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ABSTRACT: We develop a systematic procedure for obtaining rate and
transition matrices that optimally describe the dynamics of aggregated
superstates formed by combining (clustering or lumping) microstates. These
reduced dynamical models are constructed by matching the time-dependent
occupancy-number correlation functions of the superstates in the full and
aggregated systems. Identical results are obtained by using a projection
operator formalism. The reduced dynamic models are exact for all times in
their full non-Markovian formulation. In the approximate Markovian limit, we
derive simple analytic expressions for the reduced rate or Markov transition matrices that lead to exact auto- and cross-relaxation
times. These reduced Markovian models strike an optimal balance between matching the dynamics at short and long times. We
also discuss how this approach can be used in a hierarchical procedure of constructing optimal superstates through aggregation of
microstates. The results of the general reduced-matrix theory are illustrated with applications to simple model systems and a
more complex master-equation model of peptide folding derived previously from atomistic molecular dynamics simulations. We
find that the reduced models faithfully capture the dynamics of the full systems, producing substantial improvements over the
common local-equilibrium approximation.

■ INTRODUCTORY REMARKS

Suppose we divide a high-dimensional dynamical system into
two parts, 1 and 2, and wish to describe its dynamics by a two-

state kinetic system, 1 H Iooo
R

R
21

12

2. What is the best way of choosing

the rate constants R12 and R21? To get the thermodynamics
right, the ratio of the rate constants must equal the exact
equilibrium constant, R12/R21 = Peq(1)/Peq(2), where Peq(I) is
the equilibrium population of state I. The sum of the rate
constants, R12 + R21, which is the inverse relaxation time, can be
chosen in a variety of ways. Arguably the simplest is to make
the number of transitions exact between the two states at
equilibrium. This is equivalent to the so-called local-equilibrium
approximation, where it is assumed that the time evolution of
each microstate within a given superstate is the same, but with
an amplitude proportional to its equilibrium population. This
approximation is an excellent one if the interconversion of the
microstates within a given superstate happens to be much faster
than that between the two aggregated states. Otherwise, it is
valid only at short times. Alternatively, one can devise an
approximation valid at long times by setting the sum of the rate
constants equal to the absolute value of the first nonzero
eigenvalue of the operator that describes the dynamics of the
entire system. This approximation will tend to perform poorly
at short times.
There is, however, a compromise choice. One can force the

relaxation time for the equilibrium fluctuations of the
populations of the two states to be exact. Such fluctuations

are described by the correlation function ⟨θI(t)θI(0)⟩ of an
indicator θI(t) that is equal to 1 when the system is in state I at
time t, and zero otherwise. Since this occupancy-number
correlation function is in general multiexponential, its relaxation
time is defined as the integral over all times of an appropriately
normalized form of this correlation function. Thus, in essence, a
multiexponential correlation function is approximated here by a
single-exponential function with the exact relaxation time. The
two curves deviate both at short and at long times, yet the areas
under them are the same.
It is this procedure that we will generalize to the case when

the dynamical system is divided into many discrete substates
(see Figure 1, top). For the sake of simplicity, we begin by
assuming that the undivided system consists of discrete states
whose dynamics is described by a master or rate equation. The
generalization to a continuous state space, divided into cells, is
straightforward. We also derive reduced Markov transition
matrices for Markov-state models with dynamics in discrete
time and space. Such models appear not only in the modeling
of experimental data, but increasingly also in molecular
simulation studies1−8 to deal with the problem of sampling
rare transitions9 and large conformation spaces by using
dynamic information collected locally over short time.10−17
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Correlation functions have been used in the validation18 and
construction19 of such models.
By allowing the dynamics of the reduced system to be non-

Markovian (i.e., described by a time-dependent rate matrix),
one can make the entire time dependence (not only the
relaxation times!) of all equilibrium occupancy-number
correlation functions exact. At first sight, this may be somewhat
surprising, but the fact that this is possible follows from
Zwanzig’s paper20 “From Classical Dynamics to Continuous-
Time Random Walks.” He divided configuration space into
discrete cells and showed that when the Liouville equation was
converted into a generalized Langevin equation for the cell
occupancies using projection operators, the resulting noise term
vanishes when initially all substates in a cell are in local
equilibrium. Consequently, for such initial conditions, the
probability of finding the system in a given cell satisfies a
generalized (non-Markovian) master equation. In the first part
of the Theory section of this paper, we show how this can be
done in a completely elementary way. In the second part, we
use a projection operator approach to combining states and
show that it leads to the same results that we obtained in a less
formal way. We then apply the general formalism to the
dynamics of systems in a continuous state space, and to
Markov-state models with discrete time steps. Finally, we
present several simple illustrative examples and discuss the
implication of our results on the important problem of how to
choose the states that should be combined.

