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Peptoids hold status as peptide-mimetics with versatile biological applications due to

their proteolytic stability and structural diversity. Among those that have been studied

in different biological systems, are peptoids with dominant balanced hydrophobic

and charge distribution along the backbone. Tryptophan is an important amino acid

found in many biologically active peptides. Tryptophan-like side chains in peptoids

allow H-bonding, which is absent from the parent backbone, due to the unique

indole ring. Furthermore, the rigid hydrophobic core and flat aromatic system influence

the positioning in the hydrocarbon core and allows accommodating tryptophan-like

side chains into the interfacial regions of bacterial membranes and causing bacterial

membrane damage. Incorporating multiple tryptophan-like side chains in peptoids can

be tricky and there is a lack of suitable, synthetic routes established. In this paper, we

investigate the synthesis of peptoids rich inNhtrp andNtrp residues using different resins,

cleavage conditions, and unprotected as well as tert-butyloxycarbonyl-protected amines

suitable for automated solid-phase submonomer peptoid synthesis protocols.

Keywords: peptoids, tryptamine, submonomer synthesis, solid phase synthesis, tryptophan

INTRODUCTION

Modern medicine has blossomed as a result of the introduction of antimicrobial drugs in the
early 1940s, however, over-prescription and misuse of these lifesaving drugs have tumbled modern
societies into a post-antibiotic era. Novel antimicrobial drugs are in high demand and much
attention has been given to naturally occurring antimicrobial peptides (AMPs) and derivatives
thereof. AMPs are characterized as short (12–50 amino acids), cationic (net charge +2 to +9),
and amphiphilic (Jenssen et al., 2006). They are multifunctional biomolecules, e.g., possessing
antibacterial (Bechinger and Gorr, 2017), antiviral (Jenssen, 2005), antifungal (Lacerda et al., 2014)
properties, stimulating host immune cell responses (Nijnik et al., 2010; Steinstraesser et al., 2012),
and affecting cell migration (Andrea et al., 2018; Mouritzen et al., 2018; Vang Mouritzen and
Jenssen, 2018). The clinical success of AMPs may have been limited by disadvantages, such as
susceptibility to proteolytic degradation, pH and/or salinity-dependent activity. This has fueled the
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development of peptidomimetics such as peptoids (N-substituted
glycines) (Zuckermann et al., 1992; Chongsiriwatana et al.,
2008; Godballe et al., 2011; Molchanova et al., 2017), a class of
molecules mimicking the features of AMPs while being designed
as proteolytically stable entities.

Both AMPs and antimicrobial peptidomimetics have been
widely studied for their antibacterial properties in solution tests,
initially tested for activity toward planktonic bacteria but lately
also toward microbial biofilms (Kapoor et al., 2011; Secker
et al., 2015; Batoni et al., 2016; De La Fuente-Núñez et al.,
2016; Chung and Khanum, 2017; Wang et al., 2017; Andrea
et al., 2018; Lee et al., 2018). Peptoid macrocycles have also
been studied as antimicrobial agents that show remarkable
selectivity toward microbial over eukaryotic cells (Shin et al.,
2007; Huang et al., 2012). A generalized conclusion that can

FIGURE 1 | (A) Chemical structure of peptoid 1 (GN-2 Npm9 peptoid) (Mojsoska et al., 2015). (B) Chemical structures of 4 indole containing amines used in the

design and synthesis of peptoids 1–4 at positions 2, 4, 5, and 7. Tryptamine (blue), 1-Boc-Tryptamine (red), (1H-Indol-3yl) methanamine (green), and

Boc-(1H-Indol-3yl) methanamine (orange). The monomeric units corresponding to the four different amines are abbreviated as Nhtrp, Nhtrp1, Ntrp, and Ntrp1.

