including the latency-associated nuclear anti-
gen (LANA), virus-encoded Cyclin (vCyclin), viral FLICE
inhibitory protein (vFLIP), and kaposin (K12). 10 of 12
miRNAs (miR-K12-1∼9 and 11) are located within the
intron of K12; miR-K12-10 is located within the open
reading frame of K12 A/C and the 3′UTR of K12 B, and
miR-K12-12 is located within the 3′UTR of K12 [12–14].
Given their location within the KLAR, it follows that KSHV
miRNAs facilitate maintenance of latent viral gene expression
and the oncogenic potential of these genes. This paper will
summarize recent findings regarding the expression of KSHV
miRNAs and their regulatory functions and elaborate on

emerging mechanistic concepts in this field. We will also
review several recently published studies offering insight into
the feasibility of targeting miRNAs for therapeutic purposes.
For an overview of KSHV miRNA targets and their putative
functions, see Table 1.

2. Expression Patterns for KSHV miRNAs

Expression of KSHV miRNAs has been demonstrated within
latently infected primary human cells and KSHV-infected
PEL cells [12–16]. PEL cell lines exhibit significant conserva-
tion (∼99.6%) of KSHV-miRNA expression [17], although
one group recently reported that miR-K12-9 may be muta-
tionally inactivated in different PEL lines [18]. Moreover,
expression levels for individual KSHV miRNAs vary con-
siderably [13]. Phylogenetic analyses of KSHV miRNA
sequences from clinical samples of KS and MCD patients
of divergent geographic backgrounds reveal the existence of
2 major sequence clusters, referred to as the major (A/C)
and variant (B/Q) clusters [17]. Further analyses of the
pre-miRNA sequences show that some KSHV miRNAs are
highly conserved (such as miR-K12-1, 3, 8, 10, 11, and
12), while others (including miR-K12-2, 4, 5, 6, 7, and 9)
exhibit sequence alterations likely affecting their processing
and function, although this hypothesis requires additional
confirmation [17]. In addition, one study found distinct
polymorphisms within pri-miRNAs, pre-miRNAs, or mature
miRNAs encoded by circulating KSHV in a European patient
cohort, and some of these polymorphisms may affect mature
miRNA processing and associate with KS risk [19]. Collec-
tively, these data indicate that individual KSHV miRNAs may
regulate KSHV pathogenesis in a disease-specific manner,
and that they may exhibit cell type-specific functions within
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the tumor microenvironment. Identification of viral and
cellular factors governing these differences should illuminate
additional mechanisms and help determine whether screen-
ing for miRNA polymorphisms can be used to quantify one’s
risk for developing KSHV-associated tumors.

