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Abstract: 3D bioprinting has gained visibility in regenerative medicine and tissue engineering due
to its applicability. Over time, this technology has been optimized and adapted to ensure a better
printability of bioinks and biomaterial inks, contributing to developing structures that mimic human
anatomy. Therefore, cross-linked polymeric materials, such as hydrogels, have been highly targeted
for the elaboration of bioinks, as they guarantee cell proliferation and adhesion. Thus, this short
review offers a brief evolution of the 3D bioprinting technology and elucidates the main hydrogels
used in the process.
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1. Introduction

Three-dimensional bioprinting (3DBP) is a multidisciplinary area of interconnection
between life sciences and engineering. Through the combination of cells, growth factors,
and biomaterials, and the principles of additive manufacturing, 3DBP emerges as a promis-
ing technology for use in tissue engineering and regenerative medicine [1,2]. It is, in fact, a
therapeutic alternative in the development of materials that mimic the structure, composi-
tion, and function of native tissues. Some injured organs or tissues have a limited ability to
regenerate, and their physicochemical and biological characteristics are heterogeneous and
complex. Thus, 3D bioprinting technology uses different biomaterials to meet biological
and mechanical functionalities. Recent advances have highlighted, in particular, hydrogels
as a raw material in 3DBP [3–5].

Hydrogels are three-dimensional polymeric networks that have a high capacity to
absorb fluids without dissolving [6–8], being well established as scaffolds in the area of
tissue engineering (TE) [9,10]. Due to their hydrophilic nature and design with a porous
structure, they tend to support cellular growth, proliferation, and differentiation. They can
also be vehicles for biologically active substances or cells [2,11]. However, the successful
scientific results with 3DBP hydrogels, of natural or synthetic origin, are usually fragile,
with limited mechanical tenacity [12]. Research demonstrates, for example, that hydrogels
for use in cartilage tissue engineering, have a fracture energy in J/m2 that is ten times lower
than the fracture energy of natural cartilage (~1000 J/m2). However, with 3D bioprinting
of hydrogels, the architecture of these materials, in terms of geometry, interconnection, and
pore size, can be adjusted, integrating other mechanisms of mechanical reinforcements [9].
Such properties play a crucial role in intercellular signaling, enhancing the development of
macroscopically functional living constructs.

3D Bioprintng Evolution

Bioprinting is an emerging and multidisciplinary technology that originated from 3D
printing (additive manufacturing) (Figure 1). The first milestone, in 1984, was provided
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by Charles W. Hull, through the development of three-dimensional printing objects (3D),
via stereolithography (SLA). In 1988, the researcher Robert J. Klebe used cytoscribing
technology to demonstrate the potential of positioning biological products, using a Hewlett
Packard (HP) inkjet printer and a graphic plotter [13–15]. Years later (1999), David J. Odde
and Michael J. Renn printed living cells using 3D laser bioprinting, thus, demonstrating
the feasibility of synthesizing tissues with complex three-dimensional anatomies [16,17]. In
the 2000s, Rolf Muelhaupt and his group reported the first three-dimensional plotting of
thermosensitive gels in a liquid medium, using the additive manufacturing technique [18].
Later, in 2002, the first extrusion-based bioprinter was reported by Landers et al., being
marketed under the name “3D-Bioplotter” [19,20]. In 2003, Boland et al. adapted an
HP inkjet printer and were able to successfully print living cells [21]. In 2006, Suwan N.
Jayasinghe and his team added an electro-hydrodynamic jet to deposit living cells [22].
In 2009, Narotte et al. synthesized vascular tissue based on free scaffolds [23]. In 2012,
Skardal and colleagues performed in situ bioprinting in laboratory mice using cells derived
from amniotic fluids to stimulate the healing process. The results indicated that the
bioprinting of these cells could be used to treat wounds and burns [24]. Several types
of research have been developed to generate new products for society and overcome
the challenges of 3D bioprinting. Zhou et al. (2021), for example, used 3D bioprinting
technology to add chondrogenic progenitor cells (CPCs) and fibronectin (FN) to a hydrogel
composed of alginate/gelatin/hyaluronic acid (Alg/Gel/HA), intending to optimize the
cartilage regeneration process [25]. Nulty et al. (2021) developed a new bioprinting method
for manipulating pre-vascularized tissues in vitro to analyze vascularization and bone
regeneration in vivo [26]. Ramasamy et al. (2021) synthesized an artificial skin using
an extrusion-based 3D bioprinter. This research aimed to identify an opportunity to
provide full-thickness reconstructed human skin in a reproducible and potentially scalable
manner [27]. Noor et al. (2019) synthesized a custom hydrogel for printing autonomous
cellular structures, such as whole hearts with blood vessels [28].
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2. 3D Bioprinting: Concept and Characteristics

