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abstract

PURPOSE The TNM classification system is used for prognosis, treatment, and research. Regular updates
potentially break backward compatibility. Reclassification is not always possible, is labor intensive, or requires
additional data. We developed a Bayesian network (BN) for reclassifying the 5th, 6th, and 7th editions of the
TNM and predicting survival for non–small-cell lung cancer (NSCLC) without training data with known clas-
sifications in multiple editions.

METHODS Data were obtained from the Netherlands Cancer Registry (n = 146,084). A BN was designed with
nodes for TNM edition and survival, and a group of nodes was designed for all TNM editions, with a group for
edition 7 only. Before learning conditional probabilities, priors for relations between the groups were manually
specified after analysis of changes between editions. For performance evaluation only, part of the 7th edition test
data were manually reclassified. Performance was evaluated using sensitivity, specificity, and accuracy. Two-
year survival was evaluated with the receiver operating characteristic area under the curve (AUC), and model
calibration was visualized.

RESULTS Manual reclassification of 7th to 6th edition stage group as ground truth for testing was impossible in
5.6% of the patients. Predicting 6th edition stage grouping using 7th edition data and vice versa resulted in
average accuracies, sensitivities, and specificities between 0.85 and 0.99. The AUC for 2-year survival was 0.81.

CONCLUSIONWe have successfully created a BN for reclassifying TNM stage grouping across TNM editions and
predicting survival in NSCLC without knowing the true TNM classification in various editions in the training set.
We suggest binary prediction of survival is less relevant than predicted probability and model calibration. For
research, probabilities can be used for weighted reclassification.
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INTRODUCTION

In cancer care, the TNM system for classification of
malignant tumors guides treatment decisions, aids in
stratifying patients for research, and helps clinicians
assess prognosis.1,2 This is done by classifying char-
acteristics of the tumor (T descriptor), local lymph
nodes (N descriptor), and distant metastases (M de-
scriptor). These descriptors can subsequently be used
to compute a stage grouping, essentially summarizing
the information.

The system is revised on a regular basis (every
5.7 years on average), during which changes aremade
both to the individual descriptors and to the stage
grouping.3 Revisions incorporate new developments
that improve (outcome) stratification and prognostic
capabilities, keeping the classification system relevant.
However, because categories can be added or re-
moved, classes with the same label are not necessarily

equivalent across editions.4 Recommendations for
care interventions from the literature and clinical trials
may be based on specific editions of the classification
system, and it is not always immediately clear how to
apply these recommendations to patients classified
with a different edition.5 Also, scientific analysis of
patient cohorts classified with different editions must
consider the differences across editions.

This issue can be tackled by either mapping class
labels from source to target edition or by (re)classifying
the patient using the target edition. If mapping is not
feasible, additional data are required to help determine
the individual descriptors in the target edition. In
practice, this process is complicated, and these data
are usually excluded from the analyses or an ap-
proximate mapping is assumed.

For both situations described, it would be helpful to
have a model that can aid in the reclassification across
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TNM editions. In this article, we develop such a model
based on Bayesian networks (BNs).

A BN is a type of probabilistic graphic model that uses
a directed acyclic graph. The nodes represent variables, and
the directed edges signify (preferably causal) relationships.6,7

Each node is associated with a probability distribution that is
conditional on its parents (ie, the set of nodes that have a di-
rected edge to that node), which can be written as P (X |PaX ).
This leads to a set of (conditional) probability distributions that
together define a joint probability distribution, which can be
written as P (X1, …, Xn) �

Qn
i�0 P (Xi |PaXi). For nodes that

are associated with a discrete probability distribution, the dis-
tribution is defined as a conditional probability table (CPT).

BNs can be used to estimate the probability distribution of
a variable given evidence. In contrast to other models, such
as logistic regression, BNs do not have dedicated inputs or
outputs. Instead, setting evidence on any node updates
probabilities throughout the network.

The resulting models can easily be evaluated by medical
specialists: the graphic nature of BNs makes interpretation of
relationships straightforward, and conditional probability aligns
well with physicians’ reasoning. This is a benefit over black-box
approaches, such as artificial neural networks or deep learning.

In this work, we hypothesized BNs can be used to reclassify
data across TNM editions for non–small-cell lung cancer
(NSCLC) and predict survival. We further hypothesized that
such a BN can be learned without knowing the true TNM
classification in various editions in the training set by
leveraging the correlation between TNM and survival.