■ THEORY
Definitions and General Framework. Consider a system

with n discrete states, whose dynamics is described by an n × n
rate matrix, whose elements Kji are the rate constants that
describe the i-to-j transition. Conservation of probabilities
require that Kii = −∑j(≠i) Kji or, in matrix notation, 1n

TK = 0,
where 1n is a column vector with n unit elements, and
superscript T denotes the transpose. The populations p(i, t)
evolve according to

=
d
dt

p
Kp

(1a)

or in Laplace space [f(̂s) = ∫ 0
∞dt exp(−st)f(t) for a general

function f(t)]

̂ − = ̂s s sp p Kp( ) (0) ( ) (1b)

The normalized equilibrium populations are solutions of Kpeq =
0, ∑i=1

n peq(i) = 1. For future reference, note that the s→0 limit
of the Laplace transform of a function is just the area under that
function from 0 to ∞.
We wish to combine (i.e., aggregate or lump) the states of

the original system (labeled by lower-case indices i = 1, 2, ..., n)
into “superstates” labeled by capital indices I = 1, 2, ..., N, where
N < n (see Figure 1). We will require that not only the
equilibrium populations but also the occupancy-number
correlation functions of the reduced states are exact. We will
show that this is possible if we describe the dynamics of
populations P(I, t) of the superstates by the non-Markovian
rate equations of the form

∫ τ τ τ= −
t

t
P

R P
d
d

d ( ) ( )
t

0 (2a)

or in Laplace space using the convolution theorem

̂ − = ̂ ̂s s s sP P R P( ) (0) ( ) ( ) (2b)

where R̂(s) is a reduced N × N matrix with elements R̂IJ(s), I, J
= 1, 2,..., N, that remain to be determined (Figure 1, bottom
right).

Construction of Exact Kinetic Model for Aggregated
Superstates. Let Peq(I) be the normalized equilibrium
population of state I. We wish to construct an R̂ with the
property that R̂Peq = 0 for

∑=
∈

P I p i( ) ( )
i I

eq eq
(3)

where the sum is over all substates i in superstate I.
The occupancy-number auto- and cross-correlation functions

of the original system are denoted by ⟨θi(t)θj(0)⟩, where the
indicator function θi(t) is equal to one if the system is in state i
at time t, and zero otherwise. We recall that a general
equilibrium correlation function ⟨f(t)g(0)⟩ [where f(t) =
∑i f iθi(t) and g(t) = ∑igiθi(t)] is defined in terms of the
propagator or Green’s function G(i, t|j, 0) as ⟨f(t)g(0)⟩ =
∑i,j=1

n f iG(i, t|j, 0)gjpeq(j). The propagators are the conditional
probabilities that the system starting in state j at time t = 0 is in
state i at time t and thus describe the time evolution of the
populations (e.g., p(i,t) = ∑jG(i,t|j,0)p(j,0)). They are the
solution of eq 1 with initial conditions that at t = 0, G(i,0|j,0) =
δij, with the Kronecker δij equal to 1 for i = j and zero otherwise.
Thus, in matrix notation, G = exp(tK). Its Laplace transform is
Ĝ = (sIn − K)−1, where In is the unit matrix of dimension n.
From these definitions it follows that the occupancy-number
correlation functions are

θ θ= ⟨ ⟩ = |

=

C t t G i t j p j

t p jK

( ) ( ) (0) ( , , 0) ( )

[exp( )] ( )

ij i j

ij

eq

eq (4a)

or in Laplace space, with Ĝ(i, s|j) the Laplace transform of G(i,
t|j, 0),

θ θ̂ = ⟨ ⟩ = ̂ |

= −

≡ −

̂

−

−

C s t G i s j p j

s p j

s p j

I K

I K

( ) ( ) (0) ( , ) ( )

[( ) ] ( )

( ) ( )

ij i j

n ij

n ij

eq

1
eq

1
eq (4b)

Figure 1. Schematic illustrating the reduction of an n = 18 multistate
kinetic model by lumping microstates (open circles; top left) into N =
3 superstates (shaded areas; top left and right). The n × n rate matrix
Kji for transitions i → j between microstates i and j is reduced to an N
× N matrix whose elements RJI for transitions I → J between
superstates I and J depend explicitly on time in the full non-Markovian
description (eq 11) and are time-independent in the Markovian
approximation (eq 12).
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Thus, the exact number correlation functions in the reduced
system denoted by CIJ(t) = ⟨θI(t)θJ(0)⟩ can be easily found by
simply summing the above results over all i ∈ I and j ∈ J. In
Laplace space we obtain

∑̂ = −
∈
∈

−C s jI K p( ) ( )IJ
i

n ij
I

j J

1
eq

(5)

If we were to calculate ĈIJ directly for the reduced system using
the matrix R̂(s) introduced in eq 2 we would have (sIN −
R̂(s))IJ