Three-dimensional bioprinting has recently been used as an excellent alternative in
the field of tissue engineering and regenerative medicine to develop biological substitutes,
scaffolds, in vitro drug models, and artificial organs or tissues [29]. The main objective is to
customize complex biological structures in a reproducible and fast manner, combining cells,
biomaterials (matrices), and growth factors [19,30,31]. The process consists of the successive
and automated addition of living and non-living materials, with a structural organization
using computer-aided design (CAD) programs. Generally, the 3D bioprinting technique
can involve the following steps (Figure 2): Acquisition and processing of medical imaging
data; Three-dimensional bio-modeling and/or description of the required tissue/organ
geometry; Formulation of inks from biomaterials (without cells) or cells added to synthetic
and/or organic materials (bioinks); Three-dimensional bioprinting (calibration and slicing);
Maturation; Physical–chemical, and biological, analysis of the bioprinted structure [32,33].
Furthermore, this technology has several advantages, such as geometric freedom and
control, precision, automation, repeatability, customization, and the generation of constructs
with the potential to capture responses to external stimuli and physiological functions [34].
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Figure 2. Stages of the 3D bioprinting process.

Biomaterial Inks and Bioinks

Biomaterial inks are cell-free aqueous formulations that contain biological factors and
are usually made of polymers or hydrogels [35]. Subsequently to the printing step, the 3D
constructs are seeded, and they seek to mimic the extracellular matrix of target tissues, with
a favorable environment for cell adaptation and proliferation [36,37]. The applications are
often directed towards the developing of scaffolds and implants or can be used in parallel
with the fabrication of bioinks in hybrid approaches, ensuring mechanical support [38,39].
One of the examples of inks from biomaterials is sacrificial materials (such as agarose,
Pluronic 127, alginate, and gelatin), which are printed and dissolved without affecting cell
survival [40,41]. Compaan et al. (2016) used alginate as a sacrificial material during the jet
bioprinting process [42]. Biodegradable thermoplastic polymers, such as polycaprolactone
(PCL) and poly(lactic acid) (PLA), and non-biodegradable thermoplastic polymers, such
as polypropylene, are also commonly used [43,44]. Bioinks are formulations containing
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cells, biomaterials, and growth factors, and they can be classified as scaffold-based and
scaffold-free bioink, respectively. The technique based on scaffolds is used much more
in 3D bioprinting, since living cells are encapsulated in the matrix components of the
biomaterials and, later, bioprinted in a pre-elaborated structure [45]. On the other hand,
the scaffolds-free bioink technique use multicellular spheroids and cell aggregates to be
bioprinted in a 3D model [46,47]. Furthermore, bioinks are defined in four subcategories:
Support bioinks, which serve as an extracellular matrix for cell multiplication; Fugitive
bioinks, which are temporary materials, and, which, when removed, can form an internal
void; Structural, which provide sustainability to printed structures; Functional, which
provide biochemical, electrical and mechanical stimuli, optimizing cell behavior [35]. In
work by Hu et al. (2020), a bioink composed of chitosan grafted with polyethylene glycol
(PEG), α-cyclodextrin (α-CD), and gelatin was synthesized to be applied in tissue and
organ remodeling [48]. Zhang et al. (2021) developed a bioink based on silk fibroin and
decellularized extracellular matrix (SF-dECM), incorporated with mesenchymal stem cells
from bone marrow, for use as scaffolds in cartilage tissue engineering [49]. In addition, in
the research by Jian et al. (2021), it was possible to optimize the preparation of bioinks based
on gelatin methacrylate (GelMA) and meniscal extracellular matrix (MECM) for scaffold
bioprinting [50]. Constructs obtained from decellularized extracellular matrix (dECM)
bioinks mimic the physical and mechanical microenvironment of native tissues and organs,
combining cells and biochemical signals, such as growth factors and cytokines, and the
right proportions of extracellular matrix (ECM) proteins. The great advantage is being
able to control the position and placement of cells, in addition to preserving most ECM
components [51]. Decellularization is like a reservoir of various molecules, removing cells
from native tissues via chemical, physical or mechanical processes. The dECM bioprinting
approach is a personalized therapeutic approach for tissues and organs, as the bioink has
specific composition and topology [52]. However, the exclusive use of dECM bioinks has
the disadvantage of low mechanical stability, and, therefore, they are mixed with other
polymers or support materials [53].