3. KSHV miRNA Regulation of Virus Entry

We have reported that miR-K12-1, 9, and 11 increase macro-
phage and endothelial cell (EC) susceptibility to KSHV entry
and latent gene expression through upregulation of xCT
[20], an inducible amino acid exchanger and fusion-entry
receptor for the virus [21]. One mechanism for these obser-
vations involves upregulation of xCT through miR-K12-11
repression of BACH-1, a negative transcription regulator of
xCT [20]. These findings are consistent with earlier reports
revealing direct targeting of BACH-1 by miR-K12-11 [22,
23]. Mechanisms for regulation of xCT expression by miR-
K12-1 and 9 have not yet been elucidated. One related report
noted involvement of KSHV miRNAs in endothelial cell
reprogramming through repression of the cellular transcrip-
tion factor Maf (cMaf) [24]. cMaf also serves as a negative
transcription regulator for xCT, so we have speculated that
multiple KSHV miRNAs, through cooperative mechanisms,
facilitate KSHV entry [20]. Whether KSHV miRNAs regulate
expression and/or function of other cellular receptors for
KSHV, including DC-SIGN and integrins [25–29], has not
been established. Increased cell permissiveness for KSHV
entry following initial infection and miRNA expression may
represent an evolutionary mechanism for KSHV promotion
of its own persistence. Supporting this hypothesis, several
reports have shown that a significant proportion of KSHV-
infected tumor cells contain multiple viral clones [30–
32]. Moreover, downregulation of MHC Class I (MHC-
I) in KSHV-infected cells is directly proportional to intra-
cellular KSHV episome copy number [33], implying that
an increase in intracellular viral copies reduces KSHV
epitope presentation to CD8+T cells. In addition, precedence
exists for human miRNAs regulation of virus entry. For
example, one group has demonstrated that several human
miRNAs regulate monocyte/macrophage susceptibility to
HIV infection [34, 35]. Another group reported that miR-
23b inhibits Rhinoviruses 1B (RV1B) entry through targeting
of the very low density lipoprotein receptor [36]. Therefore,
it is plausible that KSHV and human miRNAs cooperatively
regulate surface determinants of cell targeting by KSHV and
other viruses. Furthermore, it is likely that KSHV and other
viral miRNAs regulate secretion of microenvironmental
factors by infected cells that influence susceptibility of
neighboring cells to virus entry. We have shown that KSHV
miRNA induce secretion of reactive nitrogen species (RNS),
and that inhibition of the enzymatic generation of RNS
reduces cell susceptibility to KSHV infection [20]. Given that
both BACH-1 and cMaf are negative transcription regulators
for genes containing antioxidant response elements (AREs)
in their promoters, and since several genes involved in
production of reactive nitrogen- and oxygen-based species
(RNS and ROS, resp.) contain AREs, we hypothesize that
KSHV miRNAs regulation of BACH-1 and cMaf influences

a more complex network of genes to generate tumor-
promoting RNS and ROS while simultaneously protecting
KSHV-infected cells from oxidative damage inflicted by these
species [20]. These data have implications for development
of therapeutic strategies to reduce KSHV infection in the
tumor microenvironment and, therefore, KS progression [6–
8].

4. KSHV miRNA Regulation of
Viral Gene Expression

Maintenance of latent KSHV infection, coordinated with
lytic reactivation within a small subset of infected cells, is
critical for simultaneous promotion of KSHV persistence
and dissemination. Studies published recently indicate a role
for KSHV miRNAs in the regulation of this latent-lytic
“switch”. miR-K12-7 and 9 bind and repress transcription
of the KSHV immediate-early gene ORF50 which encodes
the replication and transcription activator (RTA) [37, 38].
RTA activation is critical for the initiation of lytic replication
of the virus [37, 38]. miR-K12-4 represses expression of
the retinoblastoma (Rb)-like protein 2 (Rbl2), a known
repressor of DNA methyl transferases (DNMT)-1, -3a and -
3b. Increased activity of these DNMTs maintains methylation
of the RTA promoter and suppresses its expression [40].
Furthermore, miR-K12-1 targeting of IκBα, an inhibitor of
NF-κB complexes, promotes NF-κB-dependent viral latency
and cell survival [41]. miR-K12-3 also promotes KSHV
latency through targeting of nuclear factor I/B, an activator
of the RTA promoter [42]. Conversely, miR-K12-5 and 9
repress the Bcl-2-associated factor (BCLAF1), resulting in
an increase in lytic replication, albeit through mechanisms
that have yet to be defined [39]. One recent study indicates
that miR-K12-11 targets and downregulates IKKε, a signaling
intermediate shown previously to facilitate lytic reactivation
of KSHV from latently infected cells [43]. Another report
revealed upregulation of two miRNAs, miR-K12-10, and
12, during chemical induction of KSHV lytic reactivation
[18], but whether these miRNAs play an active role in
regulation of the lytic switch for KSHV remains to be
determined. Collectively, these data support the notion that
KSHV miRNAs function primarily to maintain viral latency,
congruous with their location within the KLAR. This is
also supported by recent work revealing that cells infected
with KSHV deletion mutants lacking KSHV miRNAs exhibit
increased expression of lytic viral genes, including ORF50
[40, 41].

