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Motivated by the current COVID-19 epidemic, this work introduces an epidemiological model in which
separate compartments are used for susceptible and asymptomatic ‘‘socially distant” populations.
Distancing directives are represented by rates of flow into these compartments, as well as by a reduction
in contacts that lessens disease transmission. The dynamical behavior of this system is analyzed, under
various different rate control strategies, and the sensitivity of the basic reproduction number to various
parameters is studied. One of the striking features of this model is the existence of a critical implemen-
tation delay (CID) in issuing distancing mandates: while a delay of about two weeks does not have an
appreciable effect on the peak number of infections, issuing mandates even slightly after this critical time
results in a far greater incidence of infection. Thus, there is a nontrivial but tight ‘‘window of opportunity”
for commencing social distancing in order to meet the capacity of healthcare resources. However, if one
wants to also delay the timing of peak infections – so as to take advantage of potential new therapies and
vaccines – action must be taken much faster than the CID. Different relaxation strategies are also simu-
lated, with surprising results. Periodic relaxation policies suggest a schedule which may significantly
inhibit peak infective load, but that this schedule is very sensitive to parameter values and the schedule’s
frequency. Furthermore, we considered the impact of steadily reducing social distancing measures over
time. We find that a too-sudden reopening of society may negate the progress achieved under initial dis-
tancing guidelines, but the negative effects can be mitigated if the relaxation strategy is carefully
designed.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Early 2020 saw the start of the coronavirus disease 2019
(COVID-19) pandemic, which is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Current COVID-19 policy is
being largely influenced by mathematical models (Adam, 2020;
Ferguson et al., 2020; Lourenco et al., 2020; Murray, 2020; Liu
et al., 2020; Chinazzi et al., 2020; Tian et al., 2020; Kucharski
et al., 2020; Park et al., 2020). Some of these are classic epidemio-
logical ordinary differential equations (ODE) models. Such models
are suitable for describing initial stages of an infection in a single
city, as well as for describing late stages at which transportation
effects are small in comparison to community spread. Besides
being simpler to analyze mathematically, ODE models are also a
component of more complex network simulations that incorporate
interacting populations linked by transportation networks as well
as social, educational, and workplace hubs.

We have developed and analyzed a variation of the classic epi-
demiological SIR model which incorporates separate ‘‘compart-
ments” for ‘‘socially distanced” healthy and asymptomatic (but
infected) populations, as well as for infected (symptomatic) popu-
lations. There have been many models proposed in the literature to
deal with ‘‘quarantined” populations, see for example (Brauer,
2006; Hethcote et al., 2002), but, to the best of our knowledge,
no models in which susceptible populations are split into non-
distanced and distanced sub-classes in such a way that the rates
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of flow between these are viewed as control variables. Indeed, key
to our model are parameters that reflect the rate at which individ-
uals become ‘‘socially distant” and the rate at which individuals
return to the ‘‘non-distanced” category. As examples, the latter
might represent a ‘‘frustration” with isolation rules, or a personal
need to reduce the economic impact of social distancing. The for-
mer can be in principle manipulated by government intervention,
through the strength of persuasion, and law enforcement.

How do outcomes depend on such interventions? How does one
trade-off various types of other interventions (for example vacci-
nation, which would affect transmissibility, or curfew rules)
against each other? Our modeling work aims to provide a frame-
work to rigorously formulate and answer such questions.

We will view the rate at which individuals respond to mandates
as a control variable, and analyze the impact of different control
policies on the course of an epidemic. A novel aspect of our model
lies in the distinction that we make between rate control and the
decrease in contacts between infected and susceptible individuals
due to distancing. We call this latter reduction in transmission the
contact rescaling factor (CoRF). One can interpret the CoRF value
as reflecting the effectiveness of social distancing. This number is
a function of the stringency of rules (stay at home except for essen-
tial shopping and emergencies, wash hands frequently, wear
masks, stay 6 ft. apart, etc.). Some authors consider tuning what
we call the CoRF as the control ‘‘knob” used by authorities, (e.g.
Giordano et al., 2020; Casella, 2020; Di Lauro et al., 2020; Morris
et al., 2020; Bin et al., 2020). Our focus is, instead, on rate control,
which has not been sufficiently explored. Indeed, the objective of
our model is to make it possible to formally consider rate control.
In future work, we will study the combination of rate and CoRF
control.

In particular, we used our model to answer questions about the
dynamics of the disease, and about the value of the basic reproduc-
tion number, R0, which characterizes the initial rise in infections.
We rigorously demonstrate, without simulations, that a (possibly
unrealistic) quick implementation of social distancing is required
in order for R0 < 1 initially. While it is easy to interpret this as a
hopeless situation, what this actually says is that an initially
headline-grabbing infection will begin to move through the popu-
lation. However, as time progresses, we show that social distancing
can push R0 to a value less than 1.

This conclusion about the impact of social distancing at differ-
ent stages on the pandemic is dependent on the parameterization
of the model. As many of the parameter values are still uncertain,
we also explored how R0 depends on a combination of a single
model parameter and the social distancing rate parameter. One
major uncertainty surrounding COVID-19 is the fraction of individ-
uals who get infected but never develop symptoms. We find that R0

is sensitive to this symptomatic fraction, demonstrating the impor-
tance of getting a confident measurement on this value before
quantitative model predictions can be trusted.

Another major unknown is how infective asymptomatic indi-
viduals are. We find that if asymptomatics are not very contagious,
and if infected individuals automatically self-isolate, then R0 is not
greatly influenced by social distancing measures. However, if
asymptomatics are sufficiently infective, there is a much stronger
impact of social distancing on R0. That said, this conclusion
depends on the assumption that social distancing reduces the
transmission rate of the disease by the value of the CoRF. There-
fore, varying this parameter allows us to quantify how the nature
of social distancing measures impacts R0. If this parameter is very
small, meaning one significantly down-scales their contacts (that
is, the stay-at-home directives are extreme and mask compliance
outside the home is high), very rapid implementation of social dis-
tancing is not required. On the other hand, if the directives are not
as severe and CoRF is larger (meaning the number of contacts is
2

scaled down less significantly and/or masking compliance is
low), social distancing will not result in R0 < 1 and we can still
expect disease spread despite social distancing.

We also used our model to explore how the timing of when
social distancing is enacted influences the spread of the disease
through a population. One of the most striking predictions is that
a moderate delay in establishing social distancing guidelines,
which we term a critical implementation delay (CID), does not
appreciably increase the peak number of infected individuals. Keep-
ing this number low (‘‘flattening the curve”) is desirable in order to
prevent strain on health providers and hospital resources. The exis-
tence of a CID means that authorities can take some time to plan
for guidelines and announce a closure plan. Another important fea-
ture of the CID is that even a few days delay in implementation
beyond the CID can have highly adverse consequences. Once
passed, there will be many more (over ten times) the number of
sick people in the population at its worst moment.With our param-
eters, at the start of the epidemic, the CID is roughly two weeks.

That said, there are good reasons both for and against taking
advantage of the CID. We find that implementing even faster than
the CID time results in a major postponement of the peak time
for infections. For example, a delay of 15 days has a peak of infec-
tion early on in the epidemic, occurring at about 50 days. However,
initiating 10 days earlier delays the peak to almost one year, a huge
difference in timing. Such a postponement provides more opportu-
nities to develop vaccines and treatments, and hence can be seen
as highly desirable. On the other hand, a slower implementation
allows time for planning, communicating with the public, and
building up community buy-in to distancing measures.

Related to timing, there has been interest in periodically relax-
ing distancing guidelines to allow for limited economic activity. For
example, businesses may be allowed to operate normally for one
week, while the ensuing week is restricted to remote operation
(or being fully closed, if remote work is not feasible). This two
week ‘‘periodic” schedule is then continued either for a fixed per-
iod of time, or indefinitely (e.g. the discovery of a vaccine, evidence
that sufficient herd immunity has been obtained, etc.) Using our
model with estimated parameters, we simulate such schedules
for a variety of periods, ranging from days to months of sanctioned
activity. Our results are quite counter-intuitive, and suggest that
there might be a pulsing period that significantly inhibits the infec-
tion dynamics (a 17 day ‘‘on/off” schedule with our parameters).
However, this schedule is exceptionally sensitive to parameter val-
ues and timing, so that extreme caution must be taken when design-
ing guidelines that fully relax social distancing, even temporarily.
Furthermore, for some strategies near the optimal 17-day cycle, a
subsequent increase in infected individuals may occur after an ini-
tial flattening. Thus, even if a region observes a short-term
improvement, the worst may still be yet to come.

Other forms of relaxation relate to gradual easing, as opposed to
periods of ‘‘normal activity.” Of course, the rate of easing (e.g. what
businesses are allowed to open for in-person operations, and at
what capacity) is of great interest, both economically and psycho-
logically. We numerically investigate how the rate of easing social
distancing guidelines affects outbreak dynamics, and show that
relaxing too quickly will only delay, but not suppress, the peak mag-
nitude of symptomatic individuals. However, a more gradual relax-
ation schedule will both delay onset and ‘‘flatten the curve,” while
producing a largely immune population after a fixed policy win-
dow (again, assuming recovery corresponds to immunity, which
is still an open question as of this writing). Hence the rate of relax-
ation is an important factor in mitigating the severity of the cur-
rent pandemic. Similarly, the rate of relaxation during flattening is
important to prevent a ‘‘second wave” of infected individuals. As
governments develop and implement plans to ease social
distancing, carefully considering the rate of relaxation is extremely



Table 1
List of all the variables and parameters used in both models: the seven-compartment
model in Eqs. (1)–(7), and the six-compartment model in Eqs. (8)–(13).