Some required characteristics of bioinks and/or biomaterials ink for use in 3D bioprint-
ing are non-toxicity, mechanical resistance [54], printability, in vitro and in vivo cell viabil-
ity [55], structural stability [56], viscosity [57], rheological properties (rheopexy/thixotropy),
and surface tension [58,59]. These variables directly impact cell encapsulation and the
format in which the material is printed [60,61]. Moreover, the bioink must present fluidity,
enabling three-dimensional printing, have a printing temperature not higher than the
physiological temperature, and proper gelation kinetics to form a solid structure.

3. Bioprinting Technologies

To print tissues and organs with greater complexity, targeting applications in tissue
engineering and regenerative medicine, several 3D bioprinting technologies have been
developed and optimized, as can been seen in Table 1 [55,62]. Each technology, however,
is limited by the properties of the bioinks and influence the bioprinting quality of the
material [63]. High viscosities, for instance, require extrusion bioprinters, as it favors
a moderate flow capacity, conserving the structure of the printed materials for a more
extended period [64]. Low-viscosity bioinks are suitable for a jet bioprinter as they can
be ejected easily through a fine nozzle without too much pressure [65]. In addition to
these two types of technologies (extrusion and inkjet), laser-assisted bioprinting is also
highlighted [66].
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Table 1. Comparation of three 3D Bioprinting technology.

3D Bioprinting
Technology Advantages Disadvantages Applications References

Inkjet bioprinting

Low cost;
High resolution and print
speed;
High cellular viability
(>85%).

Low cell density
(<106 cells mL−1);

Bioinks with low viscosity.

Tissue regeneration;
Bone;

Cartilage.
[64,67,68]

Extrusion-based
bioprinting

Printing bio-inks with
high viscosities;
High cell density;
Can print various
formats of materials;

Low resolution and print
speed.

Cartilage;
Skin;

Blood vessel.
[69–73]

Laser-assisted
bioprinting

High cell viability (>95%);
Printing of bio-inks of
different viscosities;
High precision.

High cost;
Difficulty in printing

materials on a large scale.

Organ-on-a-chip;
Skin;

Cornea.
[6,74–76]

3.1. Inkjet Bioprinting

Inkjet bioprinters (drop-on-demand printers) are capable of printing biological mate-
rials with optimized speed, accuracy, and resolution (Figure 3) [77]. They can work with
single and multi-ink systems, printing materials with precision and geometric complex-
ity [32]. Furthermore, they utilize thermal and acoustic (piezoelectric) forces to deposit
liquid droplets of defined size, layer by layer [78]. In the case of thermal force, rapid
electrical heating is provided in the bioprinter head, which generates pressure pulses that
force the droplets out through the nozzle. This heating can vary between 200 ◦C to 300 ◦C
without causing damage to the cells [79,80]. The piezoelectric forces generate an acoustic
wave causing the pressure necessary to eject the drop from the nozzle [81]. For this class of
bioprinter, the aim is to use bioinks with low viscosity and cell density. Moreover, bioink
gelation must be carried out in situ to avoid nozzle clogging, which is one of its disadvan-
tages [81–83]. Yerneni et al. (2019), for example, synthesized solid-phase exosomes using a
piezoelectric jet bioprinter, aiming at localized delivery of exosomes into tissues [84].
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3.2. Extrusion-Based Bioprinting