−1Peq(J), where (sIN − R̂(s))−1 is the corresponding
Green’s function. Thus, if we determine R̂(s) from

∑ − = − ̂
∈
∈

− −s p j s s P JI K I R( ) ( ) ( ( )) ( )
i I
j J

n ij N IJ
1

eq
1

eq

(6)

then by construction we have reached our goal of making the
occupancy-number correlation functions for the reduced
system exact. This is one of the key results of this paper. It
has the following “non-equilibrium” interpretation. Suppose in
the original system we start with an initial condition that all
states are unoccupied except those that belong to substate I. Let
us further assume that the initial populations of the microstates
i ∈ I are proportional to their exact equilibrium populations
[i.e., there is local equilibrium with p(i, t = 0) = peq(i)/Peq(I) for
i ∈ I and p(i, t = 0) = 0 otherwise]. Then the subsequent
populations of all superstates, calculated from the reduced non-
Markovian description in eq 2, are exact for all times. As
discussed in the Introductory Remarks, this result was obtained
by Zwanzig in a more general case.20

Local-Equilibrium Approximation. We now examine the
limiting cases of eq 6 that are Markovian, i.e., the dynamics is
described by an ordinary N × N rate matrix with elements RIJ.
The limit s→∞ of eq 6 corresponds to the limit of time t→ 0,

∑ ∑ ···

···

+ + =

+
̂ → ∞

+

∈ ∈
∈

p i

s

K p j

s

P I

s

R s P J

s

( ) ( )

( ) ( ) ( )

i I i I
j J

ij

IJ

eq eq
2

eq eq
2

Hence, by defining a reduced, s-independent rate matrix RIJ
le ≡

R̂IJ (s → ∞) satisfying

∑ =
∈
∈

K p j R P J( ) ( )
i I
j J

ij IJeq
le

eq

(7)

we obtain a reduced description that is exact at short times.
Physically, eq 7 means that the number of transitions between I
and J per unit time is exact at equilibrium. This is just the local-
equilibrium approximation, indicated by the superscript “le”, as
can be verified by setting p(i, t) = peq(i)P(I, t)/Peq(I) in eq 1
and then summing both sides over i ∈ I for all I. The above
derivation shows that, in general, it is valid only at short times.
Optimal Markovian Model. Now let us examine the (so-

called) Markovian limit, s → 0, when eq 2a becomes dP/dt =
RP, where R = R̂(0). One cannot simply set s = 0 in eq 6
because K has a zero eigenvalue and K−1 is thus not defined. At
long times, G(i, t|j, 0) goes to Peq(i) independent of j (i.e., the
system relaxes to equilibrium independent of the starting point,
assuming that there are no disconnected sets of microstates). In

Laplace space, this means that lims→0(sIn − K)−1 = peq1n
T/s + ···.

Therefore, we determine R̂IJ(0) from

∑ − − =

− ̂ −

→ ∈
∈

−

→

−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢⎢

⎤
⎦⎥⎥

s p j
p i p j

s

s P J
P I P J

s

I K

I R

lim ( ) ( )
( ) ( )

lim ( (0)) ( )
( ) ( )

s i I
j J

n ij

s
N IJ

0

1
eq

eq eq

0

1
eq

eq eq

This limit can be carried out using the identity

λ
λ

− − = − + −
+

− −s
s

s
s

I K
p 1

I K p 1
p 1

( ) ( )n
n
T

n n
T n

T
1 eq

0 eq
1 eq

0

which can be proved using the Sherman-Morrison formula21

along with Kpeq = 0 = 1n
TK for any λ0. Using this identity and an

analogous one involving R̂(0), with λ0 = 1 in units of reciprocal
time, we find that the elements of the s-independent optimal
reduced matrix are determined by

∑ − = −
∈
∈

− −p j P Jp 1 K P 1 R( ) ( ) ( ) ( )
i I
j J

n
T

ij N
T

IJeq
1

eq eq
1

eq

(8)

with R = R̂(0) and RIJ = R̂IJ(0). This can be inverted to get RIJ,
and a computationally convenient formula is given later in eq
12. We note that eq 8 is valid independent of the units of R and
K because λ0 in the Sherman−Morrison formula above is
arbitrary, and is conveniently set to one in units of reciprocal
time here and in similar relations below. A reduced Markovian
description using the reduced matrix R obtained in this way
guarantees that the weighted cross-relaxation times, τIJ, are
exact,

∫

∫∑

τ θ θ θ θ

θ θ θ θ

≡ ⟨ ⟩ − ⟨ ⟩⟨ ⟩

= ⟨ ⟩ − ⟨ ⟩⟨ ⟩

∞

∈
∈

∞

t t

t t

d [ ( ) (0) ]

d [ ( ) (0) ]

