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Background. mTORC1 signal pathway plays a role in the initiation and progression of hepatocellular carcinoma (HCC), but no relevant
gene signature was developed./is research aimed to explore the potential correlation between the mTORC1 signal pathway and HCC
and establish the related gene signature. Methods. HCC cases were retrieved from /e Cancer Genome Atlas (TCGA), International
Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. /e genes included in mTORC1-associated
signature were selected by performing univariate and multivariate Cox regression analyses and lasso regression analysis. /e protein
expression level of included genes was verified by /e Human Protein Altas. /en, the signature was verified by survival analysis and
multiple receiver operating characteristic (ROC) curve. Moreover, the correlation between signature and immune cells infiltration was
investigated. Furthermore, a nomogram was established and evaluated by C-index and calibration plot. Results. /e signature was
established with the six genes (ETF1, GSR, SKAP2, HSPD1, CACYBP, and PNP). /ree genes (ETF1, GSR, and HSPD1) have verified
their protein expression level in HCC. Under the grouping from signature, patients in the high-risk group showed worse survival than
those in the low-risk group in both three datasets. /e signature was found to be significantly associated with the infiltration of B cells,
CD4+ T-cells, CD8+ T-cells, dendritic cells, macrophages, and neutrophils. /e univariate and multivariate Cox regression analysis
indicated that mTORC1-related signature could be the potential independent prognostic factor in HCC. Finally, the nomogram
involving age, gender, stage, and signature has been established and verified. Conclusion. /e mTORC1-associated gene signature
established and validated in our research could be used as a potential prognostic factor in HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prev-
alent cancers around the world, becoming the second
leading causes of tumor-related death [1]. Owing to the high
rate of metastasis, HCC patients with advanced stage are
usually with a poor prognosis [2]. Although the treatment
and biomarkers of HCC have developed, the clinical out-
comes of HCC patients are still unsatisfactory [3]. /e
occurrent and development of HCC involved interactions
between genetics, epigenetics, and transcriptomic alterations
[4]. Many studies have verified that different biomarkers
have certain prognostic value in HCC. For example, Gu et al.
found that CCL14 was a potential prognostic biomarker that

correlated with tumor immune cell infiltration in HCC [5].
Another study found the strong correlations between PRPF3
expression and prognosis in HCC [6]. However, as a bio-
marker, a single gene usually has a lower prognostic value
than multigene prognostic signature. /erefore, many gene-
related signatures have been developed for predicting
prognosis of HCC. For instance, Zhang et al. established a
gene signature associated with HCC microenvironment and
successfully verified it [7]. Other predictive signatures based
on immune [8] and glycolysis [9] also play an important role
in HCC prognosis.

Generally, the gene researches usually focus on com-
paring the gene expression between two groups or pay at-
tention to the highly upregulated and downregulated genes.

Hindawi
Journal of Oncology
Volume 2020, Article ID 8291036, 11 pages
https://doi.org/10.1155/2020/8291036

mailto:2806973376@qq.com
https://orcid.org/0000-0001-5251-0115
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8291036


Nevertheless, some genes which showed no significant
difference but had important biological function and
characteristics were omitted. In view of this, a computational
method gene set enrichment analysis (GSEA) determined
whether a prior defined set of genes shows statistically
significant differences between two biological states [10]./e
advantage of GSEA is that it can identify the genes in which
expression is based on the trend of overall level. Conse-
quently, in this research, we identified the pathway and gene
with GSEA. /en, we constructed the signature based on
related genes and verified it, providing the more compre-
hensive and accurate prognostic model for clinic.

2. Materials and Methods

2.1. Data Collection. /e gene expression data with the type
of level 3 RNA-seq FPKM dataset and the clinical messages
in TCGA website (https://portal.gdc.cancer.gov/) were re-
trieved. A total of 377 HCC cases have been downloaded and
analyzed. As the validated cohorts, GSE76427 datasets were
retrieved from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/), while ICGC-LIRI
dataset was retrieved from International Cancer Genome
Consortium (ICGC) database (https://icgc.org/).

2.2. Identification of Pathways and Related Genes. After data
collection, we extracted the clinical details and generated the
expression matrix of all genes in HCC of TCGA dataset.
/en, we divided the patients into two groups according to
the survival status and employed GSEA to choose the most
relevant pathways./e pathways were considered for further
analyses if the normalized p value was <0.01. After that, we
collected the related genes of involved pathway from Mo-
lecular Signatures Database (http://software.broadinstitute.
org/gsea/msigdb/index.jsp).