METHODS

Data

Data were obtained from the population-based Netherlands
Cancer Registry (NCR) after approval by the NCR Privacy
Review Board and did not require approval from an ethics
committee in the Netherlands. The NCR has been main-
tained since 1989 and is populated by trained data
managers. It contains all cancer occurrences in the
Netherlands. Coding is based on international rules and
standards. The edition of the TNM classification used
depends on the incidence year (Table 1).

Inclusion criteria were pathology confirmed, International
Classification of DiseasesO-3 topology code C34 (bronchus
and lung), morphology codes appropriate for NSCLC, and
incidence year between 1999 and 2016; 2017 and 2018
were excluded because of insufficient follow-up. Patients
with multiple primary tumors were kept because lung
cancer is generally dominant in determining survival. A total
of 146,084 patients fulfilled our criteria. We obtained the
following variables: clinically staged T, N, and M de-
scriptors; incidence year; days of follow-up; and vital status
at follow-up. A new variable was added to each record
specifying the TNM edition used, based on year of in-
cidence. Survival time, counted from initial diagnosis, was
discretized into 5 categories frequently used in the literature
and clinical practice (Table 2). Discretization introduced
missing values for patients who had a follow-up of less than
2 years and were alive at the time of follow-up. The dataset
was randomly split into a training set (80%; n = 116,858)
and a test set (20%; n = 29,226). Because the distribution
of the different TNM editions was unequal, the training set
was resampled (with replacement) to contain 45,000
samples for each edition. NAs were removed from the
test set.

Network Structure Definition

A BN was designed to predict the 5th and 6th TNM editions
with variables from the 7th edition of the TNM classification

TABLE 1. TNM Editions Used by the Netherlands Cancer Registry and No. of
Records Available by Period, Split Into Data for Training and Testing

Period
TNM
Edition

No.
(training)

No. (training,
after resampling)

No.
(test)

1999-2002 5 21,528 45,000 5,323

2003-2009 6 43,952 45,000 11,061

2010-2016 7 51,378 45,000 12,842

CONTEXT

Key Objective
The TNM classification system is used for prognosis, treatment, and research; however, data classified with

different editions are not directly comparable. Reclassifying data across TNM editions would facilitate pooling
historical data for research.

Knowledge Generated
Bayesian networks can be used to reclassify stage grouping across TNM editions by combining clinical knowledge

with real-world data and leveraging the relation between TNM stage and survival.
Relevance
Probabilistic reclassification across TNM editions for NSLCL makes it possible to use data classified with different

TNM editions for research. Secondly, our Bayesian network offers multiclass survival prediction with accom-
panying probabilities, possibly helping to assess prognosis.
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(TNM7) and vice versa, shown in Figure 1, using BayesiaLab
8.8 This required 2 sets of 4 nodes corresponding to T, N, and
M descriptors and TNM stage grouping: one set for input and
one for output. By adding 2 nodes for TNM edition and
survival, a total of 10 nodes was obtained. Relationships be-
tween nodes were established to indicate causal effect. Nodes
edition, T_567, N_567, M_567, TNM_567, and death were

associated with variables in the dataset, leaving T_7, N_7,
M_7, andTNM_7as hiddennodes. CPTs for the hiddennodes
were estimated on a subset of the training set containing only
7th edition data. Relationships between hidden nodes and
their observed counterparts were primed by manually esti-
mating CPTs P (T 567

�
�edition, T 7),P (N 567

�
�edition,N 7),

and P (M 567
�
�edition,M 7) through analysis of the

TABLE 2. Parameters Obtained From the Netherlands Cancer Registry
Parameter Values Description

T T1 Clinical T descriptor (ie, cT). The values T0 and Tis were excluded
because of the low frequency in the cancer registry dataT1a

T1b

T2

T2a

T2b

T3

T4

TX

N N0 Clinical N descriptor (ie, cN)

N1

N2

N3

M M0 Clinical M descriptor (ie, cM)

M1

M1a

M1b

TNM 1a Clinical stage group (ie, cTNM)

1b

2a

2b

3a

3b

4

X

Incidence year Integer Year of incidence

Days of follow-up Integer Years of follow-up available

Vital status Boolean Vital status during last follow-up

Survival , 30 days Time of death after diagnosis. Calculated using days of follow-up and vital
status1-4 months

4-6 months

6-12 months

1-2 years

Multifocal Boolean True if the tumor was multifocal

Tumor size Integer Diameter in mm. Only available for patients with incidence year ≥ 2015

Sulcus superior Boolean Indicates involvement of the sulcus superior. Only available for patients
with incidence year ≥ 2015

NOTE. The variables “Multifocal,” “Tumor size,” and “Sulcus superior”were only used for computing the test set and not for training themodel.
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differences between editions 6 and 7 in the American Joint
Committee on Cancer (AJCC) staging manual (Data Sup-
plement); there were no changes between editions 5 and 6,
and survival differed only marginally (Data Supplement).
Finally, Expectation-Maximization learning was used to
estimate the CPTs of the full network.9

Reclassifying TNM7 Data as Ground Truth for Testing

Evaluating network reclassification performance requires
a ground truth. Therefore, a subset of the test set was
manually reclassified as follows.