IJ I J I J

i I
j J

i j i j

0

0

(9)

for all I and J, with ∑IτIJ = 0. In other words, using the reduced
matrix R ensures that the areas under all occupancy-number
auto and cross-correlation functions are exact. Since
∑i∈I,j∈J[⟨θiθj⟩ − ⟨θi⟩⟨θj⟩] = ⟨θIθJ⟩ − ⟨θI⟩⟨θJ⟩, this also means
that the cross-relaxation times tIJ = τIJ/(⟨θIθJ⟩ − ⟨θI⟩⟨θJ⟩) are
exact, defined as the areas under the normalized occupancy-
number correlation functions,

∫

δ

θ θ θ θ

θ θ θ θ
≡

⟨ ⟩ − ⟨ ⟩⟨ ⟩

⟨ ⟩ − ⟨ ⟩⟨ ⟩

=
− −

−

∞

−

t
t t

P I

P 1 R P 1

d [ ( ) (0) ]

(( ) )

( )

IJ
I J I J

I J I J

N
T

N
T

IJ

IJ

0

eq
1

eq

eq

We note in passing that if the equilibrium populations Peq and
weighted cross-relaxation times τIJ are known, e.g., from
experiment or molecular dynamics simulation, the correspond-
ing reduced matrix can be constructed by inversion, R = Peq1N

T

− DN(PeqPeq
T + τ)−1, where DN is a diagonal matrix with

elements Peq(I). The somewhat unusual structure of eq 8 can
be understood as follows. The matrix K has a spectral
expansion of the form K = ∑j = 1

n λjajbj
T = 0peq1n

T + ∑j = 2
n λjajbj

T,
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where aj (bj) are the right (left) eigenvectors of K with
eigenvalues λj. a1 = peq and b1 = 1 are the eigenvectors for
eigenvalue λ1 = 0, and λj < 0 for j > 1. Now K−1 has a spectral
expansion K−1 = (1/0)peq1n

T + ∑j=2
n (1/λj)ajbj

T, and hence does
not exist, with the first term being infinite. However, if we add
λ0peq1n

T to K, the resulting matrix has a spectral expansion
λ0peq1n

T + ∑j=2
n λjajbj

T, and hence (λ0peq1n
T + K)−1 = λ0

−1peq1n
T +

∑j=2
n λj

−1ajbj
T.

For computational reasons it will prove convenient to rewrite
the above results in matrix notation. To this end we introduce
an n × N-dimensional aggregation matrix A with elements

=
∈⎧⎨⎩A

i J1 if

0 otherwise
iJ

Thus, the relation P(I, t) = ∑i∈I p(i, t) can be written as P =
ATp. In addition, we introduce diagonal matrices Dn and DN =
ATDnA with elements peq(i) and Peq(I) on the diagonal,
respectively [i.e., (Dn)ij = peq(i)δij and (DN)IJ = Peq(I)δIJ]. Using
this notation, eq 6 becomes

− = − ̂− −s s sA I K D A I R D( ) ( ( ))T
n n N N

1 1
(10)

which can be solved explicitly to give

̂ = − − − −s s sR I D A I K D A( ) ( ( ) )N N
T

n n
1 1

(11)

Similarly, eq 8 can be explicitly solved to give the reduced
matrix in the Markovian (s → 0) limit:

= − − − −R P 1 D A p 1 K D A( ( ) )N
T

N
T

n
T

neq eq
1 1

(12)

Projection Operator Formulation. We now show how to
construct the dynamics of the reduced system using projection
operators.22 This formalism is very general and starts by
rearranging the exact dynamical equations (e.g., eq 1) for
quantities of interest (e.g., the aggregated states) and whatever
remains. Let  be a projection operator with = 2 defined so
that ≡ u p are the probabilities of interest. The comple-
mentary operator , defined so that + =  In, gives
probabilities ≡ v p that are orthogonal to those of interest.
Multiplying both sides of eq 1 by  and then by , and setting

= + = + p p u v( ) on the right-hand sides, one finds

= + 
dt

u
Ku Kv

d
(13a)

= + 
t
v

Ku Kv
d
d (13b)

or in Laplace space

̂ − = ̂ + ̂ su u Ku Kv(0) (14a)

̂ − = ̂ + ̂ sv v Ku Kv(0) (14b)

These equations are exact. If one chooses initial conditions for
which v(0) = 0, then one can solve eq 14b for v and substitute
the result into eq 14a to get a closed equation for the quantity
of interest, u:

̂ − = ̂ + − ̂

= − ̂

−

−

   

 

s u s

s s

u u K K I K Ku

K I K u

(0) ( )

( )

n

n

1

1
(15)

In the present context, we must choose  in such a way that the
time dependence of the projected populations ui(t) of all
microstates in a superstate I is the same, up to a proportionality

factor, i.e., = = u t c P I tp( ) ( ) ( , )i i i with ci a constant that
depends on i. Moreover, let us require that at equilibrium ui =
peq(i) for all i. These two requirements are satisfied if we set

