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Abstract: The human organic cation transporter 2 (hOCT2) mediates renal and neuronal cellular
cisplatin and oxaliplatin uptake, and therefore plays a significant role in the development of side
effects associated with these chemotherapeutic drugs. Autophagy is induced by cisplatin and
oxaliplatin treatment and is believed to promote cell survival under stressful conditions. We examined
in vitro the role of hOCT2 on autophagy induced by cisplatin and oxaliplatin. We also explored the
effect of autophagy on toxicities of these platinum derivatives. Our results indicate that autophagy,
measured as LC3 II accumulation and reduction in p62 expression level, is induced in response
to cisplatin and oxaliplatin in HEK293-hOCT2 but not in wild-type HEK293 cells. Furthermore,
inhibition of autophagy is associated with higher toxicity of platinum derivatives, and starvation was
found to offer protection against cisplatin-associated toxicity. In conclusion, activation of autophagy
could be a potential strategy to protect against unwanted toxicities induced by treatment with
platinum derivatives.

Keywords: transport; platinum derivatives; toxicity; autophagy

1. Introduction

Cisplatin ((SP-4-2)-diammindichloridoplatin(II), CDDP) and oxaliplatin ([(1R,2R)-
cyclohexane-1,2-diamine](ethanedioato-O,O’)platinum(II), OX) are platinum (Pt) deriva-
tives which play an important role in the treatment of epithelial malignancies such as
lung, head, neck, ovarian, bladder and testicular cancer [1–4]. These chemotherapeutic
agents are known to target DNA, forming intrastrand and interstrand cross links, which
subsequently lead to DNA damage and cellular apoptosis [3]. However, only a minor part
of intracellular Pt (5 to 10%) is associated with DNA, being mostly bound to RNA, proteins,
and small thiol compounds [5–7]. One major problem associated with chemotherapeutic
protocols based on Pt derivatives is the emergence of serious unwanted side effects such as
nephrotoxicity, ototoxicity, and neurotoxicity [2]. Growing evidence [8–10] suggests that
these side effects are attributed to the interaction between Pt agents and organic cation
transporters (OCTs). These transporters belong to the solute carrier (SLC) 22 family and
act by mediating pH- and Na+-independent organic cation transport across the cell mem-
brane [2], which is driven by the electrochemical substrate gradient. The human organic
cation transporter 2 (SLC22A2, hOCT2) is highly expressed in the basolateral membrane of
renal proximal convoluted tubules, where it mediates cellular uptake of CDDP, resulting in
nephrotoxicity [2]. hOCT2 is also believed to mediate OX accumulation in dorsal root gan-
glia, which leads to neurotoxicity [11]. Most cancer cells do not seem to express OCT2 [12],
and competition with OCT2 seems not to interfere with CDDP’s anticancer efficacy [13].
Thus, pharmacological targeting of OCT2 could be a promising strategy in preventing side
effects associated with cancer therapy with Pt derivatives [11].

Chemotherapeutic agents such as CDDP [14] and OX [15] are known to cause au-
tophagy. Autophagy promotes cell survival as a response to stress factors such as starva-
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tion [16], hypoxia and hyperthermia [17]. The process of autophagy takes place also during
normal cellular life, where it is responsible for the breakdown and removal of long-lived
cellular proteins, dysfunctional components such as misfolded proteins, and damaged
organelles [18,19]. Under stress conditions, autophagy is crucial for cell survival [14,20].
This is attributed to the fact that, during stress, autophagy generates amino acids, fatty
acids and sugars that can be further utilized for energy production. Autophagy is initiated
by formation of double-membrane vesicles known as autophagosomes [14,21]. Autophago-
somes surround the internal content to be degraded and then fuse with lysosomes to form
autolysosomes. In these vesicles, the autophagosomal content is degraded by lysosomal
hydrolases [14,21–23]. The formation of autophagosomes is a complex process that involves
several autophagy-related proteins such as Beclin 1, Vps 34, Atg 5, Atg 12 and LC3 II [14],
the latter being widely used as a reliable marker for autophagosome formation [24]. It is
well-known that inhibition of autophagy under stress conditions leads to apoptosis [14,25].
Interestingly, extremely harsh conditions lead to massive autophagy activation, which
results in cell death, a process known as programmed cell death type II [14,26].

hOCT2 mediates cellular uptake of several Pt derivatives [2,11]; however, its role
in the development of autophagy induced by these chemotherapeutic drugs has not yet
been investigated. In this work, we investigated the relationship between hOCT2 and
autophagy flux induced by CDDP and OX. Furthermore, since autophagy plays a vital role
in cell survival under stress conditions, we examined its effect on CDDP/OX associated
cytotoxicity.

