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ABSTRACT

Moonlighting proteins are multifunctional, single-
polypeptide chains capable of performing multiple
autonomous functions. Most moonlighting proteins
have been discovered through work unrelated to
their multifunctionality. We believe that prediction
of moonlighting proteins from first principles, that
is, using sequence, predicted structure, evolution-
ary profiles, and global gene expression profiles, for
only one functional class of proteins in a single or-
ganism at a time will significantly advance our un-
derstanding of multifunctional proteins. In this work,
we investigated human moonlighting DNA-binding
proteins (mDBPs) in terms of properties that distin-
guish them from other (non-moonlighting) proteins
with the same DNA-binding protein (DBP) function.
Following a careful and comprehensive analysis of
discriminatory features, a machine learning model
was developed to assess the predictability of mDBPs
from other DBPs (oDBPs). We observed that mDBPs
can be discriminated from oDBPs with high accu-
racy of 74% AUC of ROC using these first princi-
ples features. A number of novel predicted mDBPs
were found to have literature support for their be-
ing moonlighting and others are proposed as can-
didates, for which the moonlighting function is cur-
rently unknown. We believe that this work will help
in deciphering and annotating novel moonlighting
DBPs and scale up other functions. The source codes
and data sets used for this work are freely available at
https://zenodo.org/record/7299265#.Y2pO3ctBxPY

INTRODUCTION

The human genome encodes close to 20,000 protein-coding
genes, which is clearly a small number when compared with
the complexity and diversity of biological functions (1). Sev-

eral combinatorial and versatile approaches are employed
by proteins to perform the huge number of molecular func-
tions involved in the human lifecycle. One such mecha-
nism, called moonlighting has drawn the attention of the
community (2–5). Moonlighting proteins are a subset of
multitasking proteins. However, unlike many other multi-
tasking proteins, the moonlighting function is not encoded
in different functional or structural domains. They switch
between their moonlighting functions by partnering with
different sets of substrates, using different oligomerization
states, post-translational modifications or as a response to
changes in the physio-chemical environment or subcellular
localization (4,6–9). Different micro-mechanisms adopted
by moonlighting proteins to perform multiple functions are
illustrated in Figure 1. Moonlighting functions of the same
protein might be spatially or temporally differentiated, i.e.
different moonlighting functions may be associated with
different cellular localization of DBPs or they may perform
their moonlighting functions under different cellular con-
ditions at different time points. Indeed change in cellular
localization is well-known to be a driving force for moon-
lighting (10). To accomplish this functional pattern in a cell,
the levels, locations, and contexts of gene expression are
controlled. For example, crystallins are produced in a vari-
ety of tissues, where they perform their canonical function.
In some vertebrates, they have been shown to express at a
higher level in the eye lens, induced by some transcription
factors where they serve an additional moonlighting func-
tion as a structural protein (8,11–13). Heat shock protein
Hsp90 has been identified as a secreted, cell surface, and nu-
clear protein. Whereas normally molecular chaperons per-
form their canonical cytoplasmic functions assisting pro-
tein folding (14), and inside the nucleus regulating nuclear
functions (15), when secreted, Hsp90 has pro-tumorigenic
properties (16,17). Most such moonlighting functions are
organism specific, emphasizing the usefulness of a predic-
tive model that focuses on a single species.

The discovery of moonlighting proteins has mostly
been serendipitous. Researchers have focused on liter-
ature mining, Gene ontology (GO) mining, and other
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Figure 1. Mechanism of action of moonlighting proteins. This image was created with BioRender (https://biorender.com).

methods to label proteins as moonlighting in the first
place. As a result, several databases of moonlighting pro-
teins have been reported. Prominent among them are
Moonprot3.0, which includes expert-curated protein (18),
MoonDB 2.0 comprising of predicted and manually cu-
rated extreme multifunctional and moonlighting proteins
(19) and MultitaskProtDB-II with curated moonlighting
proteins (20). At least one study (PlantMP) has reported the
manual curation of a species-oriented database of moon-
lighting proteins by experts (21).

Three major strategies have been adopted so far for
identifying novel moonlighting proteins. The first identifies
them using pre-existing annotations such as Gene Ontology
and text mining. Computational methods that used this ap-
proach include MoonGO which identifies overlapping clus-
ters in protein–protein interaction networks using overlap-
ping cluster generator algorithm and combines it with Gene
Ontology to identify candidate moonlighting proteins as
a subclass of extreme multifunctional proteins (22,23) and
DextMP which applied natural language processing to iden-
tify moonlighting proteins based on published literature
(24). The second strategy, which goes beyond the compila-
tion of moonlighting proteins from the literature and from
ontology trees, attempts direct annotation of the moon-
lighting function (25,26). In general, sequence-based func-
tional annotation has often been based on detection and
identification of homologous, conserved motifs/domains.
However, such an approach is difficult to apply to moon-
lighting proteins because the functional signatures for one