=
∑

∑
∈

∈


p i p j t

p j
p( )

( ) ( , )

( )i
j I

j I

eq

eq (16a)

= ∈
p i

P I
P I t i I

( )

( )
( , ) for alleq

eq (16b)

In terms of the aggregation matrix A defined above, it follows
from eq 16 that the corresponding projection operator  can be
written as

= − D AD An N
T1

(17)

Now to be able to use eq 15, we must restrict ourselves to
initial conditions where v(0) = 0. Since vi(0) = p(i, 0) − ui(0) =
p(i, 0) − peq(i)P(I, 0)/Peq(I) according to eq 16, it follows that
vi(0) = 0 for the initial condition that p(i, 0) = peq(i)P(I, 0)/
Peq(I), i.e., p(i, 0) ∝ CIpeq(i) with a proportionality constant CI
≥ 0 that depends only on the superstate I to which i belongs.
This is exactly the condition of local equilibrium within
superstates I. For such initial conditions, eq 15 is exact.
However, we are not interested in the u’s but rather in the time
evolution of the probabilities of the aggregated states P(I, t).
From eq 16 it follows that u = DnADN

−1P. Using this, the
definition of  in eq 17, and the fact that = − In , we can
rewrite eq 15 in the same form as eq 2b, if we define

̂ = − + − − −s s sR A K I K D AD A K D AD( ) ( )T
n n N

T
n N

1 1 1
(18)

which at first sight does not look anything like the result in eq
11 that we obtained by matching the occupancy-number
correlation functions. However, they are in fact equivalent,
which can be proved by using the Woodbury matrix inversion
formula,21

+ = − +− − − − − −M UV M M U I VM U VM( ) ( )n
1 1 1 1 1 1

with M = sIn − K, U = DnADN
−1, and V = ATK.

Reduced Model for Dynamics in Continuous Space.
We now show that the above results can be readily generalized
when the original system is continuous and is divided into N
cells. Let us denote integration over cell coordinates x in cell I
by ∫ Idx. Since in discrete state space (sIn − K)−1 is the Laplace
transform of the Green’s function Ĝ(i, s|j), the appropriate
generalization of eq 6 is

∫ ∫′ ̂ ′ | = − ̂ −G x s p s R s P Jx x x x Id d ( , ) ( ) ( ( )) ( )
I J

N IJeq
1

eq

(19)

where Peq(J) = ∫ Jdxpeq(x) and Ĝ(x′, s|x) is the Laplace
transform of G(x′, t|x, 0).

Markov-State Model in Discrete Time. The procedure of
constructing a reduced dynamic description is also applicable to
the discrete-time dynamics of Markov-state models,

= =−p Mp M pk k
k

1 0 (20)

where M is the n × n Markov matrix of transition probabilities
Mij from microstates j to i, and pk is the vector of normalized
probabilities pk(i) of microstate i after step k, starting from p0.
Thus, Mk, the kth power of M, is the discrete analogue of the
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Green’s function G(t). The analogue of Ĝ(s) is the generating
function

∑ λ λ= −
=

∞
−M I M( )

k

k k
n

0

1

(21)

where λ is a parameter, 0 ≤ λ ≤ 1. Therefore, the analogue of
eq 6 is

∑ λ λ λ− = − ̂
∈
∈

− −p j P JI M I T( ) ( ) ( ( )) ( )
i I
j J

n ij N IJ
1

eq
1

eq

(22a)

with the following solution in matrix form:

λ λ λ̂ = − − − −T I D A I M D A( ) ( ( ) )N N
T

n n
1 1

(22b)

where T̂(λ) is the generating function of operators Tk that
define an N × N reduced, non-Markovian transition process,

∑=
=

−

−P T Pm
k

m

m k k
0

1

(23)

with

λ
λ

=
!

̂

λ=
k

d
d

T
T1 ( )

k

k

k
0 (24)

In analogy to the s → ∞ limit above, for λ → 0 one recovers
the local-equilibrium approximation valid at short times, Tle =
T̂(λ = 0) ≡ T0. The Markovian limit corresponding to s → 0 is
obtained for λ → 1, and interestingly eq 8 remains essentially
the same

∑ + − =

+ −

∈
∈

−

−

p j

P J

I p 1 M

I P 1 T

( ) ( )

( ) ( )

i I
j J

n n
T

ij

N N
T

IJ

eq
1

eq

eq
1

eq (25a)

with T ≡ T̂(λ = 1) the reduced transition matrix in the
Markovian limit. In matrix form, the reduced Markov transition
matrix becomes

= + − + − − −T I P 1 D A I p 1 M D A( ( ) )N N
T

N
T

n n
T

neq eq
1 1

(25b)