2.3. Construction and Verification of Signature. Firstly, we
performed the differentially expressed analysis to select the
related genes. /e “limma” package under R studio software
was employed, and a p value <0.05 was considered statis-
tically significant. Secondly, we employed the univariate and
multivariate Cox regression analysis to choose the prog-
nostic genes among the differentially expressed genes. /e
genes in this section were eligible for further selection if a p

value was <0.05. /en, the lasso regression analysis was
executed for checking selected genes. In this analysis, a lasso
penalty was applied, to simultaneously account for shrinkage
and variable selection. /e optimal value of the lambda
penalty parameter was defined by performing 10 cross-
validations. Using the “glmnet” package, the coefficient of
each included genes and risk score of each case were cal-
culated. /e calculation formula of risk score was as follows:

risk score � (coefficientmRNA1 × expression of mRNA1)

+(coefficientmRNA2 × expression of mRNA2)

+ · · · +(coefficientmRNAn × expressionmRNAn).

(1)

/e cases were divided into two groups (high risk or low
risk), according to the risk score median. To explore the
time-dependent prognostic value of our gene signature, the
survival analysis was performed using the “survival” package
in the R studio software. /e relationship between signature
and other clinical messages was also evaluated and visualized
with a heatmap. /e protein expression level of included
genes of signature was verified by /e Human Protein Altas
(https://www.proteinatlas.org/). Besides, the multiple re-
ceiver operating characteristic (ROC) curve was performed
to check the predictive accuracy of risk score. In addition, we
investigated the correlation between signature and six dif-
ferent immune cells (B cells, CD4+ T-cells, CD8+ T-cells,
dendritic cells, macrophages, and neutrophils). /e infil-
tration data of six immune cells were retrieved from tumor
immune estimation resource (https://cistrome.shinyapps.io/
timer/). Moreover, the univariate and multivariate Cox
regression analyses were performed to verify whether the
risk score is an independent prognostic factor.

2.4. Predictive Nomogram Design. A predictive nomogram
based on age, gender, stage, and risk score was constructed
using the “rms” package and Cox regression model to
predict the overall survival (OS) at 1 year, 3 years, and 5 years
of HCC patients. /en, we used Harrell’s concordance index
(C-index) and calibration plot to evaluate the nomogram.

3. Results

/e clinical data details of the patients used in this study are
shown in Table 1. Figure 1 shows the screening process and
validation of our study. /e result of GSEA in Figure 2
showed that a total of 6 pathways were eligible, and the
details of pathways are summarized in Table 2. Considering
the highest normalized enrichment score of mTORC1
pathways, we chose the 200 relevant genes in this pathway
for further analysis. A total of 199 genes have been found in
gene expression matrix, and the differentially expressed
analysis showed that 160 genes were significantly different in
HCC (see Supplementary files 1–3). After that, the univariate
and multivariate Cox regression analyses demonstrated that
15 genes (ETF1, CTSC, GSR, HSPE1, SKAP2, HSPD1, TES,
TFRC, ASNS, EPRS, CANX, CACYBP, UNG, TBK1, and
PNP) were included with p< 0.05 (see Supplementary files 4
and 5). As illustrated in Figures 3(a) and 3(b), the results of
lasso regression analysis further confirmed the signature
composed of 6 genes (ETF1, GSR, SKAP2, HSPD1, CACYBP,
and PNP). And the coefficients of ETF1, GSR, SKAP2,
HSPD1, CACYBP, and PNP were 0.03402, 0.00670 0.02556,
0.00181, 0.02034, and 0.00916, respectively.