Symbol Interpretation

SN Fraction of population that are non-socially distant suceptibles.
SD Fraction of population that are socially distant suceptibles.
AN Fraction of population that are non-socially distant asymptomatics.
AD Fraction of population that are socially distant asymptomatics.
IN Fraction of population that are non-socially distant symptomatics.
ID Fraction of population that are socially distant symptomatics.
R Fraction of population that are recovered and presumed to have

developed at least temporary immunity.
�S CoRF: Effect of socially distancing susceptibles on disease

transmission.
�A CoRF: Effect of socially distancing asymptomatics on disease

transmission.
�I CoRF: Effect of socially distancing symptomatic infectives on

disease transmission.
bA Transmission rate between asymptomatic non-socially distanced

individual and non-socially distanced susceptible.
bI Transmission rate between non-socially distanced symptomatic

and non-socially distanced susceptible.
d Mortality rate of disease.
f Fraction of individuals who become symptomatic (as opposed to

never showing symptoms and recovering).
h1 Return to socializing rate.
h2 Rate of social distancing (control).
cAI Rate of transition out of the asymptomatic class.
cIR Rate of recovery.
p Fraction of non-socially distanced asymptomatics who socially

distance upon showing symptoms.
q Fraction of recovered individuals who lose immunity but continue

social distancing.
q Rate at which recovered individuals lose immunity and become

susceptible again.
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important from a policy perspective, so that countries and states
do not undo the benefits of their strict distancing policies by lifting
guidelines too rapidly. For example, in our model, a very rapid
relaxation schedule results in a second wave with a larger peak
symptomatic proportion than originally experienced (over 27%,
compared to original peak of 3:2%). However, relaxing more grad-
ually once the peak has been obtained prevents a second outbreak,
and allows a sustainable approach to herd immunity.

We close this introduction with the following quote:

‘‘I have skepticism about models [of COVID-19], and they are
only as good as the assumptions you put into them, but they
are not completely misleading. They are telling you something
that is a reality, that when you have mitigation that is contain-
ing something, and unless it is down, in the right direction, and
you pull back prematurely, you are going to get a rebound of
cases.”
Dr. Anthony Fauci, Director, National Institute of Allergy and
Infectious Diseases, United States; on CNN, 05 May 2020.

It bears emphasizing: ours is one model, with one set of
assumptions. We do not in any way believe that the quantitative
predictions of our (or of any other) model of COVID-19 can be accu-
rate, as so much is still unknown about this disease. However, as in
the statistician George Box’s aphorism ‘‘All models are wrong, but
some are useful”, the correct question is not if the model is ‘‘true”
but rather if it is ‘‘illuminating and useful.”

2. Models

The SIR model proposed by Kermack and McKendrick (1927)
has been applied in many ways over the last century to study infec-
tious diseases, and recently has been extended to study COVID-19.
For example, a recent model for COVID-19, called the SIDARTHE
model (Giordano et al., 2020), partitions individuals as suscepti-
bles, asymptomatic and undetected infected, asymptomatic
detected, symptomatic undetected, symptomatic detected,
detected with life-threatening symptoms, recovered, and deceased.
There are also several papers that deal with timing of interventions
as well as periodic strategies to prevent the spread of epidemics,
modeled through periodic vaccination (Liu and Stechlinski, 2017)
or through the periodic or other switching of the infectivity param-
eter in the SIR and related models (Giordano et al., 2020; Di Lauro
et al., 2020; Morris et al., 2020; Bin et al., 2020).

In this work we propose a different extension of the SIR model,
one that includes socially distanced (labeled with a D sub-index)
and non-socially distanced (labeled with an N sub-index) classes
for susceptible (SD and SN), asymptomatic (AD and AN), and symp-
tomatic (ID and IN) individuals. Class R refers to ‘‘Recovered” who
are presumed to have developed at least temporary immunity.
More details about the interpretation of each variable together
with the meaning of the variables and parameters used in this
model can be found at Table 1. Next, we explain the dynamics of
our model (please refer to Fig. 1 for a graphical explanation).

1. A socially distanced (though not necessarily fully isolated)
susceptible individual (SD) may become infected with rate:

} �SbAAN when in contact with a non-socially distanced
asymptomatic individual. Here, bA is the transmission rate
between an asymptomatic non-socially distanced individual
and a non-socially distanced susceptible; and the term �S
accounts for the reduction of infectivity by socially distanc-
ing the susceptible. We call �S a contact rescaling factor
(CoRF).
} �S�AbAAD when in contact with a socially distanced
asymptomatic individual. The term �S�A refers to the reduc-
3

tion of infectivity by socially distancing both the susceptible
and the asymptomatic individuals.
} �SbI IN when in contact with a non-socially distanced
symptomatic individual. The term bI denotes the transmis-
sion rate between non-socially distant symptomatic and
non-socially distanced susceptible individuals.
} �S�IbI ID when in contact with a non-socially distanced
symptomatic individual. The term �S�I denotes the reduction
of infectivity by socially distancing both the susceptible and
the symptomatic individuals. We expect that socially dis-
tanced symptomatic individuals are still capable of trans-
mitting infections, be it through contact with hospital
personnel or caregivers, or the pressure to work despite
being sick.

2. Similarly, a non-socially distanced susceptible individual
(SN) may become infected with rate:

} bAAN when in contact with a non-socially distanced
asymptomatic individual.
} �AbAAD when in contact with a socially distanced asymp-
tomatic individual.
} bI IN when in contact with a non-socially distanced symp-
tomatic individual.
} �IbI ID when in contact with a socially distanced symp-
tomatic individual.

3. If a susceptible individual that has been social distancing (an
individual in class SD) gets infected, they will continue social
distancing (will transfer to class AD); and a non-social dis-
tanced individual will continue non-social distancing right
after getting infected (will transition from the SN to the AN

class).
4. Susceptible individuals transition from social distancing to

non-social distancing behavior with rate h1. Likewise for
asymptomatic individuals.



Fig. 1. Illustration of the seven compartment SIR model in Eqs. (1)–(7).
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5. Susceptible individuals transition from non-social distancing
to social distancing behavior with rate h2. Likewise for
asymptomatic individuals.

6. Asymptomatic individuals are assumed to be contagious.
While the inclusion of an additional exposed (but not conta-
gious) compartment would more closely model what is now
known about COVID-19, the short time period one remains
in the ‘‘exposed” group is sufficiently small that we choose
to ignore it. Current estimates suggest that the time between
infection and the emergence of symptoms is, on average, 4–
5 days. Current estimates also suggest that a person with
COVID-19 may be contagious 2–3 days before starting to
experience symptoms (Harvard Medical School, 2020). This
makes the amount of time one would remain infected, but
not able to infect others, between 1 and 3 days, on average.
Relative to the time course of the disease (14–21 days), the
data does suggest the ‘‘infected but not contagious” phase
is sufficiently short that the inclusion of an exposed group
would not significantly alter model predictions.

7. After the asymptomatic period, an asymptomatic individual
may or may not become symptomatic. Thus, an individual
may transition from the asymptomatic class into the symp-
tomatic class, or directly to the recovered class. The param-
4

eter f represents the fraction of the asymptomatic
individuals that transition into the symptomatic class. Thus
1� fð Þ is the fraction of individuals who are asymptomatic
and transition directly to the recovered group.

8. The transition rate out of asymptomatic, cAI , is independent
of whether one was socially distancing or not.

9. A fraction p of non-socially distanced asymptomatic start
social distancing after becoming symptomatic. Thus,
1� pð Þ is the fraction of non-socially distanced asymp-
tomatic individuals that remain non-social distancing after
becoming symptomatic.

10. A social distancing asymptomatic that becomes symp-
tomatic remains socially distancing (transfers from AD into
ID).

11. If an individual becomes symptomatic, they will either
recover (transfer to the R class with rate cIR) or die with rate
d.

12. Recovery assumes that the individual will acquire temporary
immunity.

13. Recovered individuals lose immunity at a rate q.
14. A fraction q of recovered individuals who lost immunity

remain socially distanced, and a fraction 1� qð Þ will stop
social distancing.
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The differential equation system representing this seven-
compartment model is as follows:

dSD
dt

¼��SbI SDIN þ�ISDIDð Þ��SbA SDAN þ�ASDADð Þ�h1SDþh2SN þqqR ð1Þ
dSN
dt

¼�bI SNIN þ�ISNIDð Þ�bA SNAN þ�ASNADð Þ�h2SN þh1SDþ 1�qð ÞqR ð2Þ
dAD

dt
¼�SbI SDIN þ�ISDIDð Þþ�SbA SDAN þ�ASDADð Þ�cAIAD�h1ADþh2AN ð3Þ

dAN

dt
¼bI SNIN þ�ISNIDð ÞþbA SNAN þ�ASNADð Þ�cAIAN þh1AD�h2AN ð4Þ

dID
dt

¼fcAI ADþpANð Þ�cIRID�dID ð5Þ
dIN
dt

¼ 1�pð ÞfcAIAN �cIRIN �dIN ð6Þ
dR
dt

¼ 1� fð ÞcAI ADþANð ÞþcIR IDþ INð Þ�qR: ð7Þ

Immunity to SARS-CoV-2 is only beginning to be understood.
Infection has been observed to induce a robust antibody responses
for at least three months (Wajnberg et al., 2020), though antibodies
are not the only factor in determining long-term immunity (Francis
Collins, 2020; Rydyznski Moderbacher et al., 2020). That said, it is
known that for other types of coronaviruses, such as the severe
acute respiratory syndrome (SARS), antibodies are maintained for
an average of two years (Mo et al., 2006; Wu et al., 2007; Cao
et al., 2007). At present, pharmaceutical companies around the
world are working to develop a vaccine for COVID-19, and it is
hoped that one will be widely deployed in 2021. For this reason,
we are currently interested in understanding the dynamics that
will occur during the waiting period for a vaccine. It seems reason-
able then, under the assumption that a recovered individual will
acquire immunity for an average period of two years, to start by
studying the simplified model where immunity is not temporary.
Further, given the widespread understanding of the contagious
nature of SARS-CoV-2, it is also reasonable to assume that symp-
tomatic individuals respect social distancing guidelines.

2.1. A simplified version (A six compartment SIR Model)

In this simplified model we assume permanent immunity for
the recovered class, and that all symptomatics (IN and ID) can be
merged into just one class I (see Fig. 2). It is of note that symp-
tomatic individuals, just like the socially-distanced susceptible
and asymptomatic individuals, still interact with medical providers
and family members. Therefore they can still spread the disease.
The impact of their social isolation is through the contact rescaling
factor �S. This term greatly reduces the transmission rate from
symptomatic individuals and is how we model the impact of them
socially distancing.