be drawn from three decades of structure-activity studies of
AMPs is that active AMPs predominantly need a balance
of cationic residues (arginine and/or lysine) and about 50%
hydrophobic residues. In addition, increased hydrophobicity
is often shown to be correlated with increased mammalian
cell toxicity (Mojsoska et al., 2015; Turkett and Bicker, 2017).
Amongst the hydrophobic residues particularly tryptophan
appears to be crucial and often position dependent for the
activity. The literature is full of examples where tryptophan
is more or less conserved in certain positions in some AMP
families (Andreu et al., 1985) e.g., in N-terminal position
1 or 2 in many cecropins or appears in patterns with the
cationic residues i.e., Lys-Trp or Arg-Trp (Bang et al., 2010).
Systematic substitution analysis studies have been carried out
for numerous AMPs and generally, it is concluded through
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alanine scans that tryptophan is important or crucial for
antimicrobial activity (Strøm et al., 2000). The hydrophobic
bulkiness of the tryptophan side-chain has also importance for
the activity and can only be replaced by certain hydrophobic
non-natural building blocks (Ryge et al., 2004). One likely
explanation is that the aromatic system in the tryptophan
side-chain generates a cloud of negative charge which can
interact with the positively charged guanidinium group of
arginine (Aliste et al., 2003). It has been suggested that upon
interaction with the bacterial membrane the guanidinium group
favors interaction with negatively charged lipopolysaccharide or
lipoteichoic acid, thus exposing the negatively charged flanks
of tryptophan which inserts into the lipid interface layer, an
interaction which is stabilized by the positively charged choline
head groups (Aliste et al., 2003). Additionally, the bulky nature
of tryptophan and hydrogen-bonding potential is important for
its membrane-disruptive activities (Vogel et al., 2002), though
the hydrogen bonding of tryptophan diminishes upon insertion
into the core of the membrane bilayer (Yau et al., 1998). It
is also apparent that positioning of the tryptophan mimics
in antimicrobial peptoids are of importance for the biological
activity (Mojsoska et al., 2015) and also influencing on the
antibacterial mode of action (Mojsoska et al., 2017; Saporito
et al., 2019). Thus, the development of novel peptidomimetic
drug candidates and in particular peptoids would benefit from
building blocks mimicking the physicochemical features of the
tryptophan side chain. Special efforts to incorporate heterocycle-
containing side chains into peptoid have been made, including
by protection of the heterocycles’ nucleophilic sites (Uno et al.,
1999; Burkoth et al., 2003). However, tryptophan-mimicking
side chains are still challenging to incorporate into peptoids,
even applying these modifications. Considering its importance

in AMP research, there is a need for strategies, which would
enable easy, low cost, and predictable incorporation of such
building blocks into future peptoid libraries using automated
technologies.

In the present work, we investigate the synthesis of peptoids
containing multiple Nhtrp and Ntrp residues, using different (1)
resins (2) cleavage conditions, and (3) protected and unprotected
sub-monomer amines.

MATERIALS AND METHODS

Chemicals and Instruments
TentaGel S RAM (0.22 mmol/g) were purchased from
Rapp Polymere GmbH. Rink Amide MBHA resin (0.65
mmol/g) were purchased from Novabiochem1 Tryptamine, N-
Boc-1,4-butanediamine, and benzylamine were purchased
from Sigma-Aldrich. 1-Boc-Tryptamine (1H-Indol-3yl)
methanamine, Boc-(1H-Indol-3yl) methanamine were
purchased from Combi-Blocks. Trifluoroacetic acid (TFA)
and N-methyl-2-pyrrolidone (NMP) were purchased from
VWR. Piperidine and bromoacetic acid were purchased from
Merck. N,N-diisopropylcarbodiimide (DIC), triisopropylsilane
(TIPS) and anisole were purchased from Sigma-Aldrich.
Dimethylformamide (DMF), dichloromethane (DCM),
acetonitrile were from Th.Geyer. All reagents and solvents
were used without further purification. Disposable reactors
(5mL polypropylene) fitted with a PTFE filter were acquired
from Fa. Gerhardt, Kassel Germany.