of the functions may be too weak and camouflaged by the
other well known function (25,27). Therefore, studies of
sequence-based moonlighting annotations have attempted
to exploit methods for detecting remote homologies. For
example, Gomez et al. examined eleven approaches and de-
termined that PSI-BLAST (28) performed relatively well at
identifying moonlighting functions (29). Khan et al. com-
pared protein function prediction (PFP) and extended simi-
larity group (ESG) to PSI-BLAST and discovered that PFP,
which derives functional information from weakly related
sequences, was the most accurate in predicting the alterna-
tive functions of moonlighting proteins (26). Both studies
suggest that non-canonical functions may be observed in
distantly related sequences even when close homologies are
absent. Gomez et al in 2011 confirmed that protein–protein
interaction databases do indeed reveal moonlighting pro-
teins and suggested that PPI databases might be beneficial
for indicating multifunctionality (22,30). Hernandez et al.
examined a collection of moonlighting proteins to deter-
mine if they are inherently disordered proteins since the lat-
ter easily fold into multiple conformations that could help
perform multiple functions (4). However, their findings sug-
gested that the majority of moonlighting proteins are not
fundamentally disordered proteins. (31). Hernandaz et al.
used PSI-BLAST to identify 42% of the 288 moonlight-
ing proteins in MultitaskProtDB, whereas only 8% were de-
tected by both PSI-BLAST and InterPro (27). Algorithms
such as PSI-BLAST, PFP and ESG identify distant ho-
mologs by matching stretches of amino acid residues from
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distinct domains to regions of a probable moonlighting pro-
tein. These searches generate a significant number of hits,
from which the real positives must be extracted. Hernan-
dez et al. discovered that when PSI-BLAST is paired with
PPI, the best performance is obtained. Additionally, struc-
tural information and mutation correlation analysis may be
used to further narrow the field (25). Finally, the third strat-
egy to identify novel moonlighting functions aims to predict
them using directly computed features, odelled with ma-
chine learning. Among them, MPFit employs many omics-
based characteristics such as protein–protein interaction,
gene expression, phylogenetic profiles, genetic relationships,
network-based graph properties, and disordered protein re-
gions, as well as the option to include or exclude Gene On-
tology (32). IdentPMP tries to identify plant-only moon-
lighting proteins based on amino acid composition and con-
tent predicted using iLearn (33). MEL-MP attempts to pre-
dict proteins based on primary protein sequence informa-
tion, evolutionary information, physical chemical proper-
ties and secondary structural features of the proteins (34).
Shirafkhan et al. developed a method to predict moonlight-
ing proteins based on 37 different feature vectors derived
from amino acid sequences (35).

While these methods have shown a varied degree of pre-
dictive performance, they suffer from the fact that they treat
moonlighting function as a single property without identi-
fying specific roles of these features in moonlighting pro-
teins of a special functional class with common functions.
Such methods may have a tendency to exaggerate predictive
performance due to the very general nature of the control
data sets. We argue that studying moonlighting behavior
for specific functional group of proteins in a specific organ-
ism will provide further clues into functional co-occurrences
and help in predicting them more accurately without over-
estimating predictive accuracy. Thus, we selected one of the
most widely investigated functional class of proteins, the hu-
man DNA-binding proteins (DBPs) and created a database
of human moonlighting versus other DBPs (mDBPs versus
oDBPs). Using these data sets and their sequence, struc-
tural, evolutionary, PPI network and gene expression fea-
tures, we evaluated the extent to which such rigorously com-
piled groups can be discriminated from one another. Our
results indicate that using strict controls of oDBP against
mDBPs, ML models could be trained to test data AUC of
ROC up to 74%. Proteins that were consistently predicted
to be mDBPs are proposed to be candidate DBPs that pos-
sibly perform currently unknown moonlighting functions.

MATERIALS AND METHODS

Data preparation

Data sets are crucial for any predictive modeling, and up-
dated data sets can improve predictability. However, la-
beling proteins as moonlighting through a manual cura-
tion process is a laborious job, partly because annotation
of moonlighting is not reported with the corresponding
searchable keyword. One needs to carry out substantial lit-
erature search to dig out the multifunctionality of proteins
and then look at the sequence, structure and domain infor-
mation to unambiguously annotate them as moonlighting.

Numerous groups have systematically pursued database de-
velopment, which is of a sufficiently good quality to develop
trainable models. We have therefore used publicly avail-
able moonlighting databases for the current annotations
of moonlighting proteins as described in the following sec-
tions. From the predictive models, candidate novel moon-
lighting proteins are proposed if they have multiple func-
tions without a separate functional domain associated to
each one of them. Detailed procedures involved in prepar-
ing training data sets are explained below.