The differential equation system representing this model is
given here:

dSD
dt

¼� �SbISDI � �SbA AN þ �AADð ÞSD � h1SD þ h2SN ð8Þ
dSN
dt

¼� bISNI � bA AN þ �AADð ÞSN þ h1SD � h2SN ð9Þ
dAD

dt
¼�SbISDI þ �SbA AN þ �AADð ÞSD þ h2AN � cAIAD � h1AD ð10Þ

dAN

dt
¼bISNI þ bA AN þ �AADð ÞSN þ h1AD � cAIAN � h2AN ð11Þ

dI
dt

¼fcAI AD þ ANð Þ � dI � cIRI ð12Þ
dR
dt

¼ 1� fð ÞcAI AD þ ANð Þ þ cIRI: ð13Þ

Note that, as discussed in more detail in Section 2.2, we define
bI ¼ 2bAð Þ�I , meaning that the contact reduction for infectives is
captured in our parameterization of bI .
5

2.2. Parameter estimation from currently available data

We first note that the variables in our model system (8)-(13)
should be interpreted in terms of fractions of the initial total pop-
ulation, and not as absolute population numbers. Of course, a
direct translation is possible by fitting to a region of interest, and
multiplying by the total population size at the time of disease out-
break. Note that since the initial conditions are all non-negative
and satisfy

SD 0ð Þ þ SN 0ð Þ þ AD 0ð Þ þ AN 0ð Þ þ I 0ð Þ þ R 0ð Þ ¼ 1; ð14Þ

then all variables remain in the interval 0;1½ � for future times t > 0,
and can hence be interpreted as a fraction of the initial population.
Note that if d > 0 (a strictly positive death rate) and Eq. (14) is sat-
isfied, the total population fraction N defined by

N tð Þ :¼ SD tð Þ þ SN tð Þ þ AD tð Þ þ AN tð Þ þ I tð Þ þ R tð Þ ð15Þ
will satisfy

N 0ð Þ ¼ 1 ð16Þ
0 6 N tð Þ < 1 ð17Þ
for all t > 0. In fact, the difference 1� N tð Þ measures the fraction of
deaths of the initial population by time t. Births are ignored, since
we consider time-scales on the order of 1 year, and newborns are
not significant contributors to the susceptible populations.

It is easy to verify (see Appendix A) that all the infective popu-
lations, AN tð Þ;AD tð Þ, and I tð Þ converge to zero as t ! 1.

One contribution of this work is to make the distinction
between rate control and decrease in contacts due to social dis-
tancing. Hence, we need to explicitly define rate control (h1 and
h2) in our model. To this end, recall that h1 is interpreted as a
socializing rate, while h2 is a controlled level of social distancing.
Intuitively, we expect that increasing social distancing guidelines
will at the same time inhibit individuals from socializing. That is,
h1 and h2 are not independent, but are rather inversely correlated
to one another. To make this mathematically precise, we define

h1 :¼ A
1þ Bh2

: ð18Þ

That is, increasing distancing mandates (h2) at the same time
decreases the rate at which individuals socialize (h1). Other func-
tional relationships are possible, but for the remainder of this work
we fix h1 as in Eq. (18). Furthermore, we fix

A ¼ 1
B ¼ 10;

ð19Þ

so that

h1 :¼ 1
1þ 10h2

: ð20Þ

It is difficult to estimate such rates directly, as they correspond
to sociological responses to unprecedented self-isolation guide-
lines. However, our rationale is as follows. Consider first a policy
such that h2 ¼ 1 per day, which implies that (interpreting the
ODE system as the expected value of the corresponding Poisson
process) that the average time to socially distance is

tDh i ¼ 1
h2

ð21Þ

¼ 1day ð22Þ
Assuming that the population is initially non-distanced, so that

SN 0ð Þ � 1; SD 0ð Þ � 0, and ignoring the infection dynamics over a
period of 1 day, we have the estimate



Fig. 2. Illustration of the six compartment SIR model in Eqs. (8)–(13).
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SN 1ð Þ � e�1 ð23Þ
� 0:37: ð24Þ

In the above, we ignored transitions from SD into SN , as SD is
assumed small. Hence, after 1 day, approximately 63% of the pop-
ulation socially distances. Eq. (20) then yields h1 ¼ 1

11, so that of the
(assumed small) socially distanced population,

SD 1ð Þ � e�
1
11SD 0ð Þ ð25Þ

� 0:91SD 0ð Þ: ð26Þ
That is, about 9% of the population disobeys the distancing

mandate per day. Similarly, when h2 ¼ 0, i.e. there are no social
distancing directives, Eq. (20) yields h1 ¼ 1, so that

SD 1ð Þ � e�1SD 0ð Þ ð27Þ
� 0:37SD 0ð Þ; ð28Þ

i.e. about 63% of the population re-socializes in 1 day; others may
be too scared, or simply not prone to leave their house every day.
The above reasoning seems at least reasonable to the authors. Of
course, the focus on the subsequent analysis will not be on precise
predictions, but rather general phenomenon, which are robust to
parameter values. This should be considered for the remainder of
this section (and the remainder of the work) as we discuss other
estimates.

We can also interpret h1 and h2 in terms of the equilibrium frac-
tions of socially distanced individuals. Indeed, in the absence of
any infection (assuming no recovery has yet taken place), we have
that the equilibrium fractions of SN and SD are given by

SN ¼ h1

h1 þ h2
ð29Þ

SD ¼ h2

h1 þ h2
: ð30Þ

If as above, h2 ¼ 1, then h1 ¼ 1
11, and we have that
6

SN � 0:08 ð31Þ
SD � 0:92: ð32Þ

Hence, in the long-term, with very strict distancing guidelines,
approximately 92% of the susceptible population will distance,
while 8% do not. This also seems reasonable with very strict man-
dates, as of course some jobs remain essential and hence not all
workers can become isolated (nurses, doctors, grocery workers,
first responders, etc.).

The parameter f represents the fraction of SARS-CoV-2 infec-
tions that become symptomatic. Current reports suggest that this
parameter is highly variable, with analyses on different data sets
yielding between 20% and 95% of positive tested cases being symp-
tomatic (so that f 2 0:2;0:95½ �) (Mizumoto et al., 2020; Day, 2020;
Zhou et al., 2020; Nishiura et al., 2020; Kimball, 2020; Quilty et al.,
2020; Tian et al., 2020; Sun et al., 2020; Lavezzo et al., 2020). As of
May 2020, the CDC estimated the asymptomatic proportion of pos-
itive cases to be 35% (COVID-19, 2020), so we fix f as
f ¼ 0:65: ð33Þ
Recall that fcAI is the transition rate from the asymptomatic

(but infected) populations AD and AN . Again interpreting as the
expected value of a Poisson process, we can relate fcAI to the
expected time until asymptomatic individuals shows symptoms
fcAI ¼
1
tAh i : ð34Þ

That is, fcAI is inversely proportional the time it takes to exhibit
symptoms. There are different estimates of this time period. The
original analysis based on 88 confirmed cases in Chinese provinces
outside Wuhan, using data on known travel to and from Wuhan,
gave an estimate of 6.4 days (Lauer et al., 2020). Later estimates
of community spread have been closer to 5.1 days, with a 95% con-
fidence interval of 4.1 to 7.0 days (Li et al., 2020; Lauer et al., 2020).



Table 2
A list of estimated parameters values to be used in our simulations.

Parameter Value Reference

bA Calibrated to 0.86 so that R0 ¼ 1:4
when h2 ¼ 0:5 and R0 ¼ 5:6 when
h2 ¼ 0.

See Section 2.2

�A 0;1½ � as social distancing
decreases contacts. Calibrated, as
described for bA , to 0.12.

See Section 2.2

�S Assumed equal to �A See eqn. (40)
bI bI ¼ 2�bA , assuming

symptomatics stay at home (so
distancing them has same impact
as distancing asymptomatics) and
are twice as infective as
asymptomatics. Recall
� :¼ �A ¼ �S .

Li et al. (2020)

h2 Varied in manuscript. Units are
per day.

See Section 2.2

cAI 0:296 (per day). Ferguson et al. (2020)
cIR 0:048 (per day). WHO (2020)
f 0;1½ �, using 0:65. COVID-19, 2020
d 2:4� 10�3 (per day). Worldwide mortality

figures on 03/29/2020 from
Dong et al. (2020)
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We picked the number tAh i ¼ 5:2 in this interval, but our results do
not change substantially if a slightly smaller or larger value is used.
Thus at our chosen value of f , this yields

cAI ¼ 0:296 per day: ð35Þ
We fix this value in the remainder of the work. Note that all

rates will be measured in days.
In a similar manner, we estimate the parameter cIR, the transi-

tion rate from infected to recovered. The February 2020 joint
WHO-China report (WHO, 2020) found an average recovery time
of 2 weeks at the time of the onset of symptoms for mild cases,
and 3� 6 weeks for severe cases. In our model, we do not distin-
guish between the types of symptomatic individuals, and hence
we roughly estimate an average 3 week recovery period. Hence

cIR ¼ 1
21

ð36Þ
¼ 0:048 per day: ð37Þ
Finally, we can estimate d, the disease mortality rate, using the

fraction of reported deaths with respect to the total disease num-
bers. Using global data reported on the John Hopkins dashboard
(Dong et al., 2020) on 03/29/2020, there were a total of 33876
deaths and 717656 reported cases, so that

d
dþ cIR

¼ 33876
717656

: ð38Þ

Using the above value of cIR in (37), we thus have that

d ¼ 2:4� 10�3: ð39Þ
The remaining parameters are bA; bI; �A, and �S. For simplicity,

we assume that the effect of social distancing the susceptible,
asymptomatic, and symptomatic individuals is symmetric, so that

� :¼ �I ¼ �A ¼ �S: ð40Þ
The values of bA and � are calibrated to reported R0 values. Using

data from PolicyLab at CHOP for the Bronx, NY, we use an R0 ¼ 5:6
when h2 ¼ 0 (corresponding to 3/23/20), and R0 ¼ 1:4 when
h2 ¼ 0:5 (corresponding to one week later on 3/30/20) (COVID-
Lab, 2020). Note that h2 ¼ 0:5 is chosen to represent that approxi-
mately 75% of the susceptible population acts to distance one
week after mandates have been issued; see Eqs. (29) and (30).
Keeping all other parameters as specified in Table 2, the only
way our model can match the conditions in the Bronx from 3/23
to 3/30/20 is if:

bA ¼ 0:86; and � ¼ 0:12:

bI is calibrated from bA using:

bI ¼ 2bAð Þ�: ð41Þ
This assumes that symptomatics are twice as infective as

asymptomatics (Li et al., 2020). The scaling by � indicates that
symptomatic individuals are assumed to socially distance.