5. KSHV miRNA Regulation of
Cytokine Responses, Immune Recognition,
and Cell Survival

Several factors secreted by KSHV-infected cells (and other
cells found within the tumor microenvironment), including
VEGF, IL-8, IL-6, IL-10, IL-1β, and TNF-α, support KSHV-
associated pathogenesis through complimentary mecha-
nisms involving interference or augmentation of cellu-
lar functions relevant to cancer pathogenesis [49]. More
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specifically, IL-6 and IL-10 collectively promote growth of
KSHV-infected tumor cells, angiogenesis and suppression
of T-cell activation [50–53]. We have demonstrated that
KSHV-miRNAs induce IL-6 and IL-10 secretion by murine
macrophages and human myelomonocytic cells, and that
this is accomplished, in part, through miR-K12-3 and 7
repression of a dominant-negative isoform of C/EBPβ which
serves as a transcriptional repressor of IL-6 and IL-10
[44]. However, it remains unclear whether this effect results
from direct targeting of C/EBPβ by these miRNAs or an
indirect effect within a more complex regulatory network.
Furthermore, and whether these events occur following
de novo infection of human primary cells is unknown. A
more recent study reported that miR-K12-11 induces splenic
B-cell expansion and KSHV-associated lymphomagenesis
through direct targeting of C/EBPβ [45]. It is plausible that
lymphomagenesis in this model is dependent on miRNA reg-
ulation of cytokine responses through targeting of C/EBPβ,
congruous with existing clinical data suggesting a role for
cytokines in PEL pathogenesis [54]. Another study reveals
that KSHV-encoded ORF57 competes with human miRNAs
for binding of transcripts for both human IL-6 (hIL-6) and
the KSHV-encoded viral homolog for IL-6 (vIL-6) [55]. In
doing so, ORF57 impairs hIL-6 and vIL-6 RNA association
with human miRNA-specified RISCs, thereby stabilizing IL-
6 RNA.

Existing data further indicate that KSHV miRNAs may
facilitate conditional suppression of cytokine responses and
immune recognition. miR-K12-10 repression of the tumor
necrosis factor-like weak inducer of apoptosis receptor
(TWEAKR) in primary human ECs results in decreased
expression of IL-8 and monocyte chemoattractant protein 1
(MCP-1) which are normally induced following TWEAKR
interactions with its cognate ligand, TWEAK [46]. In
addition, one group has found that KSHV miRNAs repress
expression of the stress-induced natural killer (NK) cell
ligand, MICB, thereby permitting escape of KSHV-infected
cells from NK cell recognition and killing [47]. It seems
likely that KSHV miRNA regulation of cytokine responses
and immune evasion is a finely coordinated effort hinging on
intracellular and/or exogenous microenvironmental signals
that are cell type-specific.

Maintenance of viability for KSHV-infected cells de-
pends, in part, on KSHV regulation of cellular pathways
promoting cell survival and antiapoptotic signaling. Several
studies indicate that KSHV miRNAs are involved in this
process. Microarray analyses using cells stably expressing
KSHV-encoded miRNAs revealed that 3′UTRs of select cell
proliferation/apoptosis-associated genes, including SPP1,
S100A2, and PRG1, are likely targeted by multiple KSHV
miRNAs [56]. However to our knowledge, specific target
sequences within the 3′UTRs for these genes have not
yet been validated, and functional correlates for KSHV
miRNAs targeting these genes have not been determined.
As mentioned previously, miR-K12-10 represses TWEAKR,
and cells transfected with miR-K12-10 are more resistant
to TWEAK-induced apoptosis [46]. Another group showed
that expression of the cellular cyclin-dependent kinase
inhibitor p21, a key inducer of cell cycle arrest, is repressed

through its direct targeting by miR-K12-1 [48]. Ectopically
expressed miR-K12-1 strongly attenuated cell cycle arrest
induced during p53 activation through repression of endoge-
nous p21. In summary, KSHV miRNA support of anti-
apoptotic signaling, coupled with their regulation of cytokine
responses and their putative role in suppression of immune
recognition, suggests that KSHV miRNAs invoke cooperative
mechanisms critical for survival of KSHV-infected cells.