Extrusion-based bioprinting is one of the most used bioprinting techniques today, as it
prints bioinks with high viscosity [55,85,86]. In this process, the bioinks are extruded as
a thread through the nozzle, using two methods: pneumatic (air) and mechanical (piston
and screw) (Figure 4) [77]. In the pneumatic method, the air pressure provides the force
to eject the bioink with pre-established speed and quantity [87]. However, even though
it is a simple procedure, there is a lack of control in bioinks with low viscosity [88]. The
mechanical method determines the printing process through the vertical and rotational
forces [79,81]. In the piston process, the flow is favored over the bioink during printing.
For very viscous materials, however, failures occur in the bioink deposition. On the other
hand, in screw-based extrusion, bioink is distributed in a microliter range, which can be
interesting for materials with low viscosity [89]. Although extrusion bioprinting is one
of the most required for artificial tissues and organs, it has some disadvantages, such as
shear stress, which can cause death and/or loss of cell viability, and a low quantity of
materials [90,91]. It is recommended to use more robust hydrogels and improvements in
the nozzle and syringe, which would contribute to better cell viability after printing [54].
In work by Cleymand et al. (2021), a bioink based on chitosan (CH) and guar gum (GG)
was synthesized to be used in extrusion-based bioprinters [92].
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3.3. Laser Assisted Bioprinting (LAB)

This method does not use a nozzle and contact. The laser passes through a region
of three layers: transparent, absorbent, and bioink (Figure 5) [55]. The transparent region
supports the absorbent layer, and the biomaterials are in liquid/gel physical condition to
spread more easily [93]. Three techniques make up this method: matrix-assisted pulsed
laser evaporation direct writing (MAPLE-DW), where a low-power pulsed laser with an ul-
traviolet wavelength is used; laser-induced transfer (LIFT), which uses a high-power pulsed
laser and a thin absorbent layer between the donor slide and the bioink; and film-assisted
laser-induced direct transfer absorption (AFA-LIFT), which uses a thick absorbent layer
that prevents direct interaction between the laser and the bioink [94]. Furthermore, LAB
has a minimal effect on cell viability, and can print hydrogels with varying viscosities [87].
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4. Hydrogels as Bioinks or Bioprinting Ink

The use of cells or cell aggregates as bioinks, in 3D bioprinting technologies, especially
in extrusion-based printing, must deal with the challenge of the low cellular viability of the
constructs, due to cells finding it difficult to resist the shear stress caused by the material’s
deposition process, layer by layer [1]. Alternatively, hydrogels act as vehicles for encap-
sulating and delivering cells, maintaining high shape fidelity, and mimicking the native
extracellular matrix [2,11]. Furthermore, these materials have good biodegradability and
biocompatibility. Designed as porous structures, they present a promising microenviron-
ment for gas exchange and nutrient diffusion for 3D bioprinting of cells [53]. The swelling
capacity provided by the three-dimensional network of hydrogels becomes fundamental for
cell migration, proliferation, and adhesion, enhancing the development of complex tissues
and organs [95–98]. Thus, several efforts have been devoted to formulating hydrogel-based
bioinks for a 3D microenvironment suitable for cell seeding and encapsulation.

The selection of hydrogel (synthetic or natural) as a bioink is intimately related to the
bioprinting technique, tissue type and selected cells. Furthermore, its formulation must
satisfy rheological and biological criteria. The viscosity, concentration and crosslink density
must also be optimized [9], with three main types of crosslinking used in the post-printing
procedure: thermal, chemical or physical (UV light, among others) [71]. Other parameters,
such as cytotoxicity, printability [99], physical strength [51], in vitro or in vivo degradation
capacity and the effects of by-products in the culture medium are also important for the
reproduction of good materials [100]. Among the most used hydrogels as bioinks or
bioprinting inks are the following: hyaluronic acid, alginate, silk-fibroin, collagen, agarose,
and gelatin. Table 2 presents the advantages and disadvantages of each hydrogel used as
a bioink.
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Table 2. Main hydrogels used in 3D bioprinting technology and their properties.

Hydrogels Advantages Disadvantages Applications References

Hyaluronic acid

Promotes cell proliferation;
Maintains cartilage

homeostasis;
Biocompatibility.