3. Results

3.1. Basic Reproduction Number, R0

A central subject in the analysis of epidemiological models con-
cerns the stability of a ‘‘disease free steady state” (abbreviated
DFSS from now on), in which all infective populations are set to
zero. Stability of a DFSS means that small perturbations, that is to
say, the introduction of a small number of infectives into the pop-
ulation, results in exponential decay back to the set of DFSS’s. In
other words, the infection does not take hold in the population.
Mathematically, this means that the linearization at any of the
7

DFSS’s is described by a matrix in which all eigenvalues corre-
sponding to the infective compartments have negative real part.
Conversely, if the DFSS is unstable, then the infection will initially
expand exponentially. It is important to realize, however, a very
subtle and often misunderstood fact. Instability of the DFSS does
not necessarily imply that the infection will keep increasing forever.
Linearized analysis is only local, and says nothing about behavior
over long time horizons, because nonlinear effects can dominate
once the system is away from the DFSS; indeed, we will show that
we find this phenomenon in our model (provided that social dis-
tancing directives are introduced).

A fundamental and beautiful mathematical result is that a DFSS
is exponentially stable if and only if the basic reproduction number
R0 is less than one. Intuitively, R0 is the average number of new
infections that is caused by a typical individual during the period
that this individual is infective. Mathematically, R0 is defined as
the dominant eigenvalue of a certain positive matrix, called the
next generation matrix (Diekmann et al., 1990; Diekmann et al.,
2010). We briefly explain this method in Appendix B, and therein
derive that for our six-compartment SIR model in Eqs. (8)–(13):

R0 ¼
g11 þ g22ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 � g22ð Þ2 þ 4g12g21

q
2

; ð42Þ

where gij represents the ði; jÞ-entry of the next generation matrix G
evaluated at the DFSS. As we derive in Appendix B:

g11 ¼ �S�AbA h2 þ cAIð Þh2

cAI cAI þ h1 þ h2ð Þh1
þ �SbAh2

cAI cAI þ h1 þ h2ð Þ þ
�SbI fh2

dþ cIRð Þh1

� �
S�N ð43Þ

g12 ¼ �S�AbAh
2
2

cAI cAI þ h1 þ h2ð Þh1
þ �SbA h1 þ cAIð Þh2

cAI cAI þ h1 þ h2ð Þh1
þ �SbI fh2

dþ cIRð Þh1

 !
S�N ð44Þ

g13 ¼ �SbIh2

dþ cIRð Þh1
S�N ð45Þ

g21 ¼ �AbA h2 þ cAIð Þ
cAI cAI þ h1 þ h2ð Þ þ

bAh1

cAI cAI þ h1 þ h2ð Þ þ
bI f

dþ cIR

� �
S�N ð46Þ

g22 ¼ �AbAh2

cAI cAI þ h1 þ h2ð Þ þ
bA h1 þ cAIð Þ

cAI cAI þ h1 þ h2ð Þ þ
bI f

dþ cIR

� �
S�N ð47Þ

g23 ¼ bI

dþ cIR
S�N ð48Þ

g31 ¼ g32 ¼ g33 ¼ 0; ð49Þ

where S�N represents the value of SN at the DFSS being studied.
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We begin here by studying the value of R0 under various scenar-
ios of disease progression. We distinguish these scenarios by a
number we call R� that gives the percent of the population that
has ‘‘recovered” from the disease2. Herein we assume all recovered
have developed immunity, though that assumption could easily be
removed. One can interpret R� ¼ 0 as the very earliest stage of the
pandemic, when there are no recovered individuals in the popula-
tion. Because we are assuming all recovereds stay recovered,
increasing values of R� correspond to later stages of the epidemic,
as long as the current number of infected individuals is small com-
pared to the total number of susceptibles. Hence we can think of
R� as measuring the response of a susceptible population with a cer-
tain degree of immunity ‘‘built in,” which will naturally occur as
time progresses in any pandemic. For convenience in calculations,
we normalize the populations at a DFSS to 1, that is, we divide
SN; SD, and R by the total population (at DFSS) N ¼ SN þ SD þ R.

In Fig. 3, we show how R0 predicted by our model changes as a
function of the fraction recovered R� and the rate of social distanc-
ing h2. We observe that when R� < 0:3;R0 > 1 unless social distanc-
ing is implemented at a rate faster than h2 ¼ 0:5, which is already a
very rapid rate. The contact rescaling factor CoRF is kept constant,
as explained in the Introduction. While it is easy to interpret this as
saying controlling the disease is hopeless unless society could act
unrealistically quickly, this is not the case. As discussed above,
instability of the DFSS does not characterize global temporal
behavior. It does tell us that an ‘‘overshoot” and headline-
grabbing infection will initially take hold. Thus, social distancing
directives will initially appear to have failed in their intended
effect. But, as time goes on and individuals limit their contacts
and more individuals recover, social distancing can eventually
result in R0 < 1, which would result in the epidemic dying out
exponentially.

The number R0 is computed at a disease-free state, and quanti-
fies the initial response of the system to a small perturbation (add-
ing infectives). When using R� as a parameter, one is implicitly
assuming that the number of infectives is (approximately) zero,
which is not quite correct. This assumption may be reasonable if
the number of infectives at the given time is a small fraction of
the current population, as if studying the possibility of a ‘‘second
wave” prior to the relaxation of distancing policies. In any event,
even though it is based on linearization, we found out that analysis
based on R0 is in excellent agreement with simulations, and hence
we use formulas for R0 as a function of R� (and of other parameters
in the model as well) to understand how sensitive R0 is to different
social distancing rates, the point in time when such directives are
introduced (as quantified by R�), and other parameters. Also note
that, even when R0 > 1, social distancing can still ‘‘flatten the
curve”, as we show in Section 3.2. This means that the peak infec-
tion levels will be lower, which reduces the stress on the health-
care system.

To explore the sensitivity to h2 further, we note that the limit of
R0 as h2 ! 1 can be written as

ffiffiffi
p

p
=q, where

p¼ 10000�2Sb
2
I f

2c2AI þ20000�A�2SbIbAdfcAI þ20000�A�2SbIbAfcAIcIRþ10000�2A�
2
Sb

2
Ad

2

þ20000�2A�
2
Sb

2
AdcIRþ10000�2A�

2
Sb

2
Ac2IR þ100�A�SbAdþ100�A�SbAcIRþ100�SbI fcAI

q¼ 2 100dcAI þ100cAIcIRð Þ:

The formulas follow from the explicit calculation of R0 given in
Appendix B. We show in Fig. 4 plots of R0 as a function of h2 for
R� ¼ 0 (on the interval h2 2 0;1½ �), as well as its derivative and its

differential sensitivity, defined intuitively as ‘‘dR0=R0dh2=h2
” and formally

as d logR0
d logh2

¼ dR0
dh2

� h2R0. The fact that this sensitivity rapidly approaches
2 The use of the letter ‘‘R” for ‘‘recovered” and for ‘‘R0” is an unfortunate
coincidence.
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zero means that after a threshold rate of social distancing, small rel-
ative changes in the rate of social distancing have essentially no effect
on relative changes in R0.

Mathematically, it is interesting that the derivative of R0 (and
also the sensitivity) has a local minimum, in other words

d2R0=dh
2
2 can change sign. This is necessary because

d2R0=dh
2
2 � �114:3 < 0 at h2 ¼ 0, but this second derivative cannot

stay negative since R0 is bounded below. Taken together, these
plots further confirm that increasing the rate of social distancing
beyond a certain threshold does not result in significant changes
to R0.

We proceed by exploring the sensitivity of R0 to various combi-
nations of parameters, all including the social distancing rate h2.
The first parameter we consider is f , which determines the fraction
of asymptomatic individuals that progress to having disease symp-
toms. Varying this parameter is important, as different studies
have reached different conclusions about its value. As Fig. 5 indi-
cates, the value of R0 is sensitive to the fraction of individuals that
develop symptoms, whether we have no immunity (R� ¼ 0) or par-
tial immunity (R� ¼ 0:25) in the population.

In particular, a larger likelihood of transitioning from asymp-
tomatic to symptomatic increases R0. This occurs because both
asymptomatics and symptomatics spread the disease, so spending
time in both A and I means an individual has more time to spread
the disease than if an individual transitions directly from the
asymptomatic pool to the recovered pool. If instead of using the
CDC estimate that f � 0:65 (COVID-19, 2020), we used earlier data
from the Diamond Princess cruise ship (Mizumoto et al., 2020) of
f � 0:821, without any social distancing directives, this increase
in f would increase R0 from 5.6 to 6.3 at our baseline parameters.
Yet another data set out of Italy suggested f may be closer to
0.57 (Lavezzo et al., 2020). Without any social distancing direc-
tives, this reduction in f would reduce R0 from 5.6 to 5.3 at our
baseline parameters. While these changes are not drastic, we do
note that R0 is more sensitive to f as h2 increases, as can be seen
in Fig. 5 by observing the increasing steepness of the contours as
h2 increases. Further, the fact that there are different strains of
SARS-CoV-2 in circulation could mean that f varies depending on
the dominant strain in a region (Yao et al., 2020).

Another uncertainty surrounding COVID-19 is how infectious
the asymptomatic individuals are, which we call bA in our model.
In Fig. 6, we explore how the contagion level of the asymptomatics
influences R0 under varying rates of social distancing. We observe
that if asymptomatics are not very contagious (bA is small), then R0

is not very sensitive to social distancing directives as measured by
h2 (R0-clines are almost vertical). This can be explained by our
assumption that symptomatic individuals are assumed to socially
distance themselves, and therefore have minimal interaction in
our model with susceptibles. When this is the case, the disease is
mainly spread by non-socially distanced asymptomatics. And, if
the transmission rate from these individuals is small, socially dis-
tancing the asymptomatics and susceptibles has little impact on
the progression of the disease. If, on the other hand, bA is suffi-
ciently large, then asymptomatics can fairly readily spread the dis-
ease, and we see a much stronger impact of social distancing on R0

(R0-clines get much less steep as bA increases).
Another major assumption of our model is that social distancing

reduces the transmission rate of the disease by a factor called the
contact rescaling factor (CoRF). We formulate our model so that
socially distancing the susceptibles and the asymptomatics (note,
infectives are assumed to be socially distanced) are described by
different CoRF values of �S and �A, respectively. However, in all cal-
culations and simulations, we assume that the extent that social
distancing reduces the transmission rate is the same independent
of whether an individual is susceptible, asymptomatic, or infected.



Fig. 3. Basic reproduction number as a function of the social distancing rate parameter h2, and the fraction of the population that is immune R� . All other parameters as in
Table 2.