1Novabiochem Fmoc resin cleavage protocols. (2019). Available online at: https://
www.emdmillipore.com/Web-US-Site/en_CA/-/USD/ShowDocument-Pronet?
id=201503.030.

SCHEME 1 | Solid-phase sub monomer peptoid synthesis of indole rich peptoids. * 20min displacement with indolamines was used only for manual

synthesis protocol.
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General Procedure for Peptoid Synthesis
Manual Peptoid Synthesis
Peptoid 1 (GN2-Npm9, Figure 1A) was synthesized using
standard submonomer solid-phase synthesis (see Scheme 1) as
described by Tran et al. (2011) with minor modifications. The
peptoid was synthesized manually (100mg scale) in disposable
5mL polypropylene reactors fitted with a PTFE filter using
either a MBHA resin (0.65 mmol/g) or TentaGel S RAM
resin (0.22 mmol/g). The resin was swelled in DMF for 2 h
at room temperature, followed by Fmoc deprotection by 20%
piperidine in DMF for 2 × 10min. The resin was washed
with DMF (4 × 2min with 2–3mL). The acylation step
was performed using 0.6M bromoacetic acid in DMF and
86 µL DIC in DMF for 20min (30min for first acylation
step). Displacement was achieved through the addition of 1M

amine of interest in NMP for 1 h (20min for tryptamine) at
room temperature.

Solid-Phase Automated Peptoid Synthesis
The setup from the manual peptoid synthesis was transferred
to a solid-phase automated peptide synthesizer (ResPep SL;
Intavis Bioanalytical Instruments AG) for synthesis of peptoids
1–4 in microcolumns (20mg resin in each microcolumn) using
either a MBHA resin (0.65 mmol/g) or a TentaGel S RAM
resin (0.22 mmol/g).

General Procedure for Cleavage and
Characterization
Peptoids were cleaved using two different cleavage conditions, A
(TFA:TIPS:H2O, 95:2.5:2.5) and B (TFA:DCM:anisole, 49:49:2)

TABLE 1 | Crude purity and mass spectrometric analyses from a manual synthesis of peptoid 1 (Figure 1A) using two different resin (rink amide MBHA and TentaGel S

RAM resins) and cleavage condition A.

Total crude purity (%)a Corresponding m/z base peak signalb

Peptoid length mer MBHAc TentaGel S RAMd MBHA TentaGel S RAM

2 mer 37 56 387.25 (365.25) 387.25 (365.17)

3 mer 27 43 515.4 (493.33) 515.4 (493.42)

4 mer 43 69 693.5 (715.58) 693.5

5 mer 66 88 893.67 915.67 (893.58, 931.67)

6 mer 68 94 1021.75 (1043.83) 1021.67

7 mer 56 85 1149.83 (1171.83) 1149.75 (1171.92)

8 mer 45 100 1349.9 (1371.92, 1387.92) 1371.92 (1349.75, 1387.92)

9 mer 38 78 1500.08 (1516.08) 1500.08

aAnalytical RP-HPLC-ESI-MS conditions: C18 Kinetex 100 × 2.1mm 100 Å column, 40◦C, linear gradient of 5–65% water in acetonitrile (0.1% HCOOH), flow rate 0.5 mL/min. Crude
purity calculated with peak detection integration method ICIS (FreeStyle 1.5, Thermo Scientific), where peaks with areas more than 5% were integrated. Percentile crude purity of each
length mer is shown independently of the previous length mer purity.
bObserved masses of [M+2H+]2+, M+ H+ or Na+, K+ adduct.
cRink amide MBHA (loading: 0.65 mmol/g).
dTentaGel S RAM (loading: 0.22 mmol/g).

TABLE 2 | Total crude purity (%) and mass spectrometric analyses for all peptoids 1–4 synthesized on automated solid-phase peptide synthesizer using two different

resins and two cleavage conditions A and B.