■ ILLUSTRATIVE APPLICATIONS
Four-State to Two-State Reduction with Well Chosen

Superstates. Consider a four-state system,

⇌ ⇌ ⇌
k

k

h

h

k

k

1 2 3 4
(26)

To aggregate microstates 1 and 2 into a superstate 1 + 2, and 3
and 4 into another superstate 3 + 4, we define an aggregation
matrix

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
A

1 0
1 0
0 1
0 1

The corresponding diagonal matrices of probabilities are

=
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p

p
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eq

eq

eq

and

=
+
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D
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with peq(i) = 1/4 in our example. From eq 12, we then obtain
the following reduced matrix for the reduced two-state model:

=
+

−
−

⎜ ⎟⎛
⎝

⎞
⎠

hk
h k

R
2

1 1
1 1 (27)

Figure 2 compares the time-dependent populations obtained
with this reduced two-state rate matrix to those obtained by
integration of the full four-state model and the local-
equilibrium two-state approximation. As one would expect,
with h/k becoming smaller, transitions between 1 + 2 and 3 + 4

Figure 2. Populations of aggregated states 1 + 2 for model eq 26
obtained from the reduced rate matrix R in eq 27 (red lines) and by
exact time integration of the full rate equations, eq 1a, through
diagonalization of the matrix K (symbols). Results are shown for k = 2
and h = 5 (top), h = 1 (center), and h = 0.2 (bottom), starting from
superstate 1 at time t = 0. The reduced model R is constructed such
that the shaded gray areas between the populations exactly cancel and
the exact equilibrium is recovered. By contrast, the populations
obtained by using the local-equilibrium approximation, shown as solid
black lines, match the time evolution only near t = 0. The populations
of the other superstate, 3 + 4, are not shown, since they are exactly one
minus the populations of the 1 + 2 superstate.
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become rarer, and the two-state approximation becomes
increasingly accurate. Remarkably, even for h = k, where one
might expect the two-state approximation to fail, the reduced
model produces populations of the aggregated states in
excellent agreement with the full four-state model (center
panel of Figure 2). In the reduced model, small deviations at
short and long times compensate each other, with the areas
between the exact and approximate curves exactly canceling by
construction (gray shading in top panel of Figure 2). By
contrast, the local-equilibrium approximation eq 7 results in
significant deviations already after very short times t ≪ 1/k, in
particular for h ≥ k. In this example, the reduced model indeed
strikes a good balance between reproducing the dynamics at
short and long times, and results in significant improvements
over the local-equilibrium approximation.
Four-State to Three-State Reduction with Poorly

Chosen Superstates. Now we instead aggregate the central
microstates 2 and 3 to form a three-state system. We then end
up with a reduced matrix

=

− +
+

−
+

−

−
+

− +
+

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

k

h k
h k

k
h k

k
h k

h k
h k

R
2

4
2

1
2

2 2 2

2
1

4
2 (28)

The three ordered eigenvalues 0, − 2hk/(2h+k), and −2k of R
are zero or negative, and agree exactly (eigenvalues 1 and 3)
and to second order in k/h (eigenvalue 2) with those of the
original rate matrix K. However, we notice that in this matrix
the off-diagonal elements R13 = R31 are negative, i.e., in this
example, R is not strictly a rate matrix. Thus, while it is always
possible to construct a matrix R that leads to the exact
relaxation times, there is no guarantee that it will have positive
off-diagonal elements. If we nonetheless integrate the “rate
equations” for R, dP/dt = RP, the solutions are all positive after
a brief initial period, as illustrated in Figure 3. As h/k increases,
the three-state approximation, with microstates 2 + 3
aggregated, becomes increasingly accurate. Visually, one can
recognize that the time-integrated area between the exact
populations and those of the reduced model is zero, which is
the criterion used to match the relaxation times. By contrast,
the simple local-equilibrium approximation works well only at
very short times.
Reduction of 32-State Protein Folding Model. As a

realistic example, we consider a 32-state model for the
formation of a short α-helix in water.18 It was previously
shown that this 32-state model could be reasonably well
approximated with a two-state model (with a helically folded
state F and an unfolded state U) or a four-state model (with
two folded states F1 and F2, and two unfolded states U1 and
U2). Here we use the aggregation into superstates determined
in ref 18 by using a semiquantitative procedure. Below, in the
Concluding Remarks, we show how these superstates can also
be found by using a quantitative hierarchical procedure that
uses the reduced matrix.
We now reduce the 32-state rate matrix into a two-state

model (F and U), a three-state model (F1, F2, and U), and a
four-state model (F1, F2, U1, and U2) based on the definition of
these superstates given in ref 18. Using eq 12, we find:

=
−

−
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⎝⎜
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0.1322 0.0413U F,