Fig. 4. Plots of R0, derivative dR0=dh2, and differential sensitivity d logR0
d logh2

¼ dR0
dh2

� h2R0 , all as functions of h2 at R� ¼ 0. Different ranges picked for clarity. dR0=dh2 and differential
sensitivity converge to zero.
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That is, we take � :¼ �S ¼ �A. The value of the CoRF � is another way
to measure social-distancing directives. While h2 describes rate of
social distancing, � describes the severity of the measures. While
not realistic for a disease like COVID-19, if socially distancing
meant an individual was exposed to nobody else, the contact
rescaling factor � would be 0. Intuitively, and as we quantitatively
demonstrate in Fig. 7, at very small �, the rate of social-distancing
h2 is less important. Social-distancing is still needed in order for R0

to be less than 1, as it reduces the transmission from the distanced
symptomatic individuals to susceptibles. In particular, R0 drops
below 1 at the rate of h2 ¼ 0:3 when there are no recovered in
the population, and at h2 ¼ 0:24 when 25% of the population has
recovered.

Increasing the CoRF � can be thought of as increasing the num-
ber of contacts socially-distanced individuals have. With all other
parameters fixed as specified in Table 2, we see that the social dis-
tance rate h2 can only result in an R0 < 1 when there is little immu-
nity in the population (for h2 6 1) if the CoRF � is less than 0.15.
Beyond this value, even socially-distanced individuals have too
many contacts, and R0 > 1. Intuitively, we see that R0 quickly
9

increases as the CoRF increases. This shows that, even if individuals
act very quick to socially distance (there is a large h2), if they have
too many contacts while social distancing, social distancing will not
be sufficient to drive R0 < 1.

3.2. Time-varying social distancing (h2 tð Þ)

We now investigate how dynamic social distancing protocols
affect the spread of the epidemic in the six equation SIR model
introduced in Section 2.1.

3.2.1. No distancing dynamics
We begin with the predicted outbreak dynamics in the case of

no implemented social distancing. As discussed in Section 3.1, with
parameters estimated from Bronx data in March, we expect

R0 � 5:6; ð50Þ

meaning the disease should spread rapidly throughout the popula-
tion. No social distancing implies that



Fig. 5. Basic reproduction number as a function of the social distancing rate parameter h2 and fraction of individuals who become symptomatic (f ) at different pandemic
stages. All other parameters as in Table 2. The corresponding heat maps can be found in Appendix C.

Fig. 6. Basic reproduction number as a function of the social distancing rate parameter h2 and infectivity rate of asymptomatics bA at different pandemic stages. All other
parameters as in Table 2. The corresponding heat maps can be found in Appendix C.
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h2 tð Þ � 0 ð51Þ

h1 tð Þ ¼ 1
1þ 10h2 tð Þ ð52Þ

� 1: ð53Þ
Initial conditions consist of all susceptible individuals socially

non-distanced, no population immunity, and a small number of
symptomatic individuals (100 in 10 million). More precisely,

SD 0ð Þ ¼ 0
SN 0ð Þ ¼ 1� I 0ð Þ
AD 0ð Þ ¼ 0
AN 0ð Þ ¼ 0

I 0ð Þ ¼ 10�5

R 0ð Þ ¼ 0:

ð54Þ
10
Of course, in reality it is likely that a number of asymptomatic
people also exist in the population at this time (t ¼ 0), but for sim-
plicity we ignore them. Note that I 0ð Þ was taken to be consistent
(as an order of magnitude) with the reported cases in New York
City (NYC) before a state of emergency was declared (89 cases on
March 7, with a total NYC population of approximately 8:4 mil-
lion). These will be the initial conditions used throughout the
remainder of the manuscript, as we compare intervention strate-
gies based on responses to the above infection data at day t ¼ 0.
The results of simulating the model in eqns. (8)-(13) for 180 days
are provided in Fig. 8. This will serve as a baseline for the severity
of the outbreak in a ‘‘worst-case scenario.” Social distancing strate-
gies will be compared to these worst-case figures, some of which
we highlight below:

1. The symptomatic infected population (I) reaches a peak value of
40%.



Fig. 7. Basic reproduction number as a function of the social rate distancing parameter h2 and the contact rescaling factor (CoRF) � at different pandemic stages. CoRF
measures the impact of social distancing on infectivity rate. All other parameters as in Table 2. The corresponding heat maps can be found in Appendix C.
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2. The time to this symptomatic peak is approximately 30 days.
3. The model predicts that a peak of 60% of the total infected pop-

ulation (symptomatic and asymptomatic) will occur at day 24.
As a reminder, these numbers are based on parameters cali-
brated to the outbreak in the Bronx NY, a locale hit very hard
by the virus.

4. By day 70;90% of the original the population will be recovered
(assuming recovered individuals do not lose immunity).

5. Over 3% of the population will die during the outbreak (3:11%).
6. Compartments SD and AD never comprise any percentage of the

population. This is because of the initial conditions, and because
no distancing guidelines have been issued in this ‘‘worst-case
scenario”.

3.2.2. Delayed response
We first investigate disease dynamics in response to delayed

social distancing protocols. We assume that h2 tð Þ takes the follow-
ing form:

h2 tð Þ ¼ 0; 0 6 t 6 tc
h2; tc < t 6 tf :

�
ð55Þ

That is, we assume that social distancing does not occur until an
implementation time tc , after which h2 tð Þ is kept at a constant

value h2. For a visualization, see Fig. 9. Since many policies are
implemented in a 48 h (2 day) window, we set

h2 ¼ 0:5: ð56Þ
Fixing all other parameters as in Table 2, we simulate the model

for a range of policy activation days tc; results are shown in Fig. 10.
Under the ‘‘best case scenario” considered here, where social dis-
tancing is only delayed by five days, the model predicts that in this
hard-hit area of the Bronx, nearly a third of the population has con-
tracted COVID-19 and recovered from the disease. Although
appearing like a very high percent given social distancing, this pre-
diction is fairly consistent with antibody values being reported. For
instance, in mid-August (after about five months of social distanc-
ing), NYC released data (New York City, 2020) saying that approx-
imately 21.6% of NYC residents have SARS-CoV-2 antibodies (New
York Times, 2020).

In certain hard-hit neighborhoods, the percent of residents with
antibodies exceeded 50%. Looking now across a range of social dis-
11
tancing delay times, we observe an apparent ‘‘flattening of the
curve,” if the distancing was enacted quickly enough. That is, if poli-
cies were enacted too late, social distancing has little effect on the
course of the outbreak. This can be observed by noticing that the
response to a delay of 25 days is nearly identical to one with no
distancing imposed. This is hardly surprising, since if a society
waits too long to start socially distancing, the disease will have
already spread through much of the population. However, if the
delay is short enough (i.e. the response quick enough), we see a sig-
nificant reduction in the peak of the infected population (3% at the
peak for a tc ¼ 5 days, compared to the worst-case of 40%). Fur-
thermore, there seems to be a critical ‘‘window of opportunity”
for commencing social distancing: the difference between waiting
15 and 20 days is quite striking (peak of 7% in the former, up to
30% in the latter).

Notice that this window of opportunity ends at a time (about 15
days) that is much earlier than the time at which infections would
have peaked in the absence of control measures (about 30 days). We
think of (roughly) 15 days as a critical implementation delay (CID).
We investigate this further by plotting both the peak symptomatic
population and the time to this peak in Fig. 11, where social dis-
tancing is begun at t ¼ tc days, for tc ¼ 0;1;2; . . . ;35. This provides
a quantification of what we saw in Fig. 10: if the delay is relatively
small or large, the response (measured as peak infected percent-
age) is robust to the delay. However, there is a critical window
about which a ‘‘bifurcation” occurs. For our parameters, the bifur-
cation value appears to be approximately 2 weeks. In those first
two weeks, if social distancing is begun, the outbreak will be shar-
ply inhibited. However, near this critical value, delaying even a few
extra days could drastically increase the total number of symp-
tomatic individuals. For example, waiting 17 days yields a peak
of 14% symptomatic, while waiting an extra week increases the
peak to over 35%. Thus we see that policies will be effective in a
certain window, and that it is critical to implement them within
that window. Indeed, delaying even by a few days outside of that
window could severely increase the total number of infections.

We also note that the time to peak number of symptomatic indi-
viduals (right panel, Fig. 11) increases the sooner the distancing
procedure is implemented. This is intuitive, and combined with
the previous result says that the more quickly social distancing is
enacted, the longer you will have to deal with a smaller number



Fig. 8. Population responses in the absence of social distancing. Here h2 tð Þ � 0, i.e. no social distancing has been implemented. We simulated the model introduced in
Section 2.1 for 180 days. Note that the infected symptomatic population (I, solid red curve) comprises about 40% of the population by day 30. Units of vertical axes are
percentage of initial population.

Fig. 9. Social distancing control as a function of the delay tc . Functional form for h2

used in Figs. 10 and 11. See also Eq. (55).
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of sick individuals. However, the number of sick individuals is rel-
atively constant up until a certain time delay, where once passed,
there will be many more (over ten times) the number of sick peo-
ple in the population at its worst moment. Hence, on the policy
level, if the existence of the infection is known sufficiently early,
it is okay to take some time to plan a strategy, but once decided,
it must be implemented quickly and efficiently. On the other hand,
implementing even faster than the CID time results in the peak infec-
tions being postponed by a huge margin, thus giving more time for
the development of vaccines and treatments. For example, a delay
of 15 days has a peak infection early on in the epidemic (at about
50 days), while implementing the same distancing policy 10 days
earlier delays the peak until approximately 1 year. In both cases,
the peak infected populations are similar (7% compared to 3%, still
both substantially smaller than the predicted 40% non-distanced
dynamics), but the time scales over which the peak occurred are
much different. Thus, one must take into account both factors
(peak, and time-to-peak) when designing distancing strategies.
12
3.2.3. Periodic relaxation
We next investigate the effects of periodically relaxing social

distancing protocols. Consider a protocol where social distancing
measures are implemented for a fixed time window Dton followed
by a relaxation Dtoff . The above is then repeated until a final time tf
is reached. We envision a situation where the population is
allowed to interact normally for (say) one week, but must then iso-
late for the following week. Such policies may lessen the economic
and psychological impact of extended complete isolation by allow-
ing limited windows in which individuals may work, socialize, etc.
For a visualization of a simplified version of such a policy, see
Fig. 12. Note that we consider total relaxation (h2 ¼ 0) during
Dtoff , but of course this could be adjusted; here we consider the
simplest possible periodic (i.e. metronomic) policy.