Poor mechanical
properties.

Tissue engineering;
Cartilage tissue. [16,101–105]

Collagen

Supports cell adhesion,
differentiation and

proliferation;
Crosslinks with other
hydrogels to increase
mechanical functions.

Weak mechanical
properties.

Cartilage tissue;
Muscle tissue;

Skin tissue.
[106–108]

Gelatin Non-toxic;
Biocompatibility.

Low mechanical
stability.

Vascular tissue;
Bone tissue;
Liver tissue.

[73,109,110]

Alginate

Non-toxic;
Biodegradable;

Gel forming ability;
Biocompatibility.

Pure alginate presents
weak mechanical

properties and
difficulties to promote

cell proliferation

Cardiovascular
regeneration;

Cartilage tissue;
Nerve tissue.

[111–114]

Agarose Biocompatibility;
Good mechanical properties.

Limitation on cell
proliferation.

Tissue engineering;
Cartilage tissue

engineering;
Vascular tissue.

[115–117]

Silk-fibroin

Biodegradability;
Good mechanical properties;

Can be processed in
different forms.

Low rheological
properties.

Regenerative
medicine;

Tissue engineering.
[118,119]

4.1. Hyaluronic Acid

Hyaluronic acid is a linear non-sulfated glycosaminoglycan in most connective tissues
and the extracellular matrix [120,121]. This natural hydrogel exhibits excellent biocompati-
bility, hydrophilicity, and cytocompatibility in cell development [122–125]. However, its
low mechanical property generates the need for crosslinking with other polymers to satisfy
the physicochemical properties of 3D bioprinting [62]. Photopolymerization—crosslinking
materials in the presence of ultraviolet (UV) rays is also an excellent alternative to increase
the mechanical strength of hyaluronic acid [9,126–128]. In work by Antich et al. (2020), a
new type of bioink was developed through the copolymerization of hyaluronic acid with
polylactic acid (PLA) for use in 3D bioprinting of tissues and cartilage [101]. Kiyotake et al.
(2019) synthesized a pentanoate-functionalized hyaluronic acid (PHA) bioink, using the
photocrosslinking (UV) procedure, to be employed in 3D bioprinting [129].

4.2. Collagen

Another widely used natural hydrogel and one of the most attractive is type I collagen.
It stands out because it is one of the components in musculoskeletal tissue and makes up
the extracellular matrix of other tissues [130–133]. Furthermore, collagen presents biocom-
patibility, biodegradability, and cell adhesion, all of which are fundamental properties in the
field of 3D bioprinting [134]. However, like hyaluronic acid, collagen has a low mechanical
property, which is improved with photopolymerization (UV) [135,136]. Evidence of this is
found in the work of Shi et al. 2018. In this research, the authors developed a new type
of bioink through the photopolymerization process between collagen and methacrylated
gelatin hydrogel (GelMa), which might be an excellent candidate for 3D bioprinting of
tissues to repair damage to the epidermis [137].

4.3. Gelatin

Gelatin is a polypeptide obtained through collagen denaturation [72]. It has been
studied for the development of bioink due to its properties, such as biocompatibility [115],
biodegradability, low cost, ease of processing, and cell affinity [118]. Furthermore, gelatin
can optimize its mechanical properties when crosslinked with other materials, such as
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methacrylic anhydride [73,138]. Several kinds of research have focused on printing this
functionalized form of gelatin (Gelatin-methacryloyl/GelMA) to obtain better material
parameters. An example of this is the work of Jain et al. (2021). In this study, the authors
investigated GelMA bioinks loaded with mouse fibroblast cells (L929) to be used in an
extrusion-based bioprinter. The results indicated that the material would be a good can-
didate for the synthesis of constructs with and without the presence of a cell [139]. Silk
fibroin is another material with which gelatin can be combined [140]. In the research by
Singh et al. (2019), a bioink based on gelatin–silk fibroin was synthesized. The materials
demonstrated good print fidelity, which suggested a high potential to act in the repair of
cartilage tissues [141].