2. Results
2.1. Starvation Promotes LC3 II Accumulation in HEK293 Cells

The microtubule-associated protein 1A/1B-light chain 3 (LC3) is involved in several
steps of the autophagy process, including autophagosome formation and autophagosome
fusion with lysosomes [27]. During autophagy, LC3 I, a cytosolic form of LC3, is conjugated
to phosphatidylethanolamine forming LC3 II, a modification which is widely used as
an autophagy marker [24]. Indeed, autophagy activity is monitored measuring the ratio
between LC3 II and LC3 I expression levels. Since starvation is a strong triggering factor
of autophagy [19,28], we investigated whether LC3 I is modified to LC3 II in response to
starvation. For this, HEK293-WT or -hOCT2 cells were incubated with EBSS (starvation
condition) for 2, 4, or 6 h and the LC3 I and LC3 II protein expression were measured
using Western blot analysis. Our results showed that 6 h starvation triggers LC3 I to LC3
II conversion in HEK293-WT and -hOCT2 cells (Figure 1A,B). Moreover, it seems that
hOCT2-expressing HEK293 cells have a higher basal autophagic activity than HEK293-WT
cells (Figure 1C,D).

2.2. Induction of Autophagy in Response to CDDP and OX Treatment

We next examined whether autophagy is activated in response to CDDP or OX treat-
ment in HEK293-WT and -hOCT2 cells. In this setting, we used p62 as an autophagy
marker. This protein is believed to be degraded during autophagy, and therefore reduction
in p62 level reflects autophagy activation [29]. Our data showed that both CDDP and
OX treatment caused a decrease in p62 expression, mainly in hOCT2-expressing HEK293
cells (Figure 2). Confirming the above-described results (Figure 1), starvation induced
autophagic activity both in HEK293-WT and -hOCT2 cells. Still, only in hOCT2-expressing
cells, CDDP and OX treatment further increased autophagy to statistically significant values
(Figure 2C,D).
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Figure 1. This figure shows the effects of starvation and of hOCT2 overexpression on cellular 
autophagy activity measured as LC3 II/I expression ratio in HEK293-WT (WT) and HEK293-hOCT2 
(hOCT2) cells. Panel (A) shows a representative Western blot analysis of LC3 expression in cells 
incubated for 4 and 6 h in DMEM (fed +) or EBSS (fed −) medium, as fed or starvation condition, 
respectively. GAPDH was used as a loading control. Panel (B) shows the quantification of Western 
blot analyses of lysates from WT (open bars) and hOCT2 (closed bars) cells. Data (mean ± SEM) are 
expressed as difference between LC3 II/LC3 I ratios determined at each time point for starvation 
and fed conditions in WT and hOCT2 cells, respectively. The numbers above the columns show the 
number of independent Western blot analysis performed. * shows that there is a statistically 
significant autophagy activation (p < 0.05, comparison between starvation and fed conditions by 
paired t-test) after 6 h incubation both in WT and hOCT2 cells. Panel (C) shows the Western blot 
analysis of LC3 II/LC3 I expression ratio in WT (lanes 1, 3, 4, 6) and hOCT2 (lanes 2, 5, 7) cells with 
GAPDH as a loading control and hOCT2 signal as control for transporter expression. Panel (D) 
shows the quantification of the LC3 II/LC3 I expression ratio determined by Western blot analysis 
of lysates from WT (open column, N = 4) and hOCT2 (closed column, N = 3) cells. Data are given as 
mean ± SEM and * shows a statistically significant difference between WT and hOCT2 cells (p < 0.05, 
unpaired t-test). 

Figure 1. This figure shows the effects of starvation and of hOCT2 overexpression on cellular
autophagy activity measured as LC3 II/I expression ratio in HEK293-WT (WT) and HEK293-hOCT2
(hOCT2) cells. Panel (A) shows a representative Western blot analysis of LC3 expression in cells
incubated for 4 and 6 h in DMEM (fed +) or EBSS (fed −) medium, as fed or starvation condition,
respectively. GAPDH was used as a loading control. Panel (B) shows the quantification of Western
blot analyses of lysates from WT (open bars) and hOCT2 (closed bars) cells. Data (mean ± SEM) are
expressed as difference between LC3 II/LC3 I ratios determined at each time point for starvation
and fed conditions in WT and hOCT2 cells, respectively. The numbers above the columns show
the number of independent Western blot analysis performed. * shows that there is a statistically
significant autophagy activation (p < 0.05, comparison between starvation and fed conditions by
paired t-test) after 6 h incubation both in WT and hOCT2 cells. Panel (C) shows the Western blot
analysis of LC3 II/LC3 I expression ratio in WT (lanes 1, 3, 4, 6) and hOCT2 (lanes 2, 5, 7) cells with
GAPDH as a loading control and hOCT2 signal as control for transporter expression. Panel (D)
shows the quantification of the LC3 II/LC3 I expression ratio determined by Western blot analysis of
lysates from WT (open column, N = 4) and hOCT2 (closed column, N = 3) cells. Data are given as
mean ± SEM and * shows a statistically significant difference between WT and hOCT2 cells (p < 0.05,
unpaired t-test).
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Figure 2. This figure shows activation of autophagy under CDDP or OX treatment of HEK293-WT 
(WT) and -hOCT2 (hOCT2) cells measured as p62 expression decrease. Cells were treated with 
CDDP (100 µM, panels (A,C)) or OX (100 µM, panels (B,D)) for 6 h under fed (medium +) or starva-
tion (medium −) conditions, as described in the Material and Methods section. The p62 expression 
levels were measured using Western blot analysis and GAPDH (A,C) or α–actinin (B,D) were used 