In Fig. 13, we investigate the dynamical response to several
schedules with varying number of weeks of distancing. We assume
that the lengths of activation and relaxation are equal, so that

Dton ¼ Dtoff ¼: Dt ð57Þ
Note that this restriction allows a relatively unbiased compar-

ison between distancing protocols, since all will have distancing
enacted for the same total amount of time. There is a slight dis-
crepancy based on tf , since the schedules may end at different
points of their respective cycles, but this effect is minimal. Hence
we conclude that each schedule will have approximately the same
economic impact, and hence in the following we only examine the
disease response. Note that we fix �h2 ¼ 0:5 as in Section 3.2.2.

The results presented in Fig. 13 are quite surprising and non-
intuitive. Note that they all have delayed the onset of the peak of
the epidemic by a similar length of time (all around 45–65 days,
whereas the epidemic would have originally peaked at around
30 days). However, the degree to which the peak has been sup-
pressed is different among the relaxation schedules. It appears that
high frequency pulsing (small Dt) does better than some extended
strategies (compare Dt ¼ 7 to Dt ¼ 14;21;28), but worse than



Fig. 10. Population response over a 360 day period in which social distancing is begun after the specified delay time tc , and maintained throughout the year (see Fig. 9). Left
panel denotes the symptomatic (I) temporal response; right indicates the recovered percentages for each policy. Red curves correspond to no social distancing (see Fig. 8).
Note that a delay of 25 days is hardly discernible from no social distancing, while a significant response transition occurs for delays shorter than 15 days.

Fig. 11. Peak infected population percentage (left) and time to this peak (right) when social distancing is delayed. Here the horizontal axis represents the delay in
implementing social distancing (from time t ¼ 0), i.e. the value tc in Eq. (55). The dotted red line denotes the corresponding values when no social distancing is enacted
(Section 3.2.1). Note the rapid increase in peak symptomatic population beginning around 15 days, which we term a critical implementation delay (CID).
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others (compare Dt ¼ 7 to Dt ¼ 17). This seems to indicate that
there is some optimal pulsing period. Furthermore, the curve for
Dt ¼ 17 days is quite interesting; we see a significant reduction
in peak population infection (22%, compared to 30% for Dt ¼ 7
days, and approximately 40% for no social distancing) together
13
with an extended ‘‘flattening of the curve”, which does not appear
in the others. We also note that all strategies end with similar
recovery rates (all above 93%, top right panel, Fig. 13). To under-
stand the behavior near Dt ¼ 17, we simulate a series of strategies
with Dt near this value, and observe how the symptomatic



Fig. 12. Pulsing of socially distancing protocol. Social distancing is enacted for a
time length of Dton days, followed by a full relaxation for Dtoff days. This schedule is
then repeated until a time window tf has been reached.

J.L. Gevertz, J.M. Greene, C.H. Sanchez-Tapia et al. Journal of Theoretical Biology 510 (2021) 110539
response varies. Results are provided in Fig. 14 for
Dt ¼ 16;17;17:6;18;19 days. Note that the peak infected propor-
tion appears to interact with a concavity change near Dt ¼ 17:6,
and this interaction causes a significant decrease in the peak
together with an extended ‘‘flattening” period. However, it is rela-
tively sensitive to the timing, so that a slight error in timing (or a
slight variation in parameters) will cause a large increase in peak
infected numbers. Another interesting property is apparent in the
curve with Dt ¼ 17: we see an initial flattening and even reduction
of infections, followed by an increase in the number of symp-
tomatic individuals. Hence for some strategies, the progression
may yet worsen even after an apparent downward trend.
Phenomenologically, we see a ‘‘bifurcation” between two ‘‘unimodal”
behaviors in time (earlier vs. later peak) that happens through a ‘‘bi-
modal” (two maximal) time behavior (centered around a period of
approximately 35 days corresponding to 17.5 days of distancing and
17.5 days of non-distancing).
Fig. 13. Population response to strategies based on periodic relaxation of social distancin
(IÞ for pulsing strategies with Dton ¼ Dtoff ¼ Dt. Non-socially distanced dynamics (red cu
and bottom panels are total susceptible individuals (left) and socially-distanced suscept
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We also globally investigate the response to different pulsing
frequencies (different Dt) on the critical infection measures,
namely peak symptomatic individuals and the corresponding time
of this peak. A simulation of pulsing strategies with periods rang-
ing from Dt ¼ 1 day to Dt ¼ 70 days is presented in Fig. 15. The left
panel denotes a clearly non-monotone global response to different
periodic relaxation schedules. Furthermore, we observe a global
minimum near Dt ¼ 17:6 days, as discussed previously. Note also
the sensitivity to the period: Dt ¼ 17:6 days yields a peak of only
22%, while a slightly longer relaxation schedule of Dt ¼ 20 days
produces a peak of over 33%. Hence, designing such strategies is
inherently risky, and should be done only when parameter values
are precisely known.

3.2.4. Relaxing social distancing
We next investigate the rate at which social distancing policies

are eased after a fixed period of time. Such control strategies may
be important to prevent a second wave of infection arising soon
after policies are relaxed. In this section, we model the effects of
a controlled relaxation on outbreak dynamics. The control we con-
sider takes the form of a linear decrease in regulations after a fixed
isolation period (t1 days). The rate of decrease is determined by an
end time te, after which social distancing is no longer encouraged.
Thus, a larger value of te corresponds to a slower easing of restric-
tions. For a visualization, see Fig. 16. We fix

t1 ¼ 60 days: ð58Þ
This captures conditions as of May 2020, given that our model

was calibrated so that social distancing was implemented starting
March 23, 2020. Simulation results for select relaxation rates
appear in Fig. 17, while a global characterization is provided by
Fig. 18. Note that te ¼ 60 days corresponds to immediately turning
social distancing off (a step, i.e. infinite slope), while te ¼ 360 cor-
responds to a relaxation rate of slope 0:0017. Results indicate that
gradual relaxation does have a significant effect on ‘‘flattening the
g; see Fig. 12. Top left panel denotes temporal dynamics of symptomatic population
rves) are provided for comparison. Top right panel is recovered population in time,
ible individuals (right). Initial conditions are described in Section 3.2.1.



Fig. 14. Symptomatic population response to strategies based on periodic relaxation of social distancing (similar to Fig. 13), but for policies with Dt near 17 days.

Fig. 15. Response of infection dynamics to periodic relaxation of social distancing for a range of frequencies. Policy period is assumed for 360 days. Left panel denotes peak
symptomatic population (percentage) at any one time. Right panel is the corresponding time (in days) when this peak occurs. Initial conditions are described in Section 3.2.1.
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curve” in that it results in a lower peak infected population over a
larger time interval (compare te ¼ 60 to te ¼ 360 in Fig. 17). Fig. 18
further supports this claim, as we compute little variation in the
peak for small relaxation times (corresponding to more quickly
ending protocols), but that a substantial decrease in symptomatic
burden is obtained as te is increased. Indeed, for a gradual relax-
ation over a one year period (360 days), we see a peak symp-
15
tomatic population of only 19%, which is significantly lower than
the peak when immediately re-opening after 60 days (40%). Note
that the latter schedule does not result in any significant peak mit-
igation when compared to the policy of no social distancing: it
merely delays the same peak by approximately 56 days. Hence it
seems crucially important to gradually relax social distancing
guidelines, as gently as is economically feasible, to help mitigate



Fig. 16. Relaxing social distancing measures after an initial period of strict
regulations for t1 days. Rate is decreased linearly from �h2 at day t1 to 0 at day te .
After day te , no distancing regulations are in place.
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the outbreak. We also see that, as in Section 3.2.3, all strategies
result in a significant fraction of the surviving population being
immune by tf ¼ 360 days; the most gradual relaxation policy has
the lowest immune population of just under 90%. In other words,
under the assumption that infection confers immunity that lasts at
least a year, herd immunity has been largely achieved in all
protocols.

3.2.5. Relaxation and a second outbreak
In Section 3.2.4, we saw that the rate of relaxation of social dis-

tancing was related to the overall peak symptomatic population:
relax too quickly, and the peak is delayed but not inhibited, but
gradually lift polices and this peak is both reduced and delayed
to a substantial degree. (Figs. 17 and 18). In that analysis, we
assumed a fixed distancing period of 60 days, after which relax-
ation protocols are implemented. In reality however, policies are
not designed utilizing artificial timelines, but instead rely on mea-
sured data relating to the epidemiology of the outbreak. A question
many states and counties have grappled with is the following: once
we observe a ‘‘flattening of the curve” (e.g. a plateau of new
reported cases), how should relaxation be implemented? In this
section, we use our model to address this question. Consider an ini-
tial outbreak as discussed in Section 3.2.1 (specifically initial con-
ditions in Eq. (54)), assuming that an immediate strict social
distancing protocol is enforced. Mathematically, this means that

h2 tð Þ � �h2: ð59Þ
As in the previous sections, we fix

�h2 ¼ 0:5; ð60Þ
which implies that

h1 tð Þ � 1
6
: ð61Þ

The above social distancing policies are applied until the out-
break, here measured as the growth of the symptomatic popula-
tion, dissipates. That is, we apply social distancing as illustrated
in Fig. 16 until a time t1 ¼ td such that

dI
dt

tdð Þ ¼ 0: ð62Þ

According to our model, once the peak is achieved at time td, we
see that the ‘‘worst is over”. This is confirmed by the decrease in
the infective population when extreme social distancing is contin-
ued for 1080 days, far beyond the peak infection time of td ¼ 395,
as shown in Fig. 19(a). Therefore, it is a reasonable policy decision
to start to relax social distancing measures as in Fig. 16 once the
16
peak has been obtained. However, the plot of the recovered indi-
viduals suggests we need to be careful about how relaxation is
implemented. If we completely relaxed all measures immediately
at day td ¼ 395, only 23% of the population is recovered (and
assumed to be immune). According to our calculations of R0 in Sec-
tion 3.1 (in particular Fig. 3), R0 > 1 when h2 ¼ 0;R� ¼ R tdð Þ ¼ 23%
and the number of infectives will increase. This highlights the need
to carefully design relaxation policies in order to avoid a second
wave. Here, we now explore how to design such a relaxation
strategy.