Besides, the heatmap of risk score and clinical parameters
was shown in Figure 3(c). All the genes included in the sig-
nature were highly expressed in the high-risk group and lowly
expressed in the low-risk group. /e correlation between gene
expression of final included genes and clinical parameters is
shown in Table 3. Meanwhile, significant difference was found
between risk score and stage, grade, T, and M, respectively
(Table 3). In terms of protein expression, three genes (ETF1,
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GSR, and HSPD1) have been found to be highly expressed in
HCC tissue according to Figure 4. /e survival analysis of
TCGA (Figure 5(a)), GSE76427 (Figure 5(b)), and ICGC
(Figure 5(c)) both indicated that significant difference was
found between two groups (p< 0.05). And the multiple ROC
curve plot (Figures 5(d)–5(f)) demonstrated that the risk score
got the highest predictability among analyzed factors in 1 year
(AUC� 0.802), 3 years (AUC� 0.743), and 5 years
(AUC� 0.719). In terms of immune cells infiltration, signifi-
cant difference was found between risk score and B cells, CD4+
T-cell, CD8+ T-cell, dendrites, macrophage, and neutrophil
(Figure 6). Furthermore, we performed the univariate and
multivariate Cox regression analyses, and the results in Table 4
revealed that the signature can be the independent prognostic
factor in HCC (p< 0.01).

Finally, using the TCGA cohort, we built the nomogram
based on age, gender, stage, and established signature to
predict 1-year, 3-year, and 5-year OS for HCC patients
(Figure 7(a)). /e results of decision curve analysis (Sup-
plementary file 6) demonstrated that nomogram with age,
gender, stage, and established signature showed a higher
benefit than other two solo models (stage only or risk score
only). /e C-index of nomogram was 0.73, and the cali-
bration plot for the probability of survival at 1 year
(Figure 7(b)), 3 years (Figure 6(c)), and 5 years (Figure 6(d))
showed good agreement between the prediction by nomo-
gram and real observation. Also, we established the no-
mograms and calibration plots based on GEO and ICGC
cohorts (Supplementary files 7 and 8), and their C-index was
0.70 and 0.76, respectively.

Table 1: Baseline patient characteristic in TCGA, GEO, and ICGC cohorts.

Clinical characteristics Number Percent (%)
TCGA-LIHC (n� 377)

Survival status Survival 249 66
Death 128 34

Age (1 patient missing) ≤65 years 235 62.5
>65 years 141 37.5

Gender Female 122 68
Male 255 32

Stage (24 patients missing)

I 175 50
II 87 24.6
III 86 24.4
IV 5 1

Grade (5 patients missing)

G1 55 14
G2 180 48
G3 124 33
G4 13 5

T classification (3 patients missing)

T1 185 49
T2 95 26
T3 81 22
T4 13 3

GSE76427 (n� 115)

Survival status Survival 92 80
Death 23 20

Age ≤65 years 65 56.5
>65 years 50 43.5

Gender Female 22 19.1
Male 93 80.9

Stage

I 55 47.8
II 35 30.4
III 21 18.3
IV 4 3.5

ICGC-LIRI (n� 260)

Survival status Survival 214 82.4
Death 46 17.6

Age ≤65 years 98 37.7
>65 years 162 62.3

Stage

I 40 15.4
II 117 45
III 80 30.8
IV 23 8.8
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4. Discussion

In the initiation and progression of hepatocellular car-
cinoma, genetic factors usually play an important role.
Meanwhile, mRNA gene signature based on a certain
characteristic like glycolysis [11] and immune [12] has
been developed for predicting cancer prognosis. In this
research, we explored specific function to identify genes
by GSEA that could predict the survival of HCC patients.
According to our results, six signal pathways were found
to be highly related to survival and we established the gene
signature with the mTORC1 signal pathway. As we all
know, the mTOR pathway is a serine/threonine protein
kinase belonging to the PI3K-related kinase family [13],
which comprised of two distinct complexes (mTORC1
and mTORC2). With Raptor as its unique and key protein
component, mTORC1 plays an important role in cell
survival, autophagy, and metabolism [14]. Concerning for
the mTOR signal pathway in HCC, it has been found that
aberrant mTOR signaling was present in half of the HCC
cases [15]. Meanwhile, an intact mTORC1 axis [16] and
mTORC2-Akt1 cascade [17] were required for c-Myc-
driven hepatocarcinogenesis. Moreover, some research
studies [15, 18] provided the theoretical basis of mTOR
signaling pathway-oriented targeting treatment for HCC
in clinic. Overall, these abovementioned evidences
demonstrated that mTOR signal pathway plays an im-
portant role in the development of HCC.