Moonlighting DNA binding proteins (mDBPs)

Figure 2 depicts a flowchart of the steps involved in prepar-
ing the dataset of mDBPs. As illustrated, we have cur-
rently focused on human moonlighting DNA binding pro-
teins. Moonlighting annotations in our work have been
taken from Moonprot 3.0 (18), MultitaskProtDB-II (20)
and MoonDB 2.0 (19). However, DBP functions are not
clearly annotated in these data sets. Therefore, we used a
database of DNA-binding proteins in humans and their
corresponding gene expression profiles from our previously
published work with a database called GIGEASA (36). To
combine the two complementary annotations, a list of com-
piled moonlighting proteins were compared to a list of 2407
DNA binding proteins listed in GIGEASA datasets (36).
This resulted in the annotations of 46 mDBPs. A further set
of filters was applied to exclude sequences whose similar-
ity is higher than 25%, proteins having domains related to a
secondary function documented in the literature, and those
lacking a direct DNA binding annotation. This resulted
in 29 high confidence non-redundant mDBPs as shown in
Supplementary Table ST1.

Other (non-moonlighting) DNA binding proteins (oDBPs)

We focus on proteins with common DBP function and char-
acterize how an additional moonlighting function can be
predicted for them. To compile control data of DBPs with
no moonlighting function, we restarted from the list of 2407
DNA binding proteins from GIGEASA dataset and filtered
out 46 moonlighting proteins and their known homologs.
This resulted in 647 proteins, which we re-clustered at 25%
sequence identity, removing three redundant proteins. An
additional protein was removed due to failure in extracting
all features analyzed in this work. This final list of 643 non-
moonlighting (other) DNA binding proteins (oDBPs) were
used as a control data of DBPs against mDBPs (Supple-
mentary Table ST1).

Feature sets covered

We identified different feature sets of moonlighting func-
tions that were studied and reviewed earlier by several
groups. In this work, we used five types of feature sets
related to the protein sequence, structure, or gene-level
expression profiles. These include (i) single protein se-
quence and predicted binding site features, (ii) sequence-
based evolutionary features, (iii) network features based on
protein–protein interactions, (iv) sequence-predicted sec-
ondary structural features and (v) global gene expression
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Figure 2. Flowchart showing the description of the data preparation to select moonlighting and non-moonlighting DNA binding proteins.

profiles. Computation of each of these features was carried
out as follows.

Single protein sequence and predicted binding site features

Single sequence features are represented by the amino acid
composition of each protein, and their sequence-predicted
binding sites features, taken from our previously published
work (37). These so-called GIGEASA dataset features con-
sist of the binding site prediction scores for carbohydrates,
DNA, RNA, adenosine triphosphate (ATP), and protein
binding sites, as well as the amino acid composition and
length of the proteins (36). These features can be readily
used for protein-level predictions in a function prediction
program. Since the binding sites are predicted at the whole
sequence level, their protein-level summaries are generated
by protein-wise averages, quantiles and other representative
scores as used in our previous work (36).

Gene expression features

In our previous work, we have integrated gene expression
profiles from the entire Affymetrix platform GPL570, rep-
resenting >70 000 experiments. A single gene has been rep-
resented by the frequency of its occurrence in each of the
20 pre-defined bins of expression values. Frequencies of ex-
periments (samples) in each bin is used as a 20-dimensional
gene expression feature of each protein mapped to a spe-
cific gene in the database. Co-expression of a single gene
with others is also vectorized in the same way. The gene ex-
pression and co-expression profiles that were binned into 20
equal-probability bins in the GIGEASA dataset were fur-
ther coarse-grained to 5 bins to increase bin-wise occupancy

of proteins. Coarse-graining was performed by pooling to-
gether every 4 successive bins starting from the first to make
a new bin.

Evolutionary features

Position specific scoring matrix (PSSM) (28) profiles for the
672 proteins were generated using PSI-BLAST with default
parameters for three iterations against the NR database
downloaded from NCBI. The log-odds score from the re-
sulting profiles were taken and two types of PSSM features
were generated for each protein; that is, the average of the
log odds value for all the amino acids were taken and the
average of the log odds value for each of the 20 amino acids
separately (leading to 20 × 20 = 400 features). The concate-
nated feature values of 400 + 20 features were used as inputs
for PSSM-based predictions.

Predicted structural features

We predicted the secondary structure features (alpha he-
lix, strand, coil), solvent accessibility (buried, exposed and
moderate) and disorder (disordered or ordered) for each
protein using a local copy of Raptor X (38). Raptor X gives
both 3-state and 8-state secondary structure predictions of
which we used 3-state secondary structure helix, beta-sheet,
and loop to enable enough feature value diversity in each.
The solvent accessibility of residues was predicted using 2
cutoffs for the three states. Those below 10% accessibility
are predicted to be buried while those above 42% are con-
sidered as exposed and those between 10% and 42% are pre-
dicted to be moderate. Raptor X also gives an order or dis-
order prediction score at the residue level based on the prob-
ability of the residue to be in an ordered segment or not.
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PPI-network features

A protein–protein interaction (PPI) network represents all
known protein interactions. When utilized with the func-
tional annotation of the component proteins, they can aid
in the discovery of moonlighting proteins, like MoonGO
and OCG do (22,23). In our work, protein–protein inter-
action network features like the number of pathways that
the protein is involved in and a binary representation of
whether the protein is a hub or bottleneck extracted from
Targetmine (39) are primary network features investigated
for their ability to predict moonlighting.