Figure 2. This figure shows activation of autophagy under CDDP or OX treatment of HEK293-WT
(WT) and -hOCT2 (hOCT2) cells measured as p62 expression decrease. Cells were treated with CDDP
(100 µM, panels (A,C)) or OX (100 µM, panels (B,D)) for 6 h under fed (medium +) or starvation
(medium −) conditions, as described in the Material and Methods section. The p62 expression levels
were measured using Western blot analysis and GAPDH (A,C) or α–actinin (B,D) were used as
loading controls. Panels (A,B) show representative Western blot analysis and panels (C,D) show
the quantification as mean ± SEM of 4 independent experiments (open bars = WT cells; closed bars
= hOCT2 cells). * represent a statistically significant difference between the indicated group and
all the others (p < 0.05, one way ANOVA with Tukey’s multiple comparison test). To facilitate the
comparison of the effects, the expression ratio values for incubation with fed medium without CDDP
or OX were set to 1 for WT and hOCT2 cells.
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Because CDDP and OX treatment showed similar effects on p62/housekeeping protein
expression ratios, focusing only on OX treatment, we investigated whether inhibition
of autophagic flux with bafilomycin A1 [30] influences p62 expression. As shown in
Figure 3A,B, the p62 expression level increased in cells treated with bafilomycin A1 and
OX compared with cells treated only with OX.
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Figure 3. This figure shows the results of experiments aimed to confirm induction of autophagy flux 
by OX treatment in HEK293-hOCT2 cells using bafilomycin A1 (BafA1) as inhibitor of autophagy 
flux, and using p62 as autophagy marker. HEK293-hOCT2 cells were treated with OX (100 µM) for 
6 h in the presence or absence of BafA1 (100 nM) under fed (open columns) or starvation (closed 
columns) conditions. The p62 expression levels were measured using Western blot analysis with α–
actinin as a loading control. The panel (A) shows a representative Western blot analysis and panel 
(B) the quantification of 4 independent experiments. Data are expressed as mean ± SEM. * represent 
a statistically significant difference (p < 0.05, paired t test) between the indicated groups. 

As outlined above, LC3 II accumulation serves as a reliable marker of autophagy [24]. 
During starvation, LC3 II itself is markedly degraded [31], however, when treating the 
cells with lysosomal protease inhibitors such as bafilomycin A1, this degradation is 

Figure 3. This figure shows the results of experiments aimed to confirm induction of autophagy flux
by OX treatment in HEK293-hOCT2 cells using bafilomycin A1 (BafA1) as inhibitor of autophagy
flux, and using p62 as autophagy marker. HEK293-hOCT2 cells were treated with OX (100 µM) for
6 h in the presence or absence of BafA1 (100 nM) under fed (open columns) or starvation (closed
columns) conditions. The p62 expression levels were measured using Western blot analysis with
α–actinin as a loading control. The panel (A) shows a representative Western blot analysis and panel
(B) the quantification of 4 independent experiments. Data are expressed as mean ± SEM. * represent
a statistically significant difference (p < 0.05, paired t test) between the indicated groups.

As outlined above, LC3 II accumulation serves as a reliable marker of autophagy [24].
During starvation, LC3 II itself is markedly degraded [31], however, when treating the cells
with lysosomal protease inhibitors such as bafilomycin A1, this degradation is blocked
and LC3 II further increases. Figure 4 shows that during starvation, LC3 II significantly
accumulates in cells treated with OX and bafilomycin compared to cells treated with
OX alone.
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Figure 4. This figure shows the results of experiments aimed to confirm induction of autophagy by 
OX treatment in HEK293-hOCT2 cells using bafilomycin A1 (BafA1) as an inhibitor of autophagy 
flux and LC3 II/LC3 I expression ratio as an autophagy marker. HEK293-hOCT2 cells were treated 
with OX (100 µM) for 6 h in the presence or absence of bafilomycin A1 (BafA1, 100 nM) under fed 
or starvation conditions. The ratios between LC3 II and LC3 I expression levels were measured using 
Western blot analysis. α-actinin was used as a loading control. Panel (A) shows a representative 
Western blot analysis, and panel (B) shows the quantification (mean ± SEM) of 5 independent ex-
periments. * represents a statistically significant difference between the indicated groups (p < 0.05, 
paired t test). 
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plementary Figure S2). Indeed, this effect was not detected under activation of autophagy 
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Figure 4. This figure shows the results of experiments aimed to confirm induction of autophagy by
OX treatment in HEK293-hOCT2 cells using bafilomycin A1 (BafA1) as an inhibitor of autophagy
flux and LC3 II/LC3 I expression ratio as an autophagy marker. HEK293-hOCT2 cells were treated
with OX (100 µM) for 6 h in the presence or absence of bafilomycin A1 (BafA1, 100 nM) under fed or
starvation conditions. The ratios between LC3 II and LC3 I expression levels were measured using
Western blot analysis. α-actinin was used as a loading control. Panel (A) shows a representative
Western blot analysis, and panel (B) shows the quantification (mean ± SEM) of 5 independent
experiments. * represents a statistically significant difference between the indicated groups (p < 0.05,
paired t test).