In this study, we identified six genes in signature by
performing the differentially expressed analysis, univariate
Cox regression analysis, and lasso regression analysis.
Among our included genes, five genes have been found to be
related to HCC from previous studies. Singh et al. found that
ETF1, CNOT6, and XRN1 gene in HepG2 cells led to sig-
nificant alteration in stability of specific mRNAs, and this
mechanism may hold novel cancer therapeutic targets [19].
In another research, McLoughlin concluded that GSR,
TRXR1, NRF2, and oxidative stress determined hepatocel-
lular carcinoma malignancy [20]. Lee’s et al. study [21]
found that HSPD1 was downregulated during early apo-
ptosis of the hepatoma cell mediated by Paeoniae Radix. In
terms of CACYBP, it has been verified that CACYBP can
promote hepatocellular carcinoma progression in the ab-
sence of RNF41-mediated degradation [22]. Moreover, a
study [23] found that PNP/fludarabine suicide gene system
induced HCC cell apoptosis and inhibited the growth of
HCC cells. Although we found no evidence supporting the
correlation between SKAP2 and HCC, it has been verified
that SKAP2 promotes podosome formation to facilitate
tumor-associated macrophage infiltration and metastatic
progression [24].

Recently, further investigations have been performed to
explore how the mTOR signal transduction mechanisms
modulate sensitivity of targeted therapies, angiogenesis, and
tumor immunity [25]. /e interest in mTOR targeting may
improve immune response against cancer and develop new

TCGA-LIHC cohort with clinical data
(n = 377)

Gene set enrichment analysis
(survival group and death group)

mTORC1 signal pathway
(200 related genes)

Differential expression analysis (160 genes)

Univariate and multivariate cox regression analysis (15 genes)

Lasso regression analysis (6 genes)

Signature
establish

6 genes signature
(ETF1, GSR, SKAP2, HSPD1, CACYBP, and PNP)

Validation

Survival analysis Multiple ROC analysis

Univariate and
multivariate cox

regressiom
analyses

Correlation analysis
(with clinical
parameters)

Survival analysis
GSE76427 (n = 115)
ICGC-LIRI (n = 232)

Nomogram
(age, gender, stage, and gene signature)

C-index and calibration plot for
validation

TCGA-LIHC cohort Other cohorts

Figure 1: Screening process and validation of this study.
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therapeutic strategy. It has been verified that an inflam-
matory-CCRK circuitry drove mTORC1-dependent meta-
bolic and immunosuppressive reprogramming in obesity-
related hepatocellular carcinoma [26]. In another study [27],
Tan concluded that Tim-3-mediated PI3K/mTORC1 in-
terference leads to the dysfunction of both tumor-infiltrating
conventional natural killer cells and liver-resident natural
killer cells. In our research, the results showed that mTORC1
signature significantly associated with B cells, CD4+ T-cell,
CD8+ T-cell, dendrites, macrophage, and neutrophil, which
indicated that the patients in high-risk group may benefit

from immune-targeted therapies and provide a new strategy
for immune checkpoint-based targeting.

Being different from the previous prognostic studies in
HCC, our predictive model firstly concentrated on the
mTORC1 signal pathway. More importantly, the mTORC1
signal pathway was identified by GSEA, which indicated the
underlying mechanism between survival of HCC and
mTORC1 pathway. Moreover, the validation from three
independent datasets and a rigorous screening process
enabled the identification of a reliable signature. However,
our study has some limitations. First, prognostic signature
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Figure 2: Enrichment plots of signal pathways which importantly differentiated between survival and death groups: (a) HALL-
MARK_MTORC1_SIGNALLING; (b) HALLMARK_UV_RESPONSE_UP; (c) HALLMARK_GLYCOLYSIS; (d) HALLMARK_G2M_-
CHECKPOINT; (e) HALLMARK_MYC_TARGETS_V1; (f ) HALLMARK_E2F_TARGETS.

Table 2: Details of signal pathways selected by GSEA.

Name Size ES NES Normalized p value
MTORC1 SIGNALING 200 0.581694 1.982214 0
UV_RESPONSE_UP 158 0.506378 1.955258 0
GLYCOLYSIS 200 0.506672 1.88337 0
G2M_CHECKPOINT 199 0.73077 1.881815 0.002088
MYC_TARGETS_V1 199 0.685811 1.860498 0.004141
E2F_TARGETS 200 0.745006 1.856894 0.002079
ES� enrichment score; NES� normalized enrichment score.
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showed a relatively low diagnostic performance in pre-
dicting 5-year OS. It may be attributed to that only 200
associated genes were defined and evaluated for the ini-
tiation of the screening process. Second, using a single

characteristic (mTORC1 signal pathway) to establish the
predictive model is an intrinsic weakness. Indeed, many
other mechanisms, such as metabolism [28] and immune
[8], have an influence on the development and progression
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Figure 3: Lasso regression analysis results and heatmap: (a) partial likelihood deviance for the lasso regression; (b) lasso regression analysis;
(c) heatmap of signature and clinical parameters.