Model selection

Based on each feature set and their combination, a ma-
chine learning classifier was trained using an arbitrar-
ily selected set of potential computational models. Each
model attempts to predict class labels (mDBP or oDBP) by
employing selected feature sets using leave-one-out cross-
validation. Five different Machine learning algorithms, i.e.
Random Forest (RF) (40), Balanced Random Forest (BRF)
(41), Catboost (42), XGBoost (43,44) , and LightGBM (45)
were compared. Catboost was the best performing model
and was used for developing the final prediction model. Cat-
boost is a gradient boosting decision tree-based algorithm
which is good for dealing with categorical data because of
the way it handles encoding and being less prone to over-
fitting, this model has become a preferred ML method for
large data sets. It uses ordered boosting which makes sure
that it does not evaluate a candidate tree with the examples
it has used to build the tree, and eventually uses all the ex-
amples (42). Additionally, the performance of each feature
set and combination of extracted features was examined.
To deal with imbalanced data, classifier model overweights
the minority class during training. Thus, Catboost classifier
with auto class weights = ‘Balanced’ was used. This auto-
matically calculates class weights either on the total weight
or the total number of objects in each class. The values are
used as multipliers for the object weights.

RESULTS AND DISCUSSIONS

To assess if we can predict novel mDBPs directly from their
computable features, we first examined the statistical distri-
bution of representative feature sets and assessed how these
features individually discriminate mDBPs from oDBPs. A
binary classifier was then trained so that the cumulative
impact of discriminatory features can be captured, predic-
tion performance be evaluated and some candidate novel
mDBPs could be proposed. Results of these analyses are
presented below.

Discriminatory features of moonlighting function in DBPs

We used five different groups of features for their potential
to distinguish between mDBPs and oDBPs. Most consid-
ered feature sets have been compared in Figure 3A–F with
additional details in Supplementary Table ST2 (explained
below). Complete set of p-values for all the considered fea-
tures are provided in Supplementary Table ST3. Investiga-
tion of most discriminatory members of each feature set are
discussed in the following.

Single sequence and predicted binding site differences be-
tween mDBPs and oDBPs:

Sequence features, including binding site predictions for
DNA, RNA, ATP and carbohydrates were used as in our
earlier works (36). CountX represents the frequency of oc-
currence of residue X in the protein sequence. For example,
countS and countV represent the counts of the amino acids
serine and valine. The top25ppi, top25dna, top25rna and
top25carb represents the top 25 predicted binding scores
for protein–protein interactions, DNA, RNA, and carbohy-
drate binding computed for each residue. Similarly, for top5
and top10, q3ppi shows the quartile 3 of the predictions of
protein–protein interaction sites. In Figure 3A, the 20 sta-
tistically most significant attributes amongst these features
have been displayed. In addition, Figure 3B shows that the
frequency of the number of pathways that a protein is in-
volved in, and the nature of the topological positioning of
the protein in the network like bottlenecks or hub proteins
are linked to mDBPs versus oDBPs. From these Figure 3A
and B, it become evident that the frequencies of Serine, Va-
line and Histidine are most significantly different between
the two classes of proteins and these residues may play a role
in allowing multiple functions. Among the binding site pre-
diction scores, protein–protein interaction sites are found to
be the most significant discriminatory features. The ability
of sequence-predicted PPIs to discriminate between mDBPs
and oDBPs is a novel result from the current work that sup-
ports these previous observations and may be useful in iden-
tifying moonlighting proteins other than DBPs.

Moonlighting and evolutionary profiles

Evolutionary profiles of proteins represented by their
position-specific substitution matrices (PSSMs) have been
widely used to annotate proteins, including DBPs and their
binding sites (46–48). It is not obvious at the outset if they
will also have different patterns in mDBPs versus oDBPs.
Since the PSSMs of proteins are of different sizes, a sum-
mary of PSSM is typically used as a feature for predictive
models. Consistent with that practice we computed 20 over-
all and then 20 × 20 amino-acid wise column averages of
PSSMs as protein features as described in the Methods (46)
and performed a t-test of significance between mDBP and
oDBPs (see Figure 3C). We do observe that many evolu-
tionary features from the 20 × 20 representation of amino
acid pairs are significantly different between mDBPs and
oDBPs. Complete results are shown in Supplementary Ta-
ble ST2. Specifically, the average log odd score of Ser in Pro
columns and average Ala log odd scores in Val columns are
found to have the highest significance. Among the overall
column averages, Tyr was found to be the most significant
residue column among all 20 amino acids. Other pairs such
as Tyr in the Trp column, Asp in the Glu column and Cys in
the Val column are the top residues in evolutionary profiles
which distinguish between mDBPs and oDBPs.