4.4. Alginate

Alginate is a natural polysaccharide composed of β-D-mannuronic acid (M) and
α-L-glucuronic acid (G) [142,143]. It is widely used in 3D bioprinting due to its biocompati-
bility, printability, affordable prices, and versatility [65]. Furthermore, its ease of gelation
in the presence of divalent cations (Ca+2 and Ba+2, for example) optimizes the structural
form of the construct and minimizes the effect of shear stress on cells, which has favored its
application in inkjet and extrusion bioprinting [115]. The rheological parameter of alginate
must be carefully analyzed when applied in bioprinting, since the viscosity of the bioink
based on this hydrogel is directly linked to the concentration, molecular weight of the
alginate, phenotype, and cell density [114,144]. Pure alginate presents some difficults to
promote cell proliferation and weak mechanical properties. However, these disadvantages
can be changed when it is mixed with other materials [145]. Wu et al. (2018) developed
an alginate/cellulose-based hybrid bioink (CNCs) to be used in the extrusion bioprinting
process. The results demonstrated a good shear property of the material, maintenance of
the shape of the construct, and minimal cellular damage [146]. Lee et al. (2020) synthesized
and supplemented an alginate-based bioink with decellularized methacrylated extracellular
matrix (dECM) derived from bone tissues. The researchers concluded that the material
could print structures loaded with 3D cells and maintain cell viability [145].

4.5. Agarose

Agarose is a natural polysaccharide extracted from seaweed, being composed of
D-β-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG) [147–149]. It has a limi-
tation for cell proliferation, but this can be overcome when mixed with other hydrogels.
Furthermore, it can serve as a template material for 3D cell aggregate culture [62,117].
Fan et al. (2016) developed a hybrid agarose/matrigel system with favorable rheological
properties for 3D bioprinting. The results showed that agarose contributed to the support
of the printed structure, while the matrigel provided a favorable environment for cell
growth [150]. López-marcial et al. (2018) analyzed the rheological properties, such as
storage modulus and shear stress, of agarose and alginate-based hydrogels, which were
compared with Pluronic F-127. The alginate/agarose-based materials showed excellent cell
viability, indicating their applicability as a bioink [116].

4.6. Silk Fibroin

Another interesting material for the elaboration of bioinks is silk fibroin (SF) [151].
Produced from Bombyx mori (B. mori), also known as the silkworm, this material has
attracted attention in the 3D bioprinting segment, due to its excellent properties, such as
biodegradability [152], biocompatibility [153], processing in different formats (hydrogels,
films, membranes, etc.) and good mechanical properties [154]. Furthermore, when it comes
to the manufacture of bioinks, another parameter that must be evaluated is the viability of
cell growth [155]. In this regard, SF also stands out, as it has different viability for different
types of cell lines, good encapsulation of cells and bioactive compounds, in addition to
being approved by the Food and Drug Administration (FDA). However, polymers from
natural origins may present rheological disadvantages and the need for mixing with other
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polymeric materials [65,156]. In the work by Wei et al. (2021), a bioink based on silk fibroin,
gelatin, hyaluronic acid and tricalcium phosphate, interspersed with human platelet-rich
plasma (PRP), was developed with potential use in bone tissue engineering [157]. In the
research by Kim et al. (2021), a bioink, with optimized cytocompatibility, composed of
alginate and silk fibroin (Alg/SF), was synthesized to be used in tissue engineering [158].

5. Hydrogel-Based Bioink Applications

Figure 6 illustrates the main applications of hydrogel-based bioinks, emphasizing soft
tissue and bone tissue engineering.
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5.1. Cartilage

Cartilaginous tissue has essential functions in the functioning of the human body, as
it can support loads exerted on the joints and intervertebral discs, in addition to forming
regions, such as the ears and nose [159–161]. It can be classified into three main types: fibro-
cartilage, hyaline cartilage, and elastic cartilagem [161,162]. Each is composed of different
proportions of collagen and proteoglycans, which provide different biomechanical proper-
ties [162]. Furthermore, cartilaginous tissue is avascular and has difficulty self-healing [163].
Therefore, injuries affecting this tissue, such as osteoarthritis, need alternatives to ensure
better treatment and quality of life [164]. Thus, 3D bioprinting has become an exciting
option to circumvent this problem [161,165]. The work of Jia et al. (2022) is an example of
this statement. The authors developed cartilage with high fidelity to the auricular cartilage
tissues. It was possible due to the elaboration of a bioink based on gelatin methacrylate
(GelMA), poly(ethylene oxide) (PEO), and polycaprolactone (PCL) interspersed with auric-
ular chondrocytes [165,166]. Furthermore, Young et al. (2018) developed bioinks based on
agarose/alginate (AG/SA) and collagen and alginate (CO/SA) mixed with chondrocytes to
be used in in vitro bioprinting of cartilage tissues. The results indicated that, although the
AG-/SA-based bioink showed good mechanical properties, the (CO/SA) bioinks stood out
more in terms of mechanical strength and the material’s biological functionality. Therefore,
bioinks from CO/SA may be promising candidates in cartilage tissue engineering [166].