Table 3: Correlation between included genes (signature) and clinical parameters.

Id Age Gender Grade Stage T M N
ETF1 0.191 (0.849) 0.209 (0.834) −1.899 (0.059) −1.797 (0.075) −1.298 (0.197) 0.547 (0.636) −1.291 (0.285)
GSR 0.782 (0.436) −1.263 (0.208) −2.216 (0.028) −1.886 (0.062) −2.008 (0.047) 2.607 (0.093) 2.35 (0.049)
SKAP2 −0.721 (0.473) 1.488 (0.139) 1.274 (0.204) −2.457 (0.016) −2.009 (0.047) 1.576 (0.241) −0.815 (0.474)
HSPD1 0.988 (0.325) −0.442 (0.659) −2.609 (0.010) −1.418 (0.158) −1.17 (0.244) 3.016 (0.067) −1.426 (0.244)
CACYBP 2.79 (0.006) −0.636 (0.526) −2.635 (0.009) −1.547 (0.125) −1.71 (0.090) 0.38 (0.738) −0.015 (0.989)
PNP 1.614 (0.109) 1.766 (0.080) −1.139 (0.256) −2.781 (0.006) −2.819 (0.006) 1.759 (0.202) −0.813 (0.475)
Risk score 0.94 (0.054) −0.45 (0.654) −2.687 (0.008) −2.603 (0.010) −2.428 (0.017) 4.473 (0.009) −1.171 (0.317)
/e results in table represent correlation coefficient and p value; the bold represents significantly different values.
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(a) (b)

(c) (d)

(e) (f )

Figure 4: Immunohistochemistry of three included genes: (a) ETF1-normal; (b) ETF1-tumor; (c) GSR-normal; (d) GSR-tumor; (e) HSPD1-
normal; (f ) HSPD1-tumor.
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Figure 5: Continued.
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of HCC./ird, the weak correlation between risk score and
immune cells infiltration was observed in our research,
which may attribute to the calculated method (TIMER) of
immune cell infiltration. Furthermore, our signature

explored the underlying effect between mTOR signal
pathway and HCC, but it is necessary to perform more
independent trials and functional experiments to shed light
on the mechanism linking them.
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Figure 5: Survival analysis results and multiple ROC results. (a–c) /e survival analysis of TCGA-LIHC cohort, GSE76427 cohort, and
ICGC-LIRI cohort, respectively. (d–f) Multiple ROC results in 1 year, 3 years, and 5 years, respectively.
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Figure 6: Correlation plot between risk score and immune cells infiltration: (a) Cor� 0.178 (p � 6.522e − 04); (b) Cor� 0.135 (p � 0.010);
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Table 4: Results of univariate and multivariate Cox regression analyses.

p value Hazard ratio
Univariate Cox regression analysis
Age 0.591 1.005 (0.987, 1.023)
Gender 0.301 0.780 (0.487, 1.249)
Grade 0.914 1.017 (0.746, 1.387)
Stage <0.001 1.865 (1.456, 2.388)
T <0.001 1.804 (1.434, 2.270)
M 0.023 3.850 (1.207, 12.281)
N 0.328 2.022 (0.494, 8.276)
Risk score <0.001 1.205 (1.142, 1.272)
Multivariate Cox regression analysis
Age 0.064 1.019 (0.999, 1.040)
Gender 0.870 0.957 (0.567, 1.617)
Grade 0.707 0.935 (0.659, 1.327)
Stage 0.896 0.935 (0.340, 2.569)
T 0.223 1.752 (0.711, 4.314)
M 0.317 1.990 (0.518, 7.654)
N 0.595 1.686 (0.246, 11.564)
Risk score <0.001 1.236 (1.152, 1.328)
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Figure 7: Construction and validation of nomogram: (a) nomogram based on age, gender, stage, and gene signature; (b–d) calibration plot
of 1-year, 3-year, and 5-year OS, respectively.
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5. Conclusion

Our study is the first to identify a novel gene signature
related to mTORC1 signal pathway that could be used as a
potential prognostic factor in hepatocellular carcinoma.
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