6. Future Directions

6.1. Establishing Biologic Assays for Identification of KSHV
miRNAs Targets. Online miRNA databases (http://www.mir
base.org/) and bioinformatics programs have been developed
to predict virus-encoded miRNAs targets [22, 57–59]. Several
groups have utilized these programs for identifying putative
targets of KSHV miRNAs [14, 20, 22, 24, 40, 44], although
the use of seed sequence matching as the principal predictive
tool for these programs is too stringent given that many valid
targets of miRNAs will not meet predetermined sequence
matching criteria [60]. This has led to interest in developing
screening tools involving more direct assessment of viral
miRNAs regulation of potential targets. One group published
their use of a tandem array-based screening approach: first,
they quantified expression of host genes under conditions
of either KSHV miRNA overexpression or inhibition of
single KSHV miRNAs in latently infected cells; second,
they identified targets using stringent criteria including
seed sequence complementarity at positions 2–8 which,
although not required for targeting, has been associated
with more reliable prediction of target downregulation [39].
Through this effort, they identified one gene targeted by
miR-K12-5 (BCLAF1). As noted by the authors, limita-
tions for this approach are its labor-intensive nature and
lack of all-inclusiveness in target identification. Another
group performed immunoprecipitation of RISCs followed
by microarray analysis of the RISC-bound miRNA targets
(RIP-Chip) of KSHV miRNAs, EBV miRNAs, and human
miRNAs using latently infected or stably transduced human
B-cell lines [61]. Two targets were validated for EBV miRNAs,
and transcript half-life of human and viral miRNA targets
correlated inversely with recruitment to RISC complexes,
indicating that RIP-Chip may offer a quantitative estimate
of viral miRNA function [61]. Furthermore, two putative
targets exhibited miRNA binding sites within their coding
sequences, not within 3′UTRs. Additional studies should
clarify whether these and other methods are ultimately
cost-effective and yield more reliable identification of viral
miRNA targets relative to bioinformatics screens.

6.2. KSHV Regulation of Human miRNAs. Although the ma-
jority of published work has thus far focused on defining
KSHV miRNA targets and functional correlations, data pub-
lished more recently also suggest that KSHV-encoded pro-
teins regulate cellular machinery by virtue of their regulation
or interference with cellular miRNA functioning. In KS and
PEL tumors, tumor-suppressor miRNAs, including miR-221,
miR-222, and let-7 family members, are underrepresented

http://www.mirbase.org/
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[62]. Furthermore, pre-miRNA signatures may define the
stages of EC transformation following KSHV infection [63].
More specifically, the loss of miR-221 expression marks the
transition from immortalization to tumorigenicity for these
cells [63]. Since the publication of these studies, several
groups have identified specific mechanisms for KSHV reg-
ulation of cellular miRNAs. KSHV-encoded vFLIP represses
expression of the chemokine receptor CXCR4 through NF-
κB-mediated upregulation of miR-146a [64]. Since KSHV
encodes redundant mechanisms for NF-κB upregulation,
and since multiple cellular miRNAs have NF-κB binding sites
within their promoters, this study illuminates an important
mechanism for KSHV regulation of the cellular miRNA
machinery. Another elegant study recently confirmed that
KSHV induces EC migration through regulation of cellular
transcription factors, and the authors identified two compli-
mentary mechanisms for this effect [65]. First, they found
that the transcription factors ETS2 and ETS1 are downstream
targets of cellular miR-221 and miR-222, respectively. They
confirmed that two KSHV-encoded latent proteins, LANA,
and Kaposin B, downregulate the miR-221/miR-222 clus-
ter through direct interactions with the miR-221/miR-222
promoter resulting in upregulation of ETS1/2-induced EC
mobility [65]. Second, they found that KSHV upregulates
EC expression of miR-31, thereby repressing expression of
the tumor suppressor FAT4. They confirmed the presence of
miR-31 binding sites within the coding region of FAT4, and
that KSHV/miR-31-induced suppression of FAT4 results in
enhanced EC mobility. The same group published additional
data suggesting that the minor variant of KSHV-encoded
K15 induces cell migration and invasion through induction
of miR-31 [66]. KSHV regulation of cellular miRNAs may
also influence immune evasion and immunopathogenesis.
KSHV infection induces expression of miR-132, thereby
reducing expression of interferon (IFN)-stimulated genes
and facilitating viral replication in EC [67]. And as previously
mentioned, KSHV-encoded ORF57 competes with cellular
miRNAs for binding of transcripts for IL-6, thereby stabi-
lizing IL-6 RNA [55]. These studies further underscore the
complex regulatory network of viral and human miRNAs
that contribute to tumor pathogenesis, and future studies
will confirm whether inhibition of KSHV regulation of
human miRNAs offers a viable therapeutic strategy for
KSHV-associated diseases.