Total crude purity (%)a Corresponding m/z base peak signalsb

MBHA TentaGel S RAM MBHA TentaGel S RAM

Peptoid Ac Bd Ac Bd Ac Bd Ac Bd

1 6 6 33 53 1515.50

(1499.58, 1478.33)

1515.50

(1499.33)

1499.5 1515.42

(1500.50, 1499.5)

2 20 26 34 61 1515.50

(1499.58, 1477.08, 739.33)

1515.50

(1499.50, 1477.42, 739.83, 758.83)

1499.58

(1515.50)

1516.5

3e / / / / / / / /

4 6 25 26 51 1443.83

(1421.25)

1421.33

(1443.42, 1459.42)

1460.42

(1443.50)

1459.42

(1443.42)

aAnalytical RP-HPLC-ESI-MS conditions: C18 Kinetex 100 × 2.1mm 100 Å column, 40◦C, linear gradient of 5-65% water in acetonitrile (0.1% HCOOH), flow rate 0.5 mL/min. Crude
purity calculated with peak detection integration method ICIS (FreeStyle 1.5, Thermo Scientific) where peaks with areas more than 5% were integrated.
bObserved masses of [M+2H+]2+, M+ H+ or Na+, K+ adduct.
c [TFA:TIPS:H2O (v/v%, 95:2.5:2.5)], 30min, RT.
d [TFA:DCM:anisole (v/v%, 49:49:2)], 30min, RT.
eWe did not obtain any of the desired peptoid product.
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FIGURE 2 | Mass chromatograms of peptoid 4 (shown) synthesized using automated solid-phase synthesizer and different resins, Rink Amide MBHA (top) and

TentaGel S RAM (bottom). The most intensive m/z values are shown as Base Peak (BP) signals for each mass chromatogram. The chromatograms were obtained on

RP-HPLC-ESI-MS using acetonitrile gradient over 24min. Percentile area (% crude purity) for each peak was determined using Peak Detection algorithm (ICIS,

FreeStyle 1.5, Thermo Scientific) where peaks with areas more than 5% were integrated. Y-axis shows local data normalization. The correct product mass was

identified using observed m/z values corresponding to M+, [M+2H+]2+ and/or M+ Adduct ions. Crude product after deprotection and cleavage using condition B

(TFA:DCM:anisole (v/v%, 49:49:2) from resin is shown.
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FIGURE 3 | Mass chromatograms of peptoid 2 (shown) synthesized using automated solid-phase synthesizer, TentaGel S RAM resin, cleaved with two different

cleavage conditions, A TFA:TIPS:H2O (95:2.5:2.5) and B TFA:DCM:anisole (49:49:2). The most intensive m/z values are shown as Base Peak (BP) signals for each

mass chromatogram. The chromatograms were obtained on RP-HPLC-ESI-MS using acetonitrile/water gradient over 24min. Percentile area (% crude purity) for each

peak was determined using Peak Detection algorithm (ICIS, FreeStyle 1.5, Thermo Scientific) where peaks with areas more than 5% were integrated. Y-axis shows

local data normalization. The product was identified using observed m/z values corresponding to M+, [M+2H+]2+ and/or M+ adduct ions. Crude after deprotection

and cleavage using cleavage condition A TFA:TIPS:H2O (v/v%, 95:2.5:2.5) or B TFA:DCM:anisole (v/v%, 49:49:2) from resin is shown.
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for 30min, shaking at room temperature. After cleavage, the
cleavage cocktail solution was filtered and evaporated under
N2 gas. The residual was dissolved in 5% acetonitrile in
milli-Q water. All peptoids were analyzed using C18 Kinetex
100 × 2.1mm 100 Å column, 40◦C, linear gradient of 5–
65% water (0.1% formic acid) in acetonitrile (0.1% formic
acid), flow rate 0.5 mL/min on Dionex Ultimate 3000 UHPLC
connected to Thermo Finnigan LTQ-XL linear ion-trap mass
spectrometer. Mass detection within 250–2,000 m/z range
was done using positive mode on a diode array detector
interfaced with a HESII electro spray ion source. For percentile
crude purity calculation, mass chromatograms were integrated
using Peak detection ICIS algorithm using FreeStyleTM 1.5
software (Thermo Scientific). To control for impurities that come
from the resin itself, samples from both MBHA and TentaGel S

RAM resins cleaved with the two different cleavage conditions
were analyzed in the same way as all the length mers. The data is
shown in Table S3.