We thus consider a relaxation policy similar to that shown in
Fig. 16, with td taking the role of t1, and investigate the response
to different relaxation policies (different te). From Fig. 19, we see
that td is given by

td ¼ 395days: ð63Þ

The dynamical response of our model to selected relaxation
rates appears in Fig. 20, while a more global characterization is
provided in Fig. 21. Note in the left panel of Fig. 20, all protocols
have the same response until time t ¼ td ¼ 395 days (black curve);
this is because social distancing is identically enforced for
0 6 t 6 td. After td, we see a different infection response based
upon the rate at which distancing policies are relaxed. Note that
if the rate of relaxation is too large and social distancing is stopped
too soon (te ¼ 400;500;600 days in Fig. 20), we see a second wave
of infections, larger than the original peak. For example, if social
distancing policies are concluded by day 400 (a very small relax-
ation period, since relaxing begun on day 395), we see a second
peak of symptomatic individuals of over 26% of the population
by day 417; compare this with the original peak of 3:2%. However,
if relaxation is relatively slow (for example, te ¼ 800 days meaning
distancing measures are gradually relaxed over 405 days), we see
no second wave of infection. Hence in designing policy, we must
carefully consider the manner in which social distancing policies
are removed; if it is too fast, then we risk undoing the results
achieved in the first td ¼ 395 days. In Fig. 21 we provide a plot of
the peak of the infected population as a function of both the full
relaxation time (left) and the relaxation rate (right). Note that
the rate is the speed (magnitude) of the relaxation schedule, and
corresponds to the absolute value of the slope in Fig. 16. The time
te and rate are thus related via Figs. 22–24

rate ¼
�h2

te � td
: ð64Þ

All relaxation policies are initiated at day td ¼ 395, where the
symptomatic population has reached a peak value of 3:2%. If no
second wave occurs (by second wave we mean a peak value of
symptomatic individuals larger than the original peak at day td),
then the maximum value of I corresponds to this 3:2%, indicated
with a dashed red line in both panels of Fig. 21. Hence we compute
a critical relaxation rate rc , such that if social distancing is relaxed
faster than rc , a second outbreak will occur (right panel of Fig. 21).
However, if distancing restrictions are eased slowly enough (i.e.
slower than rc), a second peak never occurs, and herd immunity
is largely achieved after 1080 days (again, assuming it exists). For
our parameters, we find that this critical rate is

rc � 1:65� 10�3: ð65Þ

Hence we may provide an estimate of the degree to which social
distancing may be relaxed. Of course, this value depends critically
on parameter values and other assumptions which remain (as of
writing) unknown. Indeed, the main conclusion should not be the



Fig. 17. Symptomatic (left) and recovered (right) populations for policies which relax social distancing at a rate determined (inversely) by te , the day at which distancing
policies are completely removed. The response for no social distancing implemented is included for reference (red curves). Note that te ¼ 60 corresponds to immediate
relaxation, and has a similar peak to the non-distanced curve. However, gradual relaxation protocols appear to both decrease the peak number of symptomatic individuals,
while also spreading out their distribution.

Fig. 18. Response of infection dynamics to different relaxation rates after 60 days of social distancing. Policy period is assumed for 360 days. Left panel denotes peak
symptomatic population (percentage) at any one time. Right panel is the corresponding time (in days) when this peak occurs. Initial conditions are described in Section 3.2.1.
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exact value given in Eq. (65), but rather the phenomenon that the
‘‘speed” of relaxation has significant consequences for subsequent
outbreaks, which we believe is robust with respect to parameter
values.
17
4. Discussion & conclusion

In this work, we have introduced a novel epidemiological model
of the COVID-19 pandemic which incorporates explicit social dis-



Fig. 19. Response to 1080 days of social distancing, with h2 as in Eq. (60) for t 2 0;1080½ � days. Note the peak of the symptomatic population is approximately 3:2% of the
population, occurring at around day td ¼ 395. As suggested by the right panel, the population is still largely susceptible, and one may suspect that a second epidemic will
occur if social distancing protocols are immediately abandoned.

Fig. 20. Relaxation that was started during flattening. Symptomatic (left) and recovered (right) populations for policies which relax social distancing at a rate determined
(inversely) by te , the day at which distancing policies are completely removed. The response for no social distancing implemented is included for reference (red curves). All
curves besides the red curve are identical for the first td ¼ 395 days of treatment, when social distancing is implemented with h2 tð Þ � �h2 ¼ 0:5 per day for t 2 0; td½ �. Note that
a second wave occurs for relaxation protocols that end too quickly (te ¼ 400;500;600 days). However, if relaxation is slow enough (larger te), a second wave of infection is
mitigated. All simulations are taken over 1080 days.
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tancing via separate compartments for susceptible and asymp-
tomatic (but infectious) individuals. We believe that this is the first
model which characterizes social distancing protocols as rates of
18
flow between these compartments, with the rates determined by
guidelines implemented by regional governmental intervention.
In particular, we view these rates as controls, and one of our pri-



Fig. 21. Magnitudes of peak of symptomatic individuals (percentage of total population) as a function of end time te (left) and rate (right). Note that te and relaxation rate are
inversely proportional; see Eq. (64). Relaxation is begun when the symptomatic population first ‘‘flattens,” which is indicated by the dashed red line in the figure, and occurs
for all schedules at day td ¼ 395. A peak equal to the dashed red line thus indicates that no second wave of infections occurs, i.e. there was never a day when the number of
infected individuals was greater than the peak when relaxation was commenced. All simulations are taken over 1080 days.
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mary focuses of study is disease response (measured by peak
symptomatic proportion) to different mandated social distancing
controls. Our major contributions and results are described below:

1. In model formulation, we decouple the rate of social distancing
(h2) with the decrease in contact due to social distancing
(�S; �A; �I). The latter we term the contact rescaling factor (CoRF),
which should be interpreted as an effectiveness of social dis-
tancing. Hence we explicitly account for both the rate at which
individuals distance, and how effective distancing is as a means
of suppressing viral transmission.

2. The basic reproduction number, R0, is explicitly calculated for
our model system. For parameters obtained from data, we show
that when there is little immunity in the population, R0 > 1
unless the rate of social distancing is quite large. This implies
that under most realistic circumstances there will be an initial
outbreak of the COVID-19 pandemic. However, the situation is
not hopeless, as social distancing policies are able to push
R0 < 1 as the disease spreads throughout the population.

3. R0 is sensitive to the fraction of infective individuals that are
asymptomatic, and to the infectivity of these asymptomatic
individuals. Hence understanding this population (through, for
example, widespread testing and contact tracing) is critical for
making informed policy decisions.

4. There is a critical time to implement social distancing guideli-
nes (what we label the critical implementation delay (CID)), after
which social distancing will have little effect on mitigating the
percent of symptomatics at the peak of the outbreak. Surprising,
the CID occurs well before the peak symptomatic proportion
would have originally appeared under non-distanced
protocols (CID is approximately two weeks for our parameter
values, while the non-distanced peak occurs at about
30 days).
19
5. While implementing distancing faster than the CID does not
significantly change the number infected at the peak, it does
significantly alter when this peak occurs. For example, imple-
menting social distancing at day 5 instead of day 15 pushes
the peak forward by nearly a year, which allows time for the
development of therapeutics.

6. Periodic relaxation strategies, where normal behavior is
allowed for certain periods of time, can significantly reduce
the symptomatic burden. However, such scheduling is not
robust, and small errors (either in timing, or via parameter esti-
mation) may have catastrophic repercussions.

7. Gradual relaxation can substantially improve the overall symp-
tomatic response, but the rate of relaxation is important to pre-
vent a ‘‘second wave” of infections. Prolonged relaxation, or
sufficiently slow relaxation upon flattening, can significantly
‘‘flatten the curve.”

As noted throughout the manuscript, exact predictions rely on
estimated parameter values, which currently vary widely through-
out the literature. On the other hand, we believe that the qualita-
tive phenomenon observed are robust, and should be considered
during policy design. That said, the predictions are dependent on
the model assumptions, and there are several assumptions that
could be worth revisiting in future iterations of the model. In both
the original and the simplified model, it is assumed that all infected
individuals directly move from the susceptible pool to the asymp-
tomatic pool. Asymptomatic individuals are assumed to be able to
spread the infection. However, recent data suggests a 1–3 day
incubation period of the disease, on average, during which some-
one is infected, asymptomatic, yet not contagious (Harvard
Medical School, 2020; COVID-19, 2020).

While this is a fast, transient event given the time scales in the
model, it could nonetheless be interesting to study what happens if
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we include an exposed but non-infectious class. Another consider-
ation for future modeling work is that, because all individuals tran-
sition through the asymptomatic compartment, those who go on to
develop symptoms in our model have a somewhat longer infec-
tious period than asymptomatic individuals. The inclusion of an
exposed compartment could also address this feature of the model,
as exposed individuals could transition to either asymptomatic or
symptomatic as compared to having symptomatic individuals
transition through the asymptomatic compartment. Finally, some
of the assumptions in the simplified model may not be realistic
in all settings, necessitating the analysis of the full model. For
instance, there is growing evidence on college and university cam-
puses of individuals not isolating despite being positive for COVID-
19. While this represents a very small percent of those who test
positive, it is possible that such individuals could yield a super-
spreader event, and therefore it could be interesting to explore
the impact of the intentional non-isolation of a small percent of
symptomatic individuals. As another example, the simplified
model assumes that immunity lasts the duration of the time period
considered in our simulations (on the order of years). It is currently
not clear what the duration of immunity to SARS-CoV-2 is. While
studies show that antibodies may only be detectable for two to
three months after infection, antibodies are not the only form of
immunity, as memory T and B cells play a major role in long term
immunity (Francis Collins, 2020).