(29a)
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and

=

−
−

−
−

⎛
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⎞

⎠

⎟⎟⎟⎟
R

0.3152 0.3709 0.0167 0.0938
0.1812 0.5324 0.0105 0.0518
0.0680 0.0869 0.0875 0.3481
0.0660 0.0746 0.0603 0.4937
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(29c)

in units of 1/ns, with the subscript indicating the order of the
states (left to right, and top to bottom). We note that for these
well-chosen superstates, all off-diagonal elements of the
reduced matrices are positive. As listed in Table 1, the
eigenvalues of the matrices, and thus the slowest relaxation
times given by their negative reciprocals, are in excellent
agreement with those of the full rate matrix.
Starting from state U or U1, respectively, we calculated the

time-dependent populations of the superstates and compared
them to the exact populations obtained by integration of the

Figure 3. Populations of aggregated states 1 (red), 2 + 3 (green), and
4 (blue) for model eq 26 obtained from the reduced R matrix in eq 28
(lines) and by exact integration of eq 1a (symbols). Results are shown
for k = 2 and h = 5 (top), h = 1 (center), and h = 0.2 (bottom),
starting from superstate 1 at time t = 0. Whereas the population of
state 2 + 3 is exact, exhibiting a single-exponential relaxation, the
population of state 4 initially goes negative in the reduced model. For
reference, the populations obtained from the local-equilibrium
approximation are shown as solid black lines for states 1 and 4, with
state 2 + 3 not shown since it is again integrated exactly for this model.
Note that the reduced model is exact for all states if the initial state is
the equilibrated 2 + 3 state.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp508375q | J. Phys. Chem. B 2015, 119, 9029−90379034



32-state coupled rate equations. As shown in Figure 4, the
reduced model obtained by matching the relaxation times gives
excellent approximations to the full dynamics, already at the
two-state level. By contrast, the local-equilibrium approximation
fails at times much shorter than the global relaxation time,
which again is reflected in the inaccurate eigenvalues of the
resulting reduced rate matrix Rle (Table 1).

■ CONCLUDING REMARKS
This paper considered how to construct a Markovian rate (or
transition) matrix for a given choice of aggregated states. We

have not discussed the important problem of identifying
microstates that can be faithfully aggregated. This problem of
lumping microstates is central to the analysis of kinetic data
from simulation and experiment alike, from the modeling of
measured kinetics data to the construction of Markov-state or
master-equation models.1,18,23−26 The procedures introduced
here can help also in this endeavor. Specifically, we would like
to take this opportunity to propose a hierarchical approach that
should work well with large numbers of microstates. We first
order all n microstates according to the components b2(i) of the
left eigenvector of K corresponding to the largest nonzero
eigenvalue (i.e., to make the second eigenvector nondecreasing
as the state index increases, where we assume that this
eigenvalue is not degenerate). We then divide the system into
two states, one including the first k microstates in this ranked
list, and the other the remaining n − k microstates. For each of
these aggregations, we calculate the reduced two-state rate
matrix R, and in turn the relaxation time as the negative

Table 1. Relaxation Rates [1/ns] from Eigenvalues of Full
32-State Rate Matrix K and Reduced Rate Matrices R with N
= 4, 3, and 2 Superstates, Respectivelya

states −λ1 −λ2 −λ3 −λ4
32 0 0.161 0.530 0.660
4 0 0.167 (0.244) 0.556 (0.608) 0.705 (0.788)
3 0 0.167 (0.244) 0.557 (0.609)
2 0 0.174 (0.282)

aNumbers in parentheses are for the local-equilibrium approximation
Rle, which performs significantly worse in all cases.

Figure 4. Protein folding kinetics. The full peptide-folding model has
32 states18 and was reduced to 2 states (F, U; top), 3 states (F1, F2, U;
middle) and 4 states (F1, F2, U1, U2; bottom). At time t = 0, the system
starts from an equilibrated state U, U, and U1, respectively (top to
bottom). Exact populations as a function of time are shown as
symbols. Solid lines of matching color show the results obtained for
the reduced models with two to four states. For reference, populations
obtained with the local-equilibrium approximation are shown as thin
black lines.

Figure 5. Hierarchical aggregation procedure applied to 32-state helix
folding model of ref 18. (A) Division into two superstates. States i
were rank-ordered according to their component in the second left-
hand eigenvector b2(i) (blue circles; right axis). Different superstates
were formed by aggregating the first k of these ordered states into one
superstate, and the remaining ones into the other. The relaxation time
−1/λ2 of the resulting reduced two-state rate matrix was calculated by
diagonalization (filled red squares; left axis). We obtain the longest
relaxation time by lumping six microstates into a folded state F, and
the remaining 26 microstates into an unfolded state U, as indicated by
the shading. Microstates are labeled in the binary notation of ref 18
(top to bottom: N to C terminus; 1 indicating a helical residue). (B)
Division of F into superstates F1 and F2. (C) Division of U into
superstates U1 and U2. The resulting superstates F, F1, F2, U, U1, and
U2 are all identical with those found previously with a more heuristic
approach in ref 18.
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reciprocal of its nonzero eigenvalue. We then find the value of k
that maximizes this relaxation time. At the next level, this
procedure can be repeated for the superstates obtained in the
previous rounds, setting rates out of these superstates to zero.
This recursive procedure can be truncated once the relaxation
times in all possible divisions fall below a set threshold.
We applied this hierarchical aggregation procedure to the 32-