6.3. Regulation of KSHV miRNA Expression. Numerous stud-
ies have focused on defining the regulatory functions of
miRNAs. Less well understood are mechanisms for tran-
scriptional and posttranscriptional regulation of miRNAs
themselves, including viral miRNAs, although burgeoning
data suggest that these processes are important for cancer
pathogenesis [68, 69]. miRNAs are under the control of a
wide range of transcription factors, including some tumor
suppressors and oncogenes [70–72], and recent reports
reveal that certain environmental conditions like hypoxic
stress influence miRNA expression. miR-210 is induced
by hypoxia-inducible factor-1 alpha (HIF-1α) to promote
cell survival and adaptation to hypoxic environmental
conditions [73], and HIF-1α alters miR-101 expression in a

prostate cancer model [74]. Interestingly, HIF-1α is highly
expressed in HIV-associated KS lesions [75], and KSHV-
encoded IFN regulatory factor 3 (vIRF3) stabilizes HIF-1α,
thereby inducing vascular endothelial growth factor (VEGF)
expression [76]. KSHV-encoded LANA also functions both
as an inhibitor of a HIF-1α suppressor, the von Hippel-
Lindau protein, and as an inducer of nuclear accumulation
of HIF-1α during latent KSHV infection [77, 78]. These data
would support additional work to determine whether KSHV
regulation of HIF-1α dysregulates human miRNA expression
and tumor pathogenesis. Other factors regulate miRNA
expression at the posttranscriptional level, including Drosha
and its interactional protein DGCR8 [79–81]. One study
also noted that a single nucleotide polymorphism within the
miR-K12-5 precursor stem-loop reduces Drosha processing
and inhibits mature miR-K12-5 expression in BCBL-1 cells
[82]. This implies that mutations within miRNA genes
themselves may arise during the transformation of an
infected cell and differential expression of KSHV miRNAs
which favor specific pathogenic events. DNA methylation
and histone deacetylation also contribute to regulation of
miRNA transcription [83–85]. A report referenced previ-
ously found that genomic DNA from cells infected with a
KSHV deletion mutant lacking 10 of the 12 mature KSHV
miRNAs exhibited a striking loss of methylation [40], but
whether miRNAs expression is regulated through epigenetic
mechanisms, possibly involving miRNAs themselves, has not
been elucidated.

6.4. Targeting Viral and Cellular miRNAs for Clinical Applica-
tions. Despite challenges in achieving efficient and selective
approaches for suppressing miRNA functions in vivo, the
concept of targeting miRNAs for therapeutic benefit has
gained considerable attention with the publication of elegant
studies revealing effective methods for suppressing miRNA-
associated tumor progression in animal models. One of the
first examples of chemical modification of oligonucleotides
for miRNA inhibition was the development of antagomirs,
small ribonucleotide chains whose 2′-hydroxyl on the ribose
is replaced by a 2′-O-Methyl group for stability [86].
Commercially available antagomirs have additional modifi-
cations that stabilize miRNA-antagomir binding and prevent
recognition of cognate mRNAs by miRNAs. Antagomirs have
demonstrated utility for inhibiting KSHV miRNA-induced
pathogenesis in KSHV-infected cells in vitro [20, 44, 56].
Intravenous delivery of antagomirs has also demonstrated
utility in vivo [86–88], but off-target effects and excessive
doses required to suppress miRNA expression have raised
concerns about the utility of this approach [89].