RESULTS AND DISCUSSION

Several studies have highlighted the biological relevance of the
unique indole ring structure in tryptophan and tryptamine like
residues. We have previously demonstrated that the tryptamine
rich peptoid GN-2 Npm9 (Figure 1A, peptoid 1) selectively kills
Gram-negative bacteria (Mojsoska et al., 2015, 2017). Synthesis
of peptoids rich in indole like monomers appears challenging
especially when using unprotected indole rich amine monomers.
In an attempt to investigate several parameters in the solid-phase
synthesis routes of indole rich peptoids, we selected peptoid

SCHEME 2 | (A) Mechanism of formation of terminated cross-linked peptoids. (B,C) Chemical structures and masses (calculated and observed) for some of the

major side product impurities from synthesis of Peptoids 1 length mers in Table S1. Product B possibly generated via SN2 reaction of bromoacetylated Npm
C-terminal residue and the backbone amine of Nhtrp-Npm. This product was identified in all length mers analysis for Peptoid 1 synthesized using MBHA rink amide

resin and in 2–4, 7, and 9 mer analysis for the same synthesized using TentaGel S RAM resin. Product C was the second major side-product with a mass of 897.58

m/z that results from the cross-linking of a bromoacetylated Nhtrp-Npm with Nlys-Nhtrp-Npm. This product was only identified in 4–6 and 8 mer analysis for Peptoid

1 synthesized using MBHA rink amide resin.
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1 as a model compound. We systematically chose to alternate
three parameters for synthesis to gain insight about the crude
purity, side-product formed after each displacement step and
use this information to identify the need of using protected
indole tryptamine-like amines. These parameters were, (1) choice
of resin, (2) cleavage conditions, and (3) use of four different
protected and unprotected tryptamine-like amines (Figure 1B).

Total Crude Purity of Indole Rich Peptoids
Varies With Resin Choice
Initially, we synthesized peptoid 1 using a manual solid-phase
submonomer synthesis protocol employing two different C-
terminal amide resins, MBHA and TentaGel S RAM. A small
amount of resin was taken out for cleavage to estimate crude
purity after each step of bromoacetylation and displacement.
Results from crude purities (%) are shown in Table 1. The parent
mass was identified using m/z base peak signals with the highest
intensity. The overall purity of the final product across the length
mers was higher for the peptoid synthesized using TentaGel S
RAM resin. To exemplify, the overall purities for 2 mer were
calculated to be 37 and 56%, the 4 mer sequence the 43 and 69%
and for the 9 mer 38 and 78% for MBHA and TentaGel S RAM,
respectively (Table 1). We then transferred the manual synthesis
steps to an automated solid-phase peptide synthesizer and
synthesized peptoid 1 again. In the automated synthesis set-up,
TentaGel S RAM remained the resin of choice giving higher total
crude purity than MBHA resin (Figure 4 left and right, Peptoid