5.2. Skin Tissue

The skin is the primary protection of the biological system against external attacks;
because of this, it is injured regularly [167,168]. It is composed of three layers: the epidermis
(which contains melanocytes, Merkel cells, and Langerhans cells), dermis (which is rich
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in fibroblasts, extracellular matrix (ECM), collagen and elastin), and hypodermis (which
stores fat cells) [169]. The quest to try to biomimic the complex structure of the skin through
3D bioprinting aims not only to seek alternatives against chronic wounds [74], as in the case
of burns [170], but also to develop artificial tissues that can be used for replacement of the
use of animals in in vitro and in vivo tests [171]. Ng et al. (2018) developed a pigmented
artificial skin through 3D bioprinting. The results showed that the skin presented a well-
developed epidermis and uniform melanin distribution, which could potentially be used
in toxicological tests and research focused on cell biology [172].

5.3. Bone Tissue

Several factors can cause defects or injuries in bones, such as aging, fractures, and
infection [173]. However, the alternatives used to solve this problem, such as grafts, are
limited due to poor tissue integration, autoimmune response, or donor area morbidity [83].
Thus, bioprinting presents itself as an exciting alternative to try to circumvent this prob-
lem [174], as it can provide the microstructural reconstruction of the bone structure through
the use of scaffolds [175,176]. Shen et al. (2022) developed vascularized bone tissue to
treat defects using in situ 3D bioprinting technology. Photocrossed extracellular matrix
hydrogels, interspersed with bone mesenchymal stem cells and a thermosensitive hydrogel,
were used to develop this research [176]. Im et al. (2022) formulated bioinks based on
alginate, tempo-oxidized cellulose nanofibrils (TOCNF), and polydopamine nanoparti-
cles (PDANPs) to act in bone tissue engineering. According to the authors, these bioinks
could be implemented to elaborate scaffolds for tissue regeneration and the construction of
artificial bone tissues [177].

6. Challenges and Future Prospects

Three-dimensional bioprinting is a cross-science closely related to medical sciences,
biology, mechanical engineering, and materials science [19]. With unparalleled architectural
control, adaptability, and repeatability characteristics, it has the potential to overcome
the limits of conventional biofabrication techniques. This technology may be the most
significant technological disruptor of the current design model, service delivery, health,
and research. Incorporating human cells and biocompatible materials should provide a
paradigm shift for surgical procedures, offering the potential to 3D print living tissues
and organs and circumventing the need for organ transplantation and the use of animals
in the development and testing of new drugs. Patients would also be able to access
bespoke treatments [178]. However, there is still a multitude of challenges that need to be
overcome. The use of the raw material, bioink, has been a primary challenge regarding
structural stability, biodegradability, bioprintability, and bioactive properties, in preclinical
and clinical models [179]. A limited number of bioprintable bioinks accurately represent
the tissue architecture needed to restore organ function after printing. In some cases, a
combination of methodological approaches is used, including heterogeneous network
structures, which aim at material hydration and mechanical energy dissipation [180].
Hybrid bioinks can also be designed to amalgamate all these aspects. Furthermore, the
bioprinting process itself needs to be more cell-friendly. The shear stress applied to cells
during printing is detrimental to cell growth and can even alter gene expression profiles.
For example, stem cells, such as iPSCs, are sensitive to such physical forces and generally
do not survive the printing process. As stem cell studies have mainly been carried out in
2D environments, there are still many unknowns for a 3D stem cell culture.
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