The additional parameters of multifocal disease, tumor size,
and sulcus superior involvement were obtained from the
NCR for patients in the dataset (Table 2). Because col-
lection of tumor size and sulcus superior involvement
started in 2015, the subset was limited to include patients
diagnosed in 2015 and 2016 (n = 3,544).

By comparing definitions for the T, N, and M descriptors in
the AJCC staging manuals, reclassification rules were de-
fined (Data Supplement). If a one-to-one mapping was
impossible, determining a range of values was attempted.
With the individually reclassified descriptors, the TNM
stage group was computed.

Evaluating Predictive Network Performance

The network’s performance was evaluated on (1) predicting
the 6th edition stage grouping, (2) predicting the 7th edition
stage grouping using the ground truth set, and (3) predicting
survival using the test set. Predicting the 5th edition was not
evaluated separately, because the 5th and 6th editions are
equivalent. The HUGIN Analysis Wizard was used to compute
the confusion matrix for each evaluation by selecting the state
with the highest belief as predicted state.

Macro-averaging and micro-averaging are used in multi-
class problems to combine multiple metrics into single
values (Data Supplement).10 Micro-averaged and macro-
averaged sensitivity, specificity, and accuracy were com-
puted with the Python programming language.11-14 We
additionally used BayesiaLab to calculate the receiver
operating statistic area under the curve (ROC-AUC) for
2-year survival.

Model calibration for survival was visualized using a bubble
plot and curve. Briefly, each unique combination of inputs
(ie, edition T_567, N_567, M_567, and TNM_567) defines
a subpopulation. The plots show, for each subpopulation, the
relation between a survival category’s predicted probability
and its observed frequency in the dataset. The size of each
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FIG 1. Bayesian network (after Expectation-Maximization learning) visualized using BayesiaLab 8. Each node represents a random variable with
a (conditional) probability table and shows its state’s prior probabilities in a (rotated) histogram. The arrows indicate the (causal) relations between the
nodes. The “_567”-suffix indicate nodes that, in conjunction with the “edition” node, can take on values from all TNM editions. The “_7”-suffixed nodes can
take on 7th edition values only.

Reclassifying TNM and Predicting Survival in NSCLC With a BN

JCO Clinical Cancer Informatics 439



bubble indicates the population’s size in the dataset. The
calibration curve, computed using scikit-learn in Python,
averages predicted and observed values by applying quantile-
based binning with 1,000 samples per bin (21 bins).14,15

RESULTS

Network Structure and Parameters

The final network structure is shown in Figure 1. Each node
represents a random variable and shows its state’s prior
probabilities in a histogram. The arrows indicate (causal)
relations between the nodes. A node’s underlying CPT is
conditional on its parents.

We assumed that the newest available TNM edition ap-
proximates the true disease state best and thus has
a causal relation with survival. This also means that be-
cause the TNM edition used for staging a patient should not
(causally) influence survival, each of the nodes T_567,
N_567, and M_567 has 2 parents: edition and its corre-
sponding unobserved/hidden counterpart.

After the network structure was created, Expectation-
Maximization learning was successfully applied. Percent-
ages shown on each node show the prior probabilities for
each state. In general, the model behaved as expected: an
increase in tumor stage in any of the T, N, M, and TNM
nodes corresponded to poorer survival. Additionally, the
relations between the hidden and the observed TNM nodes
were close to the priors set manually.

Manual Reclassification of the Dataset

Multifocality, tumor size, and sulcus superior involvement
were not always available for all patients. For 150 records
(4%), the T descriptor could not be determined because of
these missing values. A total of 451 patients (13%) had
multifocal T4 tumors according to the 7th edition for which
it was not possible to determine the corresponding 6th
edition T descriptor without additional information. Another
216 records (6%) could only be classified into a range (eg,
T2-T3). As a result, for 817 records (23%), the T descriptor
could not be completely reclassified (Data Supplement).
The N descriptor could be reclassified in all patients. There
were 85 multifocal T4 tumors (2%) that did not have distant
metastases in the 7th edition, making it impossible to
determine the M descriptor in TNM6.