1). TentaGel S RAM also remains the choice of resin for peptoid 2
and 4 regardless of cleavage conditions (Table 2, Figure 2).When
compared to the manual synthesis of peptoid 1 using TentaGel
S RAM, the automation resulted in lower crude purities of 78
and 33%, respectively (Tables 1, 2). It’s worth noting that one of
the differences between the manual and automated synthesis set
up was the shaking condition between each synthesis step, which
is absent in the latter. Proper shaking conditions allow a higher
degree of incorporation of building blocks along the peptoid
chain and with this in mind longer displacement time was
employed for all amines using the automated synthesis protocols
(20 vs. 60min, respectively). In the present study, TentaGel Resin
performs better than Rink MBHA due to lower loading (0.22
and 0.65 mmol/g, respectively) and better swelling properties in
DMF. The Rink MBHA resin is a polystyrene a polymer cross-
linked with 1% of divinylbenzene, while the TentaGel S RAM
resin has polyethyleneglycol grafted (50–70%) to low cross-linked
polystyrene. Furthermore, TentaGel S RAM swells better than
Rink MBHA in DMF, 5 vs. 4 mL/g, respectively (Shelton and
Jensen, 2013).

Cleavage Conditions Influence the Final
Crude Purity of Peptoids
To further investigate the low crude purity observed when
using MBHA resin but also TentaGel S RAM resin when
the peptoid was synthesized using an automated set up, we
inspected the effects of using different cleavage cocktails as

SCHEME 3 | Two possible termination mechanisms for peptoid 3 incorporating unprotected tryptophan-like amine residue Ntrp. (A) Intramolecular alkylation.

(B) Diketopiperazine formation. Exact mass and the mass of the observed (TFA adduct) compounds are shown.
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FIGURE 4 | Mass chromatograms of peptoid 1 with Nhtrp (top) and peptoid 2 with Nhtrp1 building blocks (bottom) synthesized using automated solid-phase

synthesizer, Rink Amide MBHA (left) and TentaGel S RAM resins (right). The most intensive m/z values are shown as Base Peak (BP) signals for each mass

chromatogram. The chromatograms were obtained on RP-HPLC-ESI-MS using acetonitrile gradient over 24min. Percentile area (% crude purity) for each peak was

determined using Peak Detection algorithm (ICIS, FreeStyle, Thermo Scientific) where peaks with areas more than 5% were integrated. Y-axis shows local data

normalization. The correct product mass was identified using observed m/z values corresponding to M+, [M+2H+]2+ and/or M+ adduct ions. Crude after

deprotection and cleavage using cleavage condition B (TFA:DCM:anisole (v/v%, 49:49:2) from resin is shown.

an additional parameter. In the literature several protocols
suggest cleaving conditions depending on the side chain
functionality and the choice of resin when using solid-phase
synthesis protocols (Bernatowicz et al., 1989; Sherrington, 1990;
Walker, 2012; Novabiochem). Peptoids were cleaved under
two different cleavage conditions, A (TFA:TIPS:H2O; 95:2.5:2.5)
and B (TFA:DCM:anisole, 49:49:2) for 30min. To minimize
undesired acylation upon generation of cleaved peptoid products,

especially where indole side chain in tryptamine and analogs
amines can react with electrophiles under acidic conditions,
we used anisole and triisopropylsilane (TIPS) as carbocation
scavengers (Pearson et al., 1989). Data from total crude purity for
each of the cleavage condition are shown in Table 2. Overall, the
data suggest that using less acidic cleavage conditions (condition
B) improved the final crude purity (Table 2, Figure 3). In
addition to this, for each step in the manual synthesis and at the
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final product (9 mer) of the automated synthesis, when present,
several traces (impurities) were analyzed (Table S2) and possible
structures were suggested (Scheme 2, 3). By doing structural
analysis of the impurities, we could identify several products and
investigate whether those were generated during the synthesis or
they occurred during cleavage of the peptoids from the resin. In
the manual synthesis of peptoid 1 we observed two major side-
products (Scheme 2) both resulting from cross-linking. The first
side product with an observed mass of 591.42 m/z was present
in all Rink syntheses and TentaGel 2, 3, 4, 7, and 9 (Scheme 2B,
Table S1). A bromoacetylated Npm C-terminal residue reacts
with the backbone amine of Nhtrp-Npm in a SN2 reaction
(Scheme 2A). The second major side-product with a mass of
897.58 m/z results from the cross-linking of a bromoacetylated
Nhtrp-Npm with Nlys-Nhtrp-Npm. This m/z was present in
Rink syntheses 4, 5, 6, and 8 but not at all in syntheses using
TentaGel (Scheme 2C, Table S1). This may be explained by the
higher loading of the Rink resin MBHA resin (0.65 mmol/g) vs.
TentaGel S RAM resin (0.22 mmol/g).