Taken together, these results not only show that bafilomycin A1 can effectively block
activation of autophagy by OX, but also confirm that OX is indeed increasing autophagy in
HEK293-hOCT2 cells.

Interestingly, OX incubation of HEK293-hOCT2 caused a reduction in hOCT2 protein
expression, probably because autophagic degradation of OX-bound transporter (Supple-
mentary Figure S2). Indeed, this effect was not detected under activation of autophagy by
starvation.

2.3. MTORC1 Is Downregulated during Starvation in HEK293-WT and HEK293-hOCT2 Cells

The mammalian target of rapamycin complex 1 (mTORC1) is a strong suppressor
of autophagy. mTORC1 activation leads to phosphorylation of p70 S6-kinase, which
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phosphorylates its downstream protein S6 [32,33]. In this setting, we tested whether
autophagy induced by OX and/or starvation treatment influences mTORC1 signaling.
Reduction in pS6/S6 expression level was observed in both HEK293-WT and -hOCT2 cells
during starvation, suggesting autophagy activation (Figure 5). Incubation with OX did not
change pS6/S6 expression ratio (Figure 5). The same was observed when treating the cells
with CDDP instead of OX (not shown).
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Figure 5. This figure shows the results of experiments aimed to measure the effect of OX incubation 
and/or starvation on the mTORC signaling pathway in HEK293-WT (WT) and -hOCT2 (hOCT2) 
cells. Activation of mTORC signaling pathway was measured by Western blot analysis of pS6/S6 
expression ratio in WT (open bars) and hOCT2 (closed bars) cells under fed and starvation condi-
tions and OX treatment. α-actinin served as a loading control. Panel (A) shows a representative 
Western blot analysis, panel (B) shows the quantification of the results (mean ± SEM) from 3 inde-
pendent experiments. The mTORC signaling pathway is downregulated by starvation in both WT 

Figure 5. This figure shows the results of experiments aimed to measure the effect of OX incubation
and/or starvation on the mTORC signaling pathway in HEK293-WT (WT) and -hOCT2 (hOCT2)
cells. Activation of mTORC signaling pathway was measured by Western blot analysis of pS6/S6
expression ratio in WT (open bars) and hOCT2 (closed bars) cells under fed and starvation conditions
and OX treatment. α-actinin served as a loading control. Panel (A) shows a representative Western
blot analysis, panel (B) shows the quantification of the results (mean ± SEM) from 3 independent
experiments. The mTORC signaling pathway is downregulated by starvation in both WT and
hOCT2 cells. * indicate a statistically significant difference between fed and starvation conditions
(p < 0.05, Anova with Tukey post hoc test). Treatment with 100 µM OX for 6 h under fed or
starvation condition did not significantly change the activity of the mTORC pathway compared with
experiments performed without OX treatment.
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2.4. Autophagy Inhibition Exacerbates CDDP- and OX-Induced Cytotoxicity

We also determined whether autophagy inhibition changes CDDP- and OX-associated
cellular death. To do this, we incubated HEK293-WT and HEK293-hOCT2 cells with
100 µM CDDP or OX in the presence or absence of 100 nM bafilomycin A1 for 6 h. After
this, the medium was removed and replaced with drug-free medium, and cells were further
incubated for 48 h. At the end of this postincubation period, cell viability was determined
using the MTT test. Incubation with CDDP or OX markedly induced cellular toxicity
(Figure 6). Interestingly, this toxicity was more evident in HEK293-hOCT2 cells, confirming
that hOCT2 plays a crucial role in the cytotoxicity of platinum derivatives [34]. Furthermore,
autophagy inhibition with bafilomycin A1 enhanced CDDP- and OX-associated cytotoxicity
(Figure 6).
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Figure 6. This figure shows the cytotoxic effects measured with an MTT assay in HEK293-WT (WT,
open bars) and -hOCT2 (hOCT2, closed bars) cells after 6 h incubation with 100 µM CDDP (panel A)
or 100 µM OX (panel B) in the presence or absence of 100 nM bafilomycin A1, followed by a 48 h
postincubation with drug-free medium. Each bar shows the mean ± SEM of 6 replicates measured in
three independent experiments. Panel (A): * represent a statistically significant difference between
the indicated groups (p < 0.05, ANOVA with Tukey post hoc test) and all the others. # shows a
statistically significant difference in the indicated groups (p < 0.05, ANOVA with Tukey post hoc test).
§ shows a statistically significant difference between the effect of treatment in WT and hOCT2 cells
(p < 0.05, unpaired t-test). Panel (B): * show a statistically significant difference between the effect in
the indicated groups (p < 0.05, ANOVA with Tukey post hoc test).
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Accordingly, starvation—probably by triggering autophagy [19]—may protect against
CDDP- and OX-induced cytotoxicity. To investigate this possibility, HEK293-hOCT2 cells
were first incubated with CDDP or OX (100 µM) under fed (DMEM) or starvation (EBSS,
stv) conditions for 6 h. Then, incubation medium was removed, and cells were further
incubated with DMEM or, only for CDDP experiments, with EBSS for 48 h. As shown in
Figure 7, HEK293-hOCT2 cells were less sensitive to CDDP cytotoxicity when they were
incubated under starvation, providing evidence that starvation offers protection against
CDDP-associated cytotoxicity. Interestingly, performing postincubation under starvation
conditions further reduced CDDP cellular toxicity. Conversely, starvation failed to protect
against OX cytotoxicity and even increased its harmful effects. For this reason, further
experiments where cells were starved after OX treatment were not performed.