Predicted structural features

Sequence-predicted structural features have been shown to
improve protein function prediction (49–53). We predicted
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Figure 3. Comparison of sequence, network, predicted structural, evolutionary and global gene expression features between moonlighting and other
DNA-binding proteins (mDBP vs oDBP). (A) Sequence features, including binding site predictions for DNA, RNA, ATP and carbohydrates as utilized
in our earlier works, amino acid compositions e.g. frequency of Ser, Val shown as CountS and CountV (see Materials and Methods). (B) Protein-protein
interaction features include the number of pathways in which the proteins participate and the attributes of the proteins within their interaction networks,
such as whether they operate as bottlenecks or hub proteins. (C) Evolutionary characteristics represented by the average log odds value for all amino acids
(like all Y refers to the average logodd value of Tyrosine) and for individual amino acids (represented as XY where X shows all the rows where the amino
acid X is found and second alphabet represents the column Y for which the average value is calculated. Likewise, SP represents all rows where Serine occurs
and Proline is present in the column). (D) Predicted secondary structural features such as strand, coil or helix, solvent accessibility as buried, moderate, or
exposed, and conformational aspects of order and disorder. (E) Gene expression and co-expression quantified by their frequency of occurrence in the five
bins, reduced from 20 bins in our previous works as defined in Materials and Methods. (F) Gene co-expression quantified by their frequency of occurrence
in the five bins, reduced from 20 bins in our previous works as defined in Methods.

some structural properties of mDBPs and oDBPs and com-
pared their average values in the two groups. Figure 3D
presents the results of this analysis. We observe that the av-
erage number of predicted strands is higher in mDBPs than
oDBPs. DNA-binding proteins primarily interact through
their recognition helices and hence the presence of a higher
number of strands may itself be an indication of moonlight-
ing function. One might wonder that keeping the helical in-
terfaces intact for DNA-binding activity, additional strands
are only used for moonlighting function. To examine this,
we did compare the sizes of the mDBPS and oDBPs to-
gether with their strand counts (supplementary table ST1).
We observed that even though the strands count on the
whole is higher in mDBPs, it does not appear to be driven
by protein sizes, as there was no sigjificant difference be-
tween the lengths of mDBPs and oDBPs. One might specu-
late that actual DNA interface is also composed of strands
in moonlighting proteins. However, in the absence of com-

plete protein-DNA complex structures with moonlighting
substrates, drawing a general rule is difficult at this stage.

Finally, the number of residues in the intermediate sol-
vent accessibility range is higher in moonlighting proteins.
This observation is interesting as a partially exposed sur-
face area in these residues may allow them to switch from
exposed to buried states quickly, enabling moonlighting. It
would also be of interest in the future to explore if the pres-
ence of partially exposed residues is a general property of all
moonlighting proteins or specific to moonlighting DBPs.

Gene expression features of mDBPs versus oDBPs

In our previous works, we showed that global gene expres-
sion profiles collected from >70 000 experiments can be
used to improve the predictability of DNA-binding pro-
teins, particularly those which have weak sequence level
binding scores in prediction models (36). These gene expres-
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sion profiles are actually the relative number of experiments
for which a corresponding gene was found to have an ex-
pression value represented by an expression value range or
bin. Similarly, co-expression profile is the number of times
a gene had its co-expression (Pearson’s correlation) value
within the range represented by the corresponding range
or bin, counted for all gene pairs involving that gene. In
our previous work, we used 20 bins to represent expression
values and separately, the co-expression of a gene paired
with all other genes. In this work, the 20-bins were further
coarse-grained into 5 bins to enable more data in each bin
for the small sample size here. After merging the bins as de-
scribed in Methods, we could determine the relative num-
ber of times a mDBP shows expression values in the range
represented by each bin and compare it with the frequencies
observed in oDBPs. Figure 3E-F shows the results from this
analysis. The bins from the normalized expression values
are represented by bin1, bin2 upto bin5 and those based on
co-expression are binc1, binc2, onwards. We observe that
absolute expression values distribution of gene expression
remains predictive of mDBPs to some extent as the number
of times the two frequencies differ in mDBPs from oDBPs is
statistically significant. Thus, the results indicate that moon-
lighting proteins express at relatively higher level than their
non-moonlighting counterparts, thereby increasing the fre-
quency in bin5 at the cost other bins. Although, we do see
some differences in the co-expression profiles as well, none
of the individual frequencies in each bin was observed to be
statistically significant. It is however possible that the differ-
ent weak features are collectively predictive of mDBPs, an
issue that we will look into in the next section on classifier
performances.