state helix folding model of ref 18. The results are shown in
Figure 5. By identifying the slowest relaxation for divisions first
of the entire system and then of the resulting superstates, we
recover in the first step the F and U states of ref 18; then F1, F2,
and U; and finally U1 and U2. So at least in cases without
significant degeneracies in the eigenvalue spectrum, the
hierarchical procedure based on maximizing the relaxation
time of the reduced rate matrix produces sensible superstates
that lead to reduced models whose characteristic times closely
match those of the full system (Table 1). It will be interesting
to see how well this algorithm performs in even more complex
contexts.
In summary, we have developed a systematic procedure to

construct reduced dynamic descriptions of aggregated super-
states obtained by combining (or clustering or lumping)
microstates. The procedure is generally applicable to kinetic (or
master equation) models with discrete states and continuous
time evolution, Markov-state models with discrete states and
discrete time evolution, or continuous space models with
discrete or continuous time evolution. The reduced dynamic
models are exact in their non-Markovian formulation. In the
approximate Markovian limit, we provide simple analytic
expressions for the reduced rate or Markov transition matrices.
Even under the Markovian approximation, one recovers exact
auto- and cross-relaxation times. The resulting reduced models
thus strike an optimal balance between recovering the dynamics
at short and long times. This approach is not only useful to
construct reduced models for already defined groupings of
microstates into superstates, but also helps in finding optimal
superstates. Specifically, we found that maximizing the
relaxation time of the reduced-matrix model provides a
quantitative criterion that can be used in a hierarchical
construction of superstates through aggregation of microstates.
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(7) Noe,́ F.; Schütte, C.; Vanden-Eijnden, E.; Reich, L.; Weikl, T. R.
Constructing the Equilibrium Ensemble of Folding Pathways from
Short Off-Equilibrium Simulations. Proc. Natl. Acad. Sci. U.S.A. 2009,
106, 19011−19016.
(8) Voelz, V. A.; Jager, M.; Yao, S. H.; Chen, Y. J.; Zhu, L.; Waldauer,
S. A.; Bowman, G. R.; Friedrichs, M.; Bakajin, O.; Lapidus, L. J.; et al.
Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding
Revealed by Simulation and Experiment. J. Am. Chem. Soc. 2012, 134,
12565−12577.
(9) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L.
Transition Path Sampling. Throwing Ropes Over Rough Mountain
Passes in the Dark. Annu. Rev. Phys. Chem. 2002, 53, 291−318.
(10) Grubmüller, H. Predicting Slow Structural Transitions in
Macromolecular Systems. Conformational Flooding. Phys. Rev. E 1995,
52, 2893−2906.
(11) Huber, T.; van Gunsteren, W. F. SWARM-MD: Searching
Conformational Space by Cooperative Molecular Dynamics. J. Phys.
Chem. A 1998, 102, 5937−5943.
(12) Voter, A. F. Parallel Replica Method for Dynamics of Infrequent
Events. Phys. Rev. B 1998, 57, R13985−R13988.
(13) Yeh, I. C.; Hummer, G. Peptide Loop-Closure Kinetics from
Microsecond Molecular Dynamics Simulations in Explicit Solvent. J.
Am. Chem. Soc. 2002, 124, 6563−6568.
(14) Snow, C. D.; Nguyen, N.; Pande, V. S.; Gruebele, M. Absolute
Comparison of Simulated and Experimental Protein Folding
Dynamics. Nature 2002, 420, 102−106.
(15) Hummer, G.; Kevrekidis, I. G. Coarse Molecular Dynamics of a
Peptide Fragment: Free Energy, Kinetics, and Long-Time Dynamics
Computations. J. Chem. Phys. 2003, 118, 10762−10773.
(16) Vanden-Eijnden, E.; Venturoli, M.; Ciccotti, G.; Elber, R. On
the Assumptions Underlying Milestoning. J. Chem. Phys. 2008, 129,
174102.
(17) Pan, A. C.; Sezer, D.; Roux, B. Finding Transition Pathways
Using the String Method with Swarms of Trajectories. J. Phys. Chem. B
2008, 112, 3432−3440.
(18) Buchete, N. V.; Hummer, G. Coarse Master Equations for
Peptide Folding Dynamics. J. Phys. Chem. B 2008, 112, 6057−6069.
(19) Nuske, F.; Keller, B. G.; Peŕez-Hernańdez, G.; Mey, A. S. J. S.;
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