Int. J. Mol. Sci. 2022, 23, 1090 9 of 16 
 

 

A) or 100 µM OX (panel B) in the presence or absence of 100 nM bafilomycin A1, followed by a 48 
h postincubation with drug-free medium. Each bar shows the mean ± SEM of 6 replicates measured 
in three independent experiments. Panel (A): * represent a statistically significant difference be-
tween the indicated groups (p < 0.05, ANOVA with Tukey post hoc test) and all the others. # shows 
a statistically significant difference in the indicated groups (p < 0.05, ANOVA with Tukey post hoc 
test). § shows a statistically significant difference between the effect of treatment in WT and hOCT2 
cells (p < 0.05, unpaired t-test). Panel (B): * show a statistically significant difference between the 
effect in the indicated groups (p < 0.05, ANOVA with Tukey post hoc test). 

Accordingly, starvation—probably by triggering autophagy [19]—may protect 
against CDDP- and OX-induced cytotoxicity. To investigate this possibility, HEK293-
hOCT2 cells were first incubated with CDDP or OX (100 µM) under fed (DMEM) or star-
vation (EBSS, stv) conditions for 6 h. Then, incubation medium was removed, and cells 
were further incubated with DMEM or, only for CDDP experiments, with EBSS for 48 h. 
As shown in Figure 7, HEK293-hOCT2 cells were less sensitive to CDDP cytotoxicity when 
they were incubated under starvation, providing evidence that starvation offers protec-
tion against CDDP-associated cytotoxicity. Interestingly, performing postincubation un-
der starvation conditions further reduced CDDP cellular toxicity. Conversely, starvation 
failed to protect against OX cytotoxicity and even increased its harmful effects. For this 
reason, further experiments where cells were starved after OX treatment were not per-
formed. 

 
Figure 7. This figure shows the cytotoxic effects of 6 h incubation of HEK293-hOCT2 cells with 100 
µM CDDP or OX under fed or starvation (stv) conditions followed by postincubation with DMEM 
(fed) or EBSS (stv, only for CDDP) for 48 h. Cell viability was measured using an MTT assay. Each 
bar shows the mean ± SEM of 6 replicates measured in three independent experiments. * and # show 
a statistically significant difference between the tested conditions (p < 0.05, *ANOVA with Tukey 
post hoc test and # unpaired t-test, respectively). 

Rather than contradictory, the finding regarding OX treatment just uncovers the fact 
that, in some circumstances, autophagy is not sufficient to mitigate cell damage or pro-
mote cell survival [35]. In this context, we analyzed the impact of OX on the levels of cell 
death by measuring apoptosis and necrosis in HEK293-hOCT2 cells. Cells treated 24 h 
with 100 µM OX under fed or starvation conditions were evaluated by means of Annexin 
V staining (Anx V, an apoptosis marker) and propidium iodide uptake (PI, a necrosis 
marker) by using flow cytometry analysis. As shown in Figure 8, OX significantly induced 
apoptosis (increased number of Anx V+/PI− cells) when incubation was performed under 
the fed condition only, while the treatment under starvation conditions predominantly 

Figure 7. This figure shows the cytotoxic effects of 6 h incubation of HEK293-hOCT2 cells with 100
µM CDDP or OX under fed or starvation (stv) conditions followed by postincubation with DMEM
(fed) or EBSS (stv, only for CDDP) for 48 h. Cell viability was measured using an MTT assay. Each
bar shows the mean ± SEM of 6 replicates measured in three independent experiments. * and # show
a statistically significant difference between the tested conditions (p < 0.05, *ANOVA with Tukey post
hoc test and # unpaired t-test, respectively).

Rather than contradictory, the finding regarding OX treatment just uncovers the fact
that, in some circumstances, autophagy is not sufficient to mitigate cell damage or promote
cell survival [35]. In this context, we analyzed the impact of OX on the levels of cell death
by measuring apoptosis and necrosis in HEK293-hOCT2 cells. Cells treated 24 h with 100
µM OX under fed or starvation conditions were evaluated by means of Annexin V staining
(Anx V, an apoptosis marker) and propidium iodide uptake (PI, a necrosis marker) by
using flow cytometry analysis. As shown in Figure 8, OX significantly induced apoptosis
(increased number of Anx V+/PI− cells) when incubation was performed under the fed
condition only, while the treatment under starvation conditions predominantly caused
cell necrosis (increased number of Anx V−/PI+ cells). Increased levels of cell death, more
specifically increased necrotic rates, corroborate the higher degree of toxicity observed
when OX was applied under starvation condition. In addition, it helps to explain the lack
of protection expected for starvation under our conditions (Figure 7). A representative flow
cytometry plot is given in Figure S1 of Supplementary Material.
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Figure 8. Cell death in HEK293-hOCT2 cells treated with OX under fed and starvation conditions.
Apoptosis and necrosis were measured by means of annexin V (Anx V) staining and propidium
iodide (PI) uptake in HEK293-hOCT2 cells after 24 h incubation with 100 µM OX under fed (open
bars) or starvation (closed bars) conditions. Early apoptotic cells show Anx V positive (+)/PI negative
(−) staining patterns; late apoptotic cells exhibited Anx V+/PI+ staining patterns due to a loss of
plasma membrane integrity. Necrotic cells were defined as Anx V−/PI+ cells. Data are expressed
relative to cells incubated with fed medium without OX and given as mean ± SEM of 3 independent
experiments. * show statistically significant difference (p < 0.05) between the indicated groups
(unpaired t-test).