Classification model for mDBP versus oDBPs

In the above sections, we investigated individual features of
mDBPs which might distinguish them from oDBPs. How-
ever, many of these individual features may have a synergetic
effect and the same can be captured by developing predic-
tive models using each feature set as input and then com-
bining and assessing the predictive performance by com-
parisons. We would also like to assess if the available meth-
ods of predictive moonlighting proteins are outperformed
by the proposed exclusive mDBP de novo prediction. Sev-
eral methods for predicting moonlighting for proteins are
available with varied claims of performance. For example,
DextMP, IdentPMP, MEL-MP and an unnamed method
by Zahiri et al. reported AUC values of 80% and 90%. MP-
FIT, on the other hand, reported 98% accuracy. However,
all these methods are general in nature and their applicabil-
ity to a specific group of proteins such as mDBPs was un-
clear. Only MPFit’s source codes were available for the pre-
diction of moonlighting proteins using the non-redundant
DNA binding dataset that was compiled. MEL-MP could
also be used to fetch a list of predicted mDBPs. Thus, we
tested the performances of these two groups of methods for
predicting mDBPs from oDBPs. We used three variants of
MPFIT and MEL-MP to evaluate if general moonlighting
prediction methods can also pick the moonlighting DBPs
(See Table 1). We observed that these available methods
could only reach an AUC of ROC close to 62% in predicting

mDBPs from oDBPs, making the development of a novel
method even more important.

The comparison of prediction performance with available
published methods is provided only to explain that a fo-
cused study of single biological function can help in improv-
ing moonlighting in that class of proteins. We do not suggest
that first principles method of predicting moonlighting pro-
teins is better than published works when it comes to overall
prediction of moonlighting, which we have deliberately not
attempted in view of the scope of this work.

To use a first principles method to predict mDBPs based
on the feature sets investigated above, we trained the mDBP
versus oDBP data sets analyzed above using the catboost
approach. (catboost was found the most suitable among the
models tested on random samples; data not shown). These
results could be further improved by running catboost mul-
tiple (10) times and averaging the predictions from the en-
semble of these models. Results from all these experiments
under leave-one-out cross-validation training are presented
in a section of Table 1. Additional details are shown in ROC
and PR curves in supplementary figures SF1 and SF2.

Predictability of mDBPs from individual and cumulative fea-
ture sets

The second section of Table 1 shows that protein–protein in-
teraction network-based features were able to better differ-
entiate between moonlighting and non-moonlighting DNA
binding proteins with a performance of 72% AUC of ROC
with the best precision and recall. The combination of all
features reduced the performance to AUC of ROC 69%,
presumably due to over-fitting and an increase in dimen-
sionality. Since the feature sets were not additive in their pre-
diction performance, we performed ensemble methods to
predict moonlighting proteins from their prediction scores
as well as labels. The final performance was 74%.

The performance of our current model was then com-
pared with other prediction models developed for the pre-
diction of moonlighting proteins.

Candidate novel moonlight DBPs

Combining all feature sets into an ensemble model, we ob-
served an AUC of ROC at 74% in our data sets. How-
ever, false positives with high prediction scores could still be
candidate novel mDBPS whose moonlighting has yet not
been established. Thus, we provide the database of all fi-
nal predicted scores for all the DBPs in our database (Sup-
plementary Table ST4). From this table, we compiled a list
of top scoring false positive oDBPs and searched the lit-
erature for their support as candidate novel mDBPs (see
Table 2). We found that 10 out of 53 top false positives
from our predictions had literature support. For example,
a false positive mDBP in Table 2, Cyclin-dependent ki-
nase 9 (Cdk9) is a subunit of the positive transcription
elongation factor b (P-TEFb), which promotes the elonga-
tion of pre-mRNA. Although a kinase per say, it has been
suggested that CDK9 responds to replication stress by lo-
calizing to chromatin to reduce the breakdown of stalled
replication forks and promote recovery from replication
arrest (54). It likely binds to promoter regions of certain
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Table 1. Prediction performance of different predictive models in the public domain and those proposed with different feature sets. Overall 672 proteins
are included in these evaluation and all prediction models are trained using leave one out method. Ten iterations of training are carried out and for our
proposed models and performance scores are averaged to assess their predictions with standard deviation between models shown alongside. Final model
with 74% AUC is based on prediction scores derived by averaging 10 models trained on all feature sets taken together. It may be noted that performance
scores, other than AUC are threshold-dependent as the prediction output is continuous (not binary) and in our work, we have selected the thresholds which
correspond to the best F-score

Feature set AUC MCC F-score Accuracy Sensitivity Specificity

Public sourced
method

MPFIT(Phylo + GE +
GI + DOR + NET)

0.56 0.06 0.11 0.77 0.34 0.79

MPFIT(Phylo + PPI +
GE)

0.51 0.01 0.08 0.13 0.93 0.09

MPFIT(from provided
predicted proteins)

0.60 0.17 0.21 0.91 0.28 0.94

MEL-MP(provided
predicted proteins)