Examples of other chemical modifications of oligonu-
cleotides for clinical applications include morpholinos and
locked nucleic acids (LNAs). Morpholinos contain six-
member morpholine rings rather than five-member ribose
rings, conferring resistance to nucleases [90]. Morpholinos
may be further engineered to bind and protect mRNA target
sequences from miRNA to confer superior target specificity
[91]. Morpholinos conjugated to peptides to enhance cell
penetration have demonstrated utility in animal models [92],
and a modified drug based on this technology, delivered
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by intramuscular injection, is undergoing evaluation in one
clinical trial [93]. LNAs contain a biochemical modification
where the 2′-oxygen and 4′-carbon atoms of the ribose
rings are chemically bridged. This “locked” confirmation
confers high thermal stability and resistance to exo- and
endonucleases. An LNA-based miR-122 inhibitor is under
evaluation for the treatment of hepatitis C [94]. In fact, LNAs
have demonstrated utility in a number of animal model
systems [95–99]. As noted previously, miR-K12-11, a KSHV-
encoded ortholog of cellular miR-155, targets C/EBPβ, [45],
and one study indicates that silencing of miR-155 in mice
using LNAs leads to derepression of C/EBPβ [99]. It is
interesting to speculate whether LNAs could be used to
suppress KSHV-associated lymphoma progression in vivo
using this approach to target miR-K12-11.

As we discussed previously, KSHV itself suppresses
expression of human miRNAs serving as tumor suppressors,
including miR-221 and miR-222. This raises the question
of whether delivery of selected miRNAs would interfere
with KSHV pathogenesis in vivo. The utility of miRNA
delivery for cancer therapeutics has been supported recently
through studies indicating successful suppression of tumors
in vivo using liposomal nanoparticles containing miRNA
or lipid-based delivery reagents which are commercially
available [100, 101]. In one study, systemic delivery of
miR-34a inhibited prostate cancer metastasis and extended
survival of tumor-bearing mice, in part through targeting
of CD44 [101]. CD44 is one of two well-characterized
receptors for hyaluronic acid (HA) [102], and we have
recently reported effective sensitization of human KSHV-
infected lymphoma cells to chemotherapy using various
approaches for interfering with HA-receptor interactions
[103]. Whether KSHV regulation of human miRNAs initiates
upregulation of HA receptors and drug resistance for KSHV-
infected cells remains unknown. Regardless, this reinforces
the complex interplay between viral and human miRNA, and
the redundancy of viral miRNA regulatory mechanisms, and
implies that viral cancer treatment approaches targeting a
single miRNA would likely be limited in their clinical efficacy.
Combining miRNA targeting with existing therapies for viral
tumors may be a more tractable approach. Of note, in vivo
effects of targeting multiple miRNAs simultaneously have
not been defined, although simultaneous use of multiple
antagomirs targeting KSHV miRNAs demonstrates additive
or synergistic suppression of KSHV pathogenesis in vitro
[20, 44, 56].

7. Conclusion

As the etiologic agent of diverse forms of human cancer and
by virtue of its tropism for a variety of human cell types,
KSHV represents a model pathogen for the study of viral
miRNA expression and function. Elegant studies performed
recently underscore the importance of KSHV miRNAs and
their interactions with human miRNA, for cancer pathogen-
esis, including viral biology and gene expression, cytokine
responses, immune evasion, and anti-apoptotic signaling.
The plasticity of these interactions and challenges inherent
to miRNA targeting in vivo incur substantial obstacles for

development of miRNA-based therapies, but recent advances
hold considerable promise for eventual clinical application
of therapeutic approaches targeting viral miRNAs in the
treatment of viral malignancies.
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