3. Discussion

CDDP and OX are highly effective chemotherapeutic drugs, which are often used in
the treatment of epithelial malignancies [4]. However, their use is limited by the occurrence
of severe adverse events. Therefore, new strategies to minimize the adverse events are
necessary to improve cancer chemotherapeutic treatment with these drugs. hOCT2 is a
membrane transporter, which is involved in the development of unwanted side effects
induced by Pt derivatives, but apparently does not play a role for their anticancer activity.
Autophagy seems to be activated as a cellular protective mechanism following exposition
to chemotherapeutic drugs. Therefore, it could be a promising target to reduce unwanted
toxic effects of chemotherapy [36]. In this study, we analyzed whether (a) CDDP and OX
induce autophagy; (b) hOCT2 is critical for this effect and (c) autophagy modulates CDDP
and OX cellular toxicity.

Starvation is a well-known factor to induce autophagy in cells [37]. By depriving the
cells of essential nutrients, the subsequent stress condition leads to an increased degradation
of proteins and organelles. Interestingly, HEK293 cells show an increased modification of
LC3 I to LC3 II after 6 h under starvation conditions (Figure 1A,B). The high expression of
hOCT2 in HEK-hOCT2 cells seems to increase autophagic activity (Figure 1C,D), suggesting
a higher translation and energy consumption in hOCT2 overexpressing cells as well as a
growing rate of misfolded proteins to be degraded via the autophagosome [38]. Using this
short incubation time (6 h), we decided to measure autophagy and autophagic flux using
Western blot analysis of LC3 II/I expression ratio and p62 expression. Measuring protein
expression is an important method for investigating the process of autophagy, especially
when focusing on autophagic flux [39].

CDDP and OX are both substrates of hOCT2, which is believed to play a role in
mediating severe nephro-, oto- and neuro-toxicity after chemotherapy [4]. The Pt agents are
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recognized inductors of autophagy, which works as a cytoprotective mechanism during the
chemotherapeutic treatment [14,15,40]. Both CDDP and OX reduced p62 level in HEK293-
hOCT2 cells under fed and starvation conditions (Figure 2), while in HEK293-WT cells,
no or only minimal effects of CDDP/OX on autophagy activity were measured. Then, the
autophagic flux was evaluated by treating cells with bafilomycin A1, which is known to
inhibit the fusion of autophagosomes with lysosomes. Hereby we observed a significant
increase in p62 expression level under bafilomycin A1 and OX treatment compared to a
single OX treatment, indicating an inhibition of OX-induced autophagy (Figure 3).

To confirm this result, we used the conversion of LC3 I to LC3 II as an alternative
autophagy marker (Figure 4). By measuring the autophagic flux under inhibition of
autophagy with bafilomycin A1 again, we were able to confirm a significant increase in
LC3 II in OX and bafilomycin A1 cotreated cells compared to cells treated only with OX.

Because autophagy is an important mechanism in stress conditions such as nutrient
deprivation or ER stress, its activity is tightly regulated [41]. One of the key regulators of
autophagy is mTORC1, which also regulates cell growth, cell proliferation, protein synthesis
and transcription [42]. Upon amino acid deprivation, mTORC1 is inhibited, and autophagy
is subsequently activated, indicating an inverse coupling mechanism [43]. One important
downstream target of mTORC1 is p70 S6-kinase, which upon activation phosphorylates
and activates the S6 protein [44]. By measuring the phosphorylated S6/S6 ratio, we could
confirm that starvation induced autophagy (Figure 5), as shown by the decreased activity
of the mTORC1 pathway. However, CDDP or OX incubation did not change the activity
of the mTORC1 pathway. It is well-known that several mTOR-independent autophagy
pathways exist (such as Ca2+, AMPK, MAPK/JNK, reactive oxygen species (ROS), HIF-1α;
for a review see [45]), and therefore, it can be speculated that in this setting, CDDP- and
OX-associated autophagy is mediated by a noncanonical mTOR-independent signaling
pathway.