0.62 0.11 0.14 0.74 0.48 0.75

De novo mDBP vs
oDBP prediction
model performances

Sequence 0.57 ± 0.03 -0.04 e-2 ± 0.03 0.04 ± 0.03 0.93 ± 0.00 0.03 ± 0.03 0.97 ± 0.00

Secondary structure 0.49 ± 0.01 0.05 ± 0.02 0.10 ± 0.01 0.73 ± 0.00 0.35 ± 0.03 0.75 ± 0.01
Gene expression 0.60 ± 0.01 0.08 ± 0.02 0.12 ± 0.01 0.75 ± 0.01 0.40 ± 0.04 0.77 ± 0.01
Evolutionary 0.65 ± 0.02 0.11 ± 0.04 0.15 ± 0.04 0.91 ± 0.00 0.20 ± 0.06 0.94 ± 0.00
Network 0.72 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.80 ± 0.00 0.53 ± 0.02 0.82 ± 0.00
All 0.69 ± 0.02 0.11 ± 0.04 0.15 ± 0.04 0.92 ± 0.00 0.17 ± 0.05 0.95 ± 0.00
Ensemble averaged 0.74 ± 0.01 0.16 ± 0.04 0.19 ± 0.03 0.93 ± 0.00 0.19 ± 0.03 0.97 ± 0.00

transcription factors in cardiac muscles (https://zfin.org/
ZDB-GENE-030131-321). Through an unknown mecha-
nism, Cdk9 complexes with cyclin K, Atrip, Atr, and claspin
proteins, thereby regulating single-stranded DNA interac-
tion with replication protein A, ensuring the stability of the
replication fork (55). Loss of Cdk 9-cyclin K complex ac-
tivity increases DNA damage signaling in replicating cells
with a diminished capacity to recover from replication ar-
rest (55,56).

Another example in the candidate list corresponds to
Inosine-5′-monophosphate dehydrogenase 2 (IMPDH2).
This protein has been known for enzymatic activity before
being established as a transcription factor. Somehow, the
protein has not been included in the current updates of
moonlighting databases

Another protein, FOS, has been already reported to be
involved in lipid synthesis in neurons and based on that can
be annotated as moonlighting (57). Somehow, this annota-
tion has escaped from the current versions of moonlighting
databases and our method was able to recover its annota-
tion as mDBP. Similarly, we found moonlighting support
for another DBP called NRF-1. NRF-1 is a transcription
factor which has been reported to perform a role in neurite
growth as well as lipid homeostasis (58,59).

Yet another candidate mDBP in Table 2, mitochondrial
superoxide dismutase 2 (SOD2) protein, is an enzyme that
primarily accelerates the dismutation of O2. However, fur-
ther increases in SOD2 expression was reported to worsen
oxidative stress, suggesting that SOD2 may play a proox-
idant role (60). Also, SOD2, which normally binds man-
ganese, can also contain iron, and generate a peroxidase-
active isoform, further supporting its moonlighting func-
tion.

Overall, we found support for 10 out of 53 proteins in
Table 2 for being moonlighting. These include PC, ABI2,
RPS27, PARK7, and EEF1D in addition to the five specific
cases (CDK9, IMPDH2, FOS, NRF-1 and SOD2) above.
Thus, we believe there may be more mDBPs in the list of
false positives in Table 2, whose moonlighting behavior may
be established in the future.

Cellular localization and moonlighting

Many moonlighting proteins perform their alternative func-
tions through cellular localization. For example, a DBP
which is a trans-membrane protein must translocate to the
nucleus to act as a transcription factor. However, even if cel-
lular localization is the primary driver of moonlighting, the
protein needs to be transported to different locations, which
is why many proteins contain a localization signal sequence
and indeed importance of short sequence motifs has been
documented (23,61–62). Yet, several proteins localize to dif-
ferent cellular compartments even when they do not have a
detectable motif towards and hence the absence of a motif
does not imply that a protein does not have a sequence or
structure level signal. There are multiple publications which
rely on sequence features for the prediction of cellular lo-
calization of proteins. For example, WoLF PSORT, YLoc,
TargetP and TMHMM (63–66) have predicted the cellular
localization of proteins with as high as 80% accuracy from
sequence information. Thus, cellular localization informa-
tion appears implicitly contained in the sequence and struc-
tural properties of the proteins and our method essentially
tries to capture that indirect relationship.