Computation of the stage group does not always require the
T or N descriptor. For example, if a patient has distant
metastases (M1), the stage group will always be IV. Also, in
patients without distant metastases (M0), if the lymph node
metastases are classified as N2, any T2 or T3 will yield
a stage group of IIIA.

Consequently, in 3,344 of 3,544 records (94.4%), it was
possible to definitively determine the stage group. In the
remaining 200 patients (5.6%), only a range or a set of
stage groups could be identified. Fifty-two patients were
either stage IB or IIB, 13 were stage IIB or IIIA, and 85 were
stage IIIA or IV. In 20 patients, the stage could range be-
tween IA and IIIB. Finally, in 6 patients, the stage could
range between IIA and IIIB (Data Supplement). Partial
classifications were removed from the ground truth set.

Evaluating Predictive Network Performance

Predicting 6th edition stage grouping using 7th edition data
resulted in an average accuracy of 0.99. Macrosensitivity
and microsensitivity were 0.92 and 0.96, respectively.
Macrospecificity and microspecificity were 0.99 and 0.99,
respectively. Inspection of the confusion matrix showed 2
situations where misclassification was notable. Forty-one
percent of the patients who were stage IIB were mis-
classified as stage IB. Twenty-one percent of the patients
classified as stage IIIB were misclassified as stage IB, IIB,
or IIIA.

Predicting 7th edition stage grouping using 6th edition data
yielded an average accuracy of 0.99. Macrosensitivity and
microsensitivity were 0.85 and 0.95, whereas macro-
specificity and microspecificity were 0.99 and 0.99, re-
spectively. Again, inspection of the confusion matrix
showed 2 notable situations where misclassification was
apparent. Stage IIA was misclassified as IA in 53% of
patients, and stage IIB was misclassified as IIA or IIIA in
59% of patients. Macro-averaged and micro-averaged
sensitivity, specificity, and accuracy for survival are listed
in Table 3.

The confusion matrices underlying these statistics can be
found online (Data Supplement), together with the sensi-
tivity, specificity, and ROC-AUC for predicting each stage
group (Data Supplement) and the corresponding set of
ROC-AUC curves (Data Supplement). The ROC-AUC for

TABLE 3. Macro-Aggregated and Micro-Aggregated Statistics for Predicting 6th Edition Stage Group Using 7th Edition Data, 7th Edition Stage Group Using
6th Edition Data, and Survival Using Data From All Editions

Sensitivity/Specificity/
Accuracy

Predicting TNM6 Predicting TNM7 Predicting Survival

Macro-Aggregated Micro-Aggregated Macro-Aggregated Micro-Aggregated Macro-Aggregated Micro-Aggregated

Sensitivity 0.918 0.957 0.851 0.948 0.282 0.350

Specificity 0.994 0.994 0.993 0.993 0.862 0.870

Accuracy 0.989 0.989 0.987 0.987 0.783 0.783

Abbreviations: TNM6, TNM classification, edition 6; TNM 7, TNM classification, edition 7.
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≥ 2-year survival was 0.81, determined using BayesiaLab,
and is shown in Figure 2. Model calibration was computed
and is shown in Figure 3.

DISCUSSION

Mapping class labels requires that each label in the source
edition (classification system) can be translated to a label in
the target edition. Generally, this is not possible going from
coarser to more granular classification systems (eg, from
the 6th to the 7th edition of the TNM classification system).

In these situations, additional variables are required: either
for use in conjunction with the original classification or to
fully stage a tumor in the target edition. These additional
variables are frequently unavailable or obtaining them
comes with great cost.

We experienced these issues first hand. When creating the
ground truth for evaluating predictive performance, only
a relatively small subset of the total test set (12%; patients
with a year of diagnosis between 2015 and 2016) could be
considered for manual, rule-based reclassification. Even
then, reclassification of the T descriptor was not possible in
23% of the patients in the subset. Specifically, we could not
determine when a T3 in TNM7 would be a T2 in TNM6
because this required information about the presence of
invasion into nearby anatomic structures. Similarly, we
could not determine the 6th edition T and M descriptors for
7th edition nonmetastatic, multifocal T4 tumors because
this required knowledge of the location(s) of the additional
tumor nodules. Therefore, we did not evaluate performance
of predicting individual descriptors.