Autophagy is usually thought to be a cell-survival mechanism, that, for example,
prevents the accumulation of toxic cellular waste products and generates energy and macro-
molecular precursors [46]. By inhibiting this process with inhibitors such as bafilomycin
A1, nuclear fragmentation, apoptosis and oxidative stress in cisplatin-treated cells are
enhanced [47]. The inhibition of autophagy with bafilomycin A1 and a simultaneous CDDP
or OX incubation showed in HEK293-WT and HEK293-hOCT2 cells a greater toxic effect
than the treatment with the Pt derivatives alone (Figure 6). This indicates in both WT
and hOCT2-overexpressing cells the important cytoprotective role of CDDP/OX-induced
autophagy. To confirm this cytoprotective function of autophagy, we increased autophagy
activity by starving the cells during or after the CDDP/OX treatment (Figure 7). By mea-
suring the cell viability in HEK293-hOCT2 cells, we observed a stronger protective effect
against CDDP-mediated toxicity by prolonging starvation during a 48 h postincubation
period after CDDP treatment. Longer starvation postincubation time (72 h) reverted the
protective effect to a more toxic one (not shown), probably because the damage induced by
starvation became prevalent. For OX, a different behavior was observed: starvation during
OX incubation period increased cellular OX toxicity (Figure 7). This may be explained
by the observation that even though starvation protects against OX-induced apoptosis, it
increased necrotic cell death (Figure 8).

It is important to note that, although autophagy is considered a cytoprotective process,
in certain circumstances it fails to prevent cell damage and can even induce cell death di-
rectly and indirectly, taking part in a complex cross talk with apoptosis and necrosis [35,48].
For example, starvation is known to induce expression of the cyclin-dependent kinase
inhibitor p21 (WAF1/Cip1), at least in the human osteoblastic cell line MG63 [49]. Interest-
ingly, in a toxin-induced model of liver injury, p21 is required for necrosis, but it inhibits
apoptosis [50]. Therefore, it can be speculated that the above-described experimental star-
vation induces p21 expression, which in turn decreases OX-induced apoptosis and causes
cell necrosis.



Int. J. Mol. Sci. 2022, 23, 1090 12 of 16

To improve the results of chemotherapeutic therapy with platinum agents in the
treatment of solid cancer, the control of side effects is essential. It has been demonstrated in
mice that caloric restriction is effective in ameliorating cisplatin-induced nephrotoxicity
presumably by stimulation of autophagy [51]. According to our data, autophagy induction
by starvation can be effective in protecting hOCT2-expressing cells against CDDP (however
only under very narrow experimental conditions) but not OX toxic effects. As a possible
clinically feasible approach to stimulate autophagy, caloric restriction or mTORC inhibitors
such as everolimus or sirolimus could be used to imitate starvation-induced autophagy [52].
In this work, we found no evidence that CDDP and OX influence mTORC activity, and
therefore, mTORC inhibition can be a useful approach to modulate autophagic activity
independently from CDDP and OX effects. Moreover, several studies have demonstrated
a beneficial effect by combining chemotherapeutic drugs with an mTORC inhibitor to
improve the antitumoral efficacy of chemotherapy [52–54].

Autophagy is highly discussed in cancer therapy as it plays a dual role as a tumor
suppressor and a tumor promotor factor [55]. Autophagy is responsible for degrading
damaged proteins and toxic waste products, reducing reactive oxygen species and DNA
damage, and therefore protects the cells from developing cancer [56]. On the other hand,
by securing energy and macromolecular precursors for the rapidly growing cancer cells, it
enhances tumor growth and cell survival [56]. Additionally, cancer cells treated with CDDP
develop chemoresistance, which is probably linked to an increased autophagy level [57,58].
Moreover, we have shown that induction of autophagy by starvation can protect the cells
only in a close range of conditions, and therefore, establishment of a clinically useful
therapeutic protocol using autophagy activation for protection against side-effects of cancer
chemotherapy with platinum derivatives is probably very difficult.

In conclusion, our present study showed that CDDP and OX are capable of inducing
autophagy mainly in HEK293-hOCT2 cells. Our results also demonstrated that inhibition of
autophagy increases cellular death associated with platinum agents. Therefore, activation
of autophagy could be a potential protective strategy against CDDP- and OX-induced
cytotoxicity, especially in cells and tissues expressing hOCT2.

4. Materials and Methods
4.1. Cell Culture

HEK293-WT and HEK293 stably overexpressing hOCT2 were a generous gift of
Prof. Koepsell [8,59]. Cells were cultivated at 37 ◦C and 5% CO2 in DMEM low glu-
cose (1 g/L, Sigma-Aldrich, Munich, Germany) with 10% FCS (Sigma-Aldrich), 1% peni-
cillin/streptomycin (Merck, Darmstadt, Germany) and additional 50 mg/mL G418 (PAN-
Biotech, Aidenbach, Germany) as a selection antibiotic for HEK293-hOCT2 cells. Cells were
seeded in 12-well plates (Greiner, Frickenhausen, Germany) with DMEM low glucose. At
90% confluency, cells were washed with phosphate-buffered saline (PBS, Sigma-Aldrich).
To study the effects of autophagy induction, cells were incubated with DMEM low glucose
(fed condition) or Earle’s Balanced Salt Solution (EBSS, Sigma-Aldrich, starvation condi-
tion) for 2, 4, or 6 h. Since 6 h starvation clearly activated autophagy (Figure 1), further
experiments were performed after 6 h incubation with 100 µM CDDP or OX (Teva Pharm,
Ulm, Germany) under fed and starvation conditions, as described above, in the presence or
absence of 100 nM bafilomycin A1 (InvivoGen Europe, Toulouse, France) as an inhibitor
of lysosomal acidification and therefore of autophagy. The concentration of platinum
derivatives used in the present work reflects what used in other in vitro studies [60,61];
moreover, in vitro studies show that at this concentration, these substances show a robust
interaction with hOCT2 [8,9].