In order to understand the relationship between cellu-
lar localization and moonlighting in detail, we extensively
examined the predictability of mDBPs from available cel-
lular localization annotations. We used the ‘Compartment
database’ of cellular localization (67) and tried to develop a
prediction model for moonlighting proteins only from com-
partment prediction. We did observe that cellular compart-
ment annotation alone was able to predict moonlighting
DBP function with 86% accuracy, much better than the first
principles method proposed in this work. However, it also
indicates that most of the current annotations of moonlight-
ing proteins are based on their known cellular localization
or their well-studied functions. This approach is good to
mine for moonlighting proteins that are already noted by
different names or under different contexts. However, they
cannot predict novel moonlighting proteins in the way a
first principles approach like the one proposed here could

https://zfin.org/ZDB-GENE-030131-321
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Table 2. List of candidate novel mDBPs based on their top false positive scores

Uniprot
ID

Gene
HGNC
code Name of the protein

Uniprot
ID

Gene
HGNC
code Name of the protein

Q09028 RBB4 Histone-binding protein RBBP4 P35249 RFC4 Replication factor C subunit 4
P27694 RPA1 Replication protein A 70 kDa

DNA-binding subunit
Q16531 DDB1 DNA damage-binding protein 1

P50750 CDK9 Cyclin-dependent kinase 9 P41221 WNT5A Protein Wnt-5a
P12268 IMPDH2 Inosine-5’-monophosphate

dehydrogenase 2
Q9NYA1 SPHK1 Sphingosine kinase 1

O15160 POLR1C DNA-directed RNA polymerases I and
III subunit RPAC1

P08047 SP1 Transcription factor Sp1

P12004 PCNA Proliferating cell nuclear antigen O14744 PRMT5 Protein arginine N-methyltransferase 5
P42677 RPS27 40S ribosomal protein S27 P15927 RPA2 Replication protein A 32 kDa subunit
P07910 HNRNPC Heterogeneous nuclear

ribonucleoproteins C1/C2
P11387 TOP1 DNA topoisomerase 1

Q86 × 55 CARM1 Histone-arginine methyltransferase
CARM1

P18848 ATF4 Cyclic AMP-dependent transcription
factor ATF-4

P11498 PC Pyruvate carboxylase, mitochondrial Q6ZYL4 GTF2H5 General transcription factor IIH
subunit 5

O96019 ACTL6A Actin-like protein 6A P56282 POLE2 DNA polymerase epsilon subunit 2
Q99497 PARK7 Parkinson disease protein 7 Q9NYB9 ABI2 Abl interactor 2
Q02878 RPL6 60S ribosomal protein L6 Q14814 MEF2D Myocyte-specific enhancer factor 2D
Q9Y230 RUVBL2 RuvB-like 2 P49005 POLD2 DNA polymerase delta subunit 2
O75534 CSDE1 Cold shock domain-containing protein

E1
P01100 FOS Protein c-Fos

P25490 YY1 Transcriptional repressor protein YY1 O60907 TBL1X F-box-like/WD repeat-containing
protein TBL1X

Q16656 NRF1 Nuclear respiratory factor 1 P30876 POLR2B DNA-directed RNA polymerase II
subunit RPB2

Q9UHX1 PUF60 Poly(U)-binding-splicing factor Q96T60 PNKP Bifunctional polynucleotide
phosphatase/kinase

P35232 PHB1 Prohibitin 1 Q00403 GTF2B Transcription initiation factor IIB
P20226 TBP TATA-box-binding protein P19388 POLR2E DNA-directed RNA polymerases I, II,

and III subunit RPABC1
Q13620 CUL4B Cullin-4B P30044 PRDX5 Peroxiredoxin-5, mitochondrial
P29692 EEF1D Elongation factor 1-delta O60869 EDF1 Endothelial differentiation-related

factor 1
P55895 RAG2 V(D)J recombination-activating protein 2 P62841 RPS15 40S ribosomal protein S15
P35244 RPA3 Replication protein A 14 kDa subunit P19838 NFKB1 Nuclear factor NF-kappa-B p105

subunit
Q9UQ80 PA2G4 Proliferation-associated protein 2G4 P04179 SOD2 Superoxide dismutase
P04083 ANXA1 Annexin A1 P05067 APP Amyloid-beta precursor protein
Q12824 SMARCB1 SWI/SNF-related matrix-associated

actin-dependent regulator of chromatin
subfamily B member 1

do. Nor do they provide insights into the mechanistic ba-
sis of moonlighting. Further, cellular localization databases
and prediction methods are available only for a few species
and methods relying heavily on these annotations are not di-
rectly applicable for inferring proteins that perform a moon-
lighting function. Thus, a case for predicting novel mDBPs
from the proposed features is made out for this work.

CONCLUSIONS

In this work, we have investigated the moonlighting be-
havior of a special class of proteins, that is, DNA-binding
proteins as compared to their non-moonlighting counter-
parts. We looked at their predictability by general methods
of moonlighting prediction in the public domain and devel-
oped a thorough strategy to predict them from first princi-
ples using sequence, predicted structure, evolutionary pro-
files, and global gene expression profiles. Our results indi-
cate that mDBPs can indeed be predicted from proposed
feature sets with reasonable confidence. Some of the high-

scoring false predictions of mDBPs were found to already
have literature evidence of their being mDBPs and others
are proposed to be candidate novel mDBPs and need fur-
ther experimental assessment.
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