Protecting the Indole Ring in Tryptamine
and (1H-Indol-3yl) Methanamine Improved
the Final Crude Purity
Rink amide linkers and Boc protecting groups require presence
of TFA in a standardized cleavage cocktail. In presence of high
TFA concentrations, formation of highly reactive cationic species
from the protecting groups and the resin-linkers are generated
that can react and consequently modify electron-rich side chain
such is the indole ring in tryptophan, tryptamine, and analogs.
To explore the contribution of possible side chain reaction of
the indole ring in tryptamine and its analogs to the number of
observed impurities, we looked at use of both Boc-protected and
unprotected indole containing amines in peptoid synthesis as our
third parameter (Figure 1B). Systematically incorporating these
amines along the peptoid chain at positions 2, 4, 5, and 8 we
generated 4 peptoids. We hypothesized that the low observed
purity could be associated with side reaction arising from the
unprotected indole ring during the synthesis but also during
cleaving of the product. We investigated whether the protection
of the indole e.g., retards decomposition as scavengers can
sometimes also reduce the indole (Pearson et al., 1989). Our data
showed that in some cases the total crude purity is significantly
higher when using Boc protected amine (Figure 4).

In the synthesis of peptoid 3, using the unprotected
submonomer Ntrp ((1H-indol-3-yl)methaneamine) we did
not obtain any of the desired peptoid product. Previously,
Zuckermann and coworkers have reported that a few
submonomers may undergo two side-reactions in peptoid
synthesis (Figliozzi et al., 1996). The main chain bromoacetic
acid group may react with an amino group three or four atoms
away from the backbone amide (Scheme 3A). The submonomer
(2-aminomethyl) benzimidazole falls into this category and
is closely related to the Ntrp submonomer. The second
reaction is the formation of N-substituted diketopiperazines
(Scheme 3B). We observed the N-substituted diketopiperazine

TFA adduct with an m/z of 448.17, although this was not the
main side-product (Scheme 3B).

CONCLUSION

The aim of this work was to gain insight into the synthesis
of peptoids rich in tryptamine (Ntrp) and ((1H-indol-3-
yl)methaneamine) (Nhtrp) residues, using different protocols.
Using peptoid 1 (GN-2 Npm9) as a model compound, we
investigated three parameters (1) resins (MBHA or TentaGel S
RAM; (2) cleavage conditions with TFA:TIPS:H2O (95:2.5:2.5)
or TFA:DCM:anisole (49:49:2); and (3) use of unprotected as
well as Boc-protected tryptamine and Boc-protected ((1H-indol-
3-yl)methaneamine). We found that TentaGel Resin (loading
0.22 mmol/g) resulted in fewer side-products compared to
the MBHA resin (loading 0.65 mmol/g). Furthermore, we
found that TFA:DCM:anisole (49:49:2) for 30min is sufficient
for cleavage and gives better results than TFA:TIPS:H2O
(95:2.5:2.5). Finally, synthesis of peptoid 1 was successful using
both Boc-protected and unprotected submonomers, showing
that protection of tryptamine is not required. However,
Boc-protection of ((1H-indol-3-yl) methaneamine) is crucial,
since we observed no desired product when using the
unprotected submonomer. The results from this study show
the contribution of impurities that can be found at each
displacement step in the submonomer peptoid synthesis
protocol. The results from this study will help researchers
synthesize peptoids containing multiple Nhtrp and Ntrp
residues for various applications such as discovery of new
antimicrobial agents, protein antagonists (Quintanar-Audelo
et al., 2007) or labeling with novel indolamines (Antos et al.,
2009).
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