On a more aggregated level, we could not fully determine
the 6th edition stage group in 200 patients (5.6%). Al-
though a relatively small number of records was involved,
we thought this might still bias the test set. To investigate
the potential effect of this bias, we performed an additional
analysis. We looked at the (in real-life impossible) worst-
case scenario by assuming that all 174 records where we
could not decide between 2 stages (eg, stage IB or IIB)
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would always be incorrectly classified, essentially doubling
the error. After modifying the confusion matrices in this
way, the averaged statistics were recalculated. Micro-
averaged and macro-averaged specificity and accuracy
were almost unaffected (values changed from 0.99 and
0.99 to 0.98 and 0.96, respectively, that is, a maximum
decrease of 0.03). Micro-averaged and macro-averaged
sensitivity decreased by a maximum of 0.1.

When using the ground truth set, the BN performed well
when reclassifying the TNM stage group between editions:
when predicting the 6th edition to the 7th edition data, all
aggregated statistics (sensitivity, specificity, and accuracy)
were ≥ 0.91. Also, the fact that macro-averaged and micro-
averaged statistics were close together implies the model is
relatively insensitive to class imbalances. A similar obser-
vation can be made for predicting the 7th edition using 6th
edition data. The results were only slightly worse, which is to
be expected, considering the network has to predict a more
granular output from a coarser input. Still, the model had an
accuracy of 98%.

Performance for predicting 2-year survival can be con-
sidered more than adequate, especially considering the
limited number of variables used for making the prediction
and the number of possible outcome classes. Adding
variables could help, but would come with additional
complexity of themodel. However, clinical decisions are not
just based on the most likely outcome: probability is con-
sidered as well. Therefore, binary prediction (eg, 2-year
survival: yes/no) seems inadequate to support decision
making. Moreover, using a BN in such a way ignores one of
its major strengths: the fact that it can communicate
(conditional) probabilities. The calibration curves show that
the model is well calibrated and that the estimated prob-
abilities are close to the real probabilities.

Inspection of the confusion matrix reveals 4 situations
where the model had difficulty in predicting the correct
stage group, all related to possible stage shifting. When
predicting the 6th edition stage group from 7th edition data,
the errors stemmed from difficulty in handling patients
where the input (node T_7) is T3. On inspection of the BN,
it seemed the model predicted a T3 in the 7th edition to be
a T2 with 58% probability and a T3 with 35% probability in
the 6th edition. This explains the majority of mistakes made
when the predicted descriptor should have been T3. The

original priors for this relation were set close to 50-50 (ie,
a T3 becoming a T2 or T3 with equal probability) before
applying EM learning; therefore, the change in probabilities
appears to be an effect of optimizing the relationship be-
tween nodes T_567 and death. Additionally, the BN esti-
mates the probability of a T3 in TNM7 being multifocal and
thus a T4 in TNM6 to be fairly small, at 4.2%. Even if the
actual percentage in the dataset is larger, the value T4 (in
TNM6) would never be predicted, because the most
probable outcome was selected as prediction.

In predicting the 7th edition stage group from 6th edition
data, most of the misclassifications can be explained by the
observation that a TNM6 T2 becomes either a T2a, T2b, or
T3. Without additional information (ie, tumor diameter), it is
not possible to be 100% accurate. Similarly, a T4 in TNM6
can become a T3 or T4, depending on multifocality of
the tumor.

Even when using training data with classifications in both
the 6th and 7th editions, the BN would not have been able
to make any of these distinctions with certainty, because
additional information is needed. However, like with pre-
dicting survival, the probabilistic reclassification we applied
does not need to yield a discrete result: it is possible to
assign a probability to each possible outcome, essentially
creating a weighted reclassification. This is especially
useful when reclassifying large datasets like the NCR.

We conclude that we have successfully created a BN that
can aid in determining the TNM stage group of the 6th
edition using 7th edition data, and vice versa, by using
a training set that does not hold the known classifications
in multiple editions but does hold survival to aid in the
classification. Knowledge about changes between the
editions of the classification system was successfully in-
corporated by modeling these changes as priors in the
CPTs. Themodel parameters were estimated from data and
therefore depend on specific distributions found in the
Netherlands. However, considering NSCLC diagnostics,
treatment, and survival are comparable in Western/de-
veloped countries, we expect the BN can be applied here
as is, although validation would be required. This process is
likely to work for other tumors and/or editions of the TNM
classification system, but additional research is needed to
establish generalizability.
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