4.2. Western Blot Analysis of CDDP and OX Effects on Autophagy

At the end of incubation period, cells were lysed using an appropriate volume of
Laemmli buffer (120 mM Tris-HCl pH 6.8, 4% sodium dodecyl sulfate (SDS), 20% glycerol,
0.02% bromphenol blue) supplemented with 30 µL of 1 M DTT/mL buffer. Cells were
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scratched off the plate into a reaction tube, which was boiled at 95 ◦C for 5 min. Samples
were then placed in an ultrasonic bath for 10 min and centrifuged at 13,800× g for 5 min at
4 ◦C. Proteins were separated using SDS polyacrylamide gel electrophoresis (SDS-PAGE)
(BioRad, Munich, Germany). After protein separation, samples were then transferred to
a nitrocellulose membrane. Upon completion of protein transfer, unspecific binding to
the membrane was blocked by 1 h of incubation with 5% bovine serum albumin (BSA)
dissolved in tris-buffered saline with Tween 20 (TBS-T). Then, the membrane was incubated
with primary antibodies at 4 ◦C overnight. The antibodies were diluted in TBS-T with 5%
BSA as follows: α-actinin (Cell Signaling, Danvers, USA) 1:1000; p62-lck (BD Biosciences,
San Jose, USA) 1:1000; LC3B (Novus Biologicals, Littleton, USA) 1:4000; S6 (Cell Signaling)
1:1000; pS6 (Cell Signaling) 1:1000; hOCT2 (a generous gift by Prof. Koepsell, Würzburg
University [62]) 1:500; GAPDH (Cell Signaling) 1:1000. After this, the membrane was
washed three times with TBS-T and incubated with horseradish peroxidase-coupled sec-
ondary antibodies (α-rabbit/α-mouse, Dako, Glostrup, Denmark, 1:10,000) for 1 h. After
additional TBS-T washing steps, the signals were detected using a chemiluminescence
detection reagent (Clarity, BioRad) and an Azure biosystems imager (c600, Azure Biosys-
tems, Dublin, USA). Band intensity was quantified by densitometry using the software
ImageJ [63].

4.3. Cell Viability

To determine the effects of autophagy inhibition on CDDP-associated cellular toxic-
ity, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) test was used.
Briefly, HEK293-WT and HEK293-hOCT2 cells were seeded in a 96-well plate and cultivated
at 37 ◦C with 5% CO2. At 80–90% confluency, the cells were incubated with DMEM low
glucose or EBSS containing 100 µM CDDP or OX with or without 100 nM bafilomycin
A1 for 6 h. Subsequently, cells were postincubated with drug-free DMEM low glucose,
or in some cases (when applying CDDP treatment) with EBSS for 48 h. At the end of the
postincubation time, 10 µL MTT reagent (Sigma-Aldrich, 5 mg/mL MTT in PBS) were
added, and the cells were incubated for a further 3 h. To stop the reaction, 100 µL of
lysis solution (10% SDS, 42% dimethylformamide, 1% HCl 1 M) was added to each well
and the cells were incubated at room temperature overnight. Absorbance was measured
spectrophotometrically with a microplate reader (Infinite M200, Tecan group, Männedorf,
Swizerland) at 590 nm. Background absorbance was calculated by measuring wells with
medium but without cells.

4.4. Flow Cytometry

Apoptosis was determined based on the interaction between annexin V and exter-
nalized phosphatidylserine using fluorescence-activated cell sorting (FACS), as described
previously [8]. Evaluation of cell necrosis was performed by propidium iodide uptake by
nonpermeabilized cells. HEK293-hOCT2 cells were seeded in a 6-well plate and cultivated
at 37 ◦C with 5% CO2. At 80–90% confluency, the cells were incubated for 24 h with DMEM
low glucose or EBSS containing 100 µM OX. At the end of incubation time, cells were
resuspended and washed in 500 µL FACS-Buffer (PBS with Ca2+ and Mg2+ containing 0.5%
fetal calf serum and 0.5% NaN3), and incubated with 5 µL annexin V-APC and propidium
iodide (5 µg/mL) (BD Biosciences, San Jose, CA, USA) in 100 µL FACS-Buffer for 25 min at
4 ◦C. Cells were washed again, resuspended in 500 µL of FACS-Buffer and immediately
analyzed on a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA). At least
20,000 events were triggered by the forward-scatter and side-scatter light, and samples
were analyzed by using FlowJo_v10.6.2 software (BD Biosciences). Cells stained positive
for annexin V-APC (FL-4) and negative for propidium iodide (FL-2) were considered as
early apoptotic, whereas double-positive cells were defined as late apoptotic. Cells stained
positive for propidium iodide only were primarily considered necrotic.
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4.5. Statistical Analysis

Data are presented as mean ± SEM of at least three independent measurements.
Statistical analyses were performed with GraphPad Prism software 5.0 (GraphPad Software,
Inc., San Diego, CA, USA) using one way ANOVA with Tukey’s multiple comparison test
and paired/unpaired t-test as appropriate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23031090/s1.
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