There are several directions for future work. First, our model has
shown that the effectiveness of social distancing policies is sensi-
tively dependent on when measures are implemented. By calibrat-
ing the model to the dynamics of a particular locale, we could
determine a threshold case load at which the population is at high
risk of a second wave of infection. Knowledge of this threshold
could help policy makers determine if/when social distancing rec-
ommendations need to be strengthened. Second, we will conduct a
more systematic control analysis involving both the rate of social
distancing (h2) and the stringency of distancing (CoRF, i.e. � terms).
Ideally, we would like to minimize the peak of the symptomatic
population (I) while simultaneously maximizing the time to reach
this peak; we view such an objective as a precise quantification of
‘‘flattening the curve.” This must be done with distancing con-
straints imposed, to reflect the fact that a certain percentage of
the population must remain active to maintain a functional society
(healthcare workers, food supply, emergency responders, etc.).
Using optimal control and feedback laws, our model can help
inform policy makers as they make difficult decisions about how
to adapt to the ongoing pandemic.
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Appendix A: Convergence of infectives to zero

It is a routine exercise to show that, in our model, I tð Þ ! 0 as
t ! 1, and similarly for AN tð Þ and AD tð Þ. Indeed, consider the total
population fraction N defined by N :¼ SD þ SN þ AD þ AN þ I þ R and
observe that dN=dt ¼ �dI 6 0. The function N is continuously dif-
ferentiable. The LaSalle Invariance Principle (Khalil, 2002) implies
20
that all solutions converge to an invariant set X included in
dN=dt ¼ 0, meaning in particular that all solutions have I tð Þ ! 0,
as claimed. Furthermore, the equation
dI=dt ¼ fcAI AD þ ANð Þ � dI � cIRI when restricted to X says that
0 ¼ fcAI AD tð Þ þ AN tð Þð Þ, which means that, in this set to which all
solutions converge, both AD and AN are identically zero.As
dR=dt ¼ 0 on this set X;R tð Þ converges to a limit r (which is in gen-
eral nonzero). The equations for susceptibles become, in X:

dSD
dt ¼ �h1SD þ h2SN
dSN
dt ¼ h1SD � h2SN :

Thus SD and SN equilibrate to constant values under the con-
straint that SD þ SN ¼ n� r, where n ¼ limt!1N tð Þ,
i.e. SN ¼ h1

h1þh2
n� rð Þ, SD ¼ h2

h1þh2
n� rð Þ.

Appendix B: The basic reproduction number R0

The next generation matrix algorithm, proposed by Diekmann
et al. (1990), is a technique used to calculate the basic reproduction
number R0. We explain it briefly, for more details see Diekmann
et al. (2010) and Brauer and Castillo-Chavez (2010).

1. Let X ¼ x1; x2; . . . ; xnf g represent the n infected host compart-
ments, and Y ¼ y1; y2; . . . ; ymf g represent the m other host
compartments.

2. Write your ODE system as:
dxi
dt ¼ Fi X;Yð Þ � Vi X;Yð Þ fori ¼ 1; . . . ;n
dyj
dt ¼ Mj X;Yð Þ forj ¼ 1; . . . ;m

where Fi represents the rate at which new infectives enter com-
partment I, and Vi represents the transfer of individuals out of
and into the i-th compartment.

3. We denote by FX and VX the Jacobian matrices evaluated at a
DFSS of the vector fields
F ¼

F1 X;Yð Þ
F2 X;Yð Þ

..

.

Fn X;Yð Þ

2
66664

3
77775 and V ¼

V1 X;Yð Þ
V2 X;Yð Þ

..

.

Vn X;Yð Þ

2
66664

3
77775;

respectively.
4. The next generation matrix G is defined by
G ¼ FXV
�1
X :

G is a non-negative matrix with an eigenvalue which is real,
positive, and strictly greater than all the others. This largest eigen-
value is R0.

B.1. DFSS for the six-compartment SIR model (Eqs. (8)–(13))

At steady state we must satisfy the system of equations:

��SbISDI � �SbA AN þ �AAD

� �
SD � h1SD þ h2SN ¼0 ð66Þ

� bISNI � bA AN þ �AAD

� �
SN þ h1SD � h2SN ¼ 0 ð67Þ

�SbISDI þ �SbA AN þ �AAD

� �
SD þ h2AN � cAIAD � h1AD ¼0 ð68Þ

bISNI þ bA AN þ �AAD

� �
SN þ h1AD � cAIAN � h2AN ¼0 ð69Þ

fcAI AD þ AN

� �
� dI � cIRI ¼0 ð70Þ

1� fð ÞcAI AD þ AN

� �
þ cIRI ¼0 ð71Þ
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where SD; SN;AD;AN; I, and R denote the values of SD; SN;AD;AN ; I, and
R at steady state, respectively. For the particular case of the DFSS,
we must satisfy AD ¼ AN ¼ I ¼ 0. Thus, the system above simplifies
into solving the equation:

h1SD � h2SN ¼ 0: ð72Þ
This means two things:

1. There are an infinite number of DFSS. Specifically, all the points
of the form
SD; SN;AD;AN ; I;Rð Þ ¼ h2

h1
SN; SN;0;0;0;R

� �

are disease free steady states of system (8)-(13). In Appendix A
we proved, applying the LaSalle Invariance Principle (Khalil,
2002), that all solutions converge to the set X, the set of all
the DFSS of the system.

2. R, the recovered population at DFSS, is a number satisfying the
double inequality
0 6 R ¼ N tð Þ � h1 þ h2

h1
SN 6 N 0ð Þ � h1 þ h2

h1
SN

where N tð Þ ¼ SD tð Þ þ SN tð Þ þ AD tð Þ þ AN tð Þ þ I tð Þ þ R tð Þ is the total
population at time t.

It will be convenient for our R0 calculations to rescale all popu-
lations by dividing by N ¼ N tð Þ. We introduce the ‘‘starred”
notations

S�D ¼ SD=N; S�N :¼ SN=N; and R� ¼ R=N:

This means that, at a DFSS,

S�D þ S�N þ R� ¼ 1 ð73Þ
and all the DFSS can be written as:

SD; SN ;AD;AN ; I;Rð Þ ¼ h2

h1
S�N ; S

�
N; 0;0; 0;R

�
� �

which simplifies Eq. (73) into the equation

h1 þ h2

h1
S�N þ R� ¼ 1: ð74Þ

We use this notation for the susceptible and recovered popula-
tions at a DFSS in the next appendix.

B.2. R0 for the six-compartment SIR model (Eqs. (8)–(13))

In order to study the stability of a DFSS, we compute the basic
reproduction number R0 of the six-compartment SIR model with
the next generation matrix algorithm (Diekmann et al., 1990;
Diekmann et al., 2010; Brauer and Castillo-Chavez, 2010).

Let

X ¼
AD

AN

I

2
6664

3
7775; F ¼

�SbISDI þ �SbA AN þ �AADð ÞSD
bISNI þ bA AN þ �AADð ÞSN

0

2
6664

3
7775 and

V ¼
�h2AN þ cAIAD þ h1AD

�h1AD þ cAIAN þ h2AN

�fcAI AD þ ANð Þ þ dI þ cIRI

2
6664

3
7775:

Thus, dX
dt ¼ F � V and
21
FX ¼
�S�AbASD �SbASD �SbISD
�AbASN bASN bISN

0 0 0

2
64

3
75;

VX ¼
h1 þ cAI �h2 0
�h1 h2 þ cAI 0
�fcAI �fcAI dþ cIR

2
64

3
75

ð75Þ

where FX and VX denote the Jacobian matrices of F and V respec-
tively, and

V�1
X ¼

h2þcAI
cAI cAIþh1þh2ð Þ

h2
cAI cAIþh1þh2ð Þ 0

h1
cAI cAIþh1þh2ð Þ

h1þcAI
cAI cAIþh1þh2ð Þ 0

f
dþcIR

f
dþcIR

1
dþcIR

2
6664

3
7775: ð76Þ

Let gij represent the i; jð Þ-entry of the next generation matrix G.

At a DFSS (where we must satisfy the equation S�D ¼ h2
h1
S�N) we have

that,

g11 ¼ �S�AbA h2 þ cAIð Þh2

cAI cAI þ h1 þ h2ð Þh1
þ �SbAh2

cAI cAI þ h1 þ h2ð Þ þ
�SbI fh2

dþ cIRð Þh1

� �
S�N ð77Þ

g12 ¼ �S�AbAh
2
2

cAI cAI þ h1 þ h2ð Þh1
þ �SbA h1 þ cAIð Þh2

cAI cAI þ h1 þ h2ð Þh1
þ �SbI fh2

dþ cIRð Þh1

 !
S�N ð78Þ

g13 ¼ �SbIh2

dþ cIRð Þh1
S�N ð79Þ

g21 ¼ �AbA h2 þ cAIð Þ
cAI cAI þ h1 þ h2ð Þ þ

bAh1

cAI cAI þ h1 þ h2ð Þ þ
bI f

dþ cIR

� �
S�N ð80Þ

g22 ¼ �AbAh2

cAI cAI þ h1 þ h2ð Þ þ
bA h1 þ cAIð Þ

cAI cAI þ h1 þ h2ð Þ þ
bI f

dþ cIR

� �
S�N ð81Þ

g23 ¼ bI

dþ cIR
S�N ð82Þ

g31 ¼ g32 ¼ g33 ¼ 0: ð83Þ

The characteristic polynomial of G is:

P kð Þ ¼ �k3 þ g11 þ g22ð Þk2 � g11g22 � g12g21ð Þk
with roots (eigenvalues of G):

k1 ¼ 0 ð84Þ

k2 ¼
g11 þ g22ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ g22ð Þ2 � 4 g11g22 � g12g21ð Þ

q
2

ð85Þ

¼
g11 þ g22ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 � g22ð Þ2 þ 4g12g21

q
2

ð86Þ

k3 ¼
g11 þ g22ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ g22ð Þ2 � 4 g11g22 � g12g21ð Þ

q
2

ð87Þ

¼
g11 þ g22ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 � g22ð Þ2 þ 4g12g21

q
2

: ð88Þ

Therefore k3 is the basic reproduction number, R0.

B.2.1. Conditions for R0 < 1. The case h2 ¼ 0 for the six-compartment
SIR model:

If the rate of social distancing h2 equals zero (which implies
S�N ¼ 1� R�), the basic reproduction number reduces to:

R0 ¼
Secondary infections causedby the

interaction between theAN and SN
populations:

þ
Secondary infections causedby the

interaction between the I and SN
populations:

In other words,

R0 ¼ bAS
�
N

cAI
þ bIfS

�
N

dþ cIR
: ð89Þ

For R0 to be less than 1 we must satisfy the equation:
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dþ cIRð ÞS�NbA þ fcAIS
�
NbI < cAI dþ cIRð Þ ð90Þ

or equivalently,

S�N <
cAI dþ cIRð Þ

dþ cIRð ÞbA þ fcAIbI
: ð91Þ
B.2.2. Conditions for R0 < 1. The general case for the six-compartment
SIR model:

Let S�N > 0, and consider the polynomial

Q kð Þ ¼ k2 � bkþ c; ð92Þ
where b and c are the trace and determinant of the matrix

G ¼ g11 g12

g21 g22

� 	
; ð93Þ

respectively.

Remark 1.

1. b ¼ tr Gð Þ > 0

2. The discriminant K ¼ b2 � 4c ¼ tr Gð Þ2 � 4det Gð Þ ¼ g11 � g22ð Þ2
þ4g12g21 > 0.

3. The eigenvalues of G are:
k1 ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
2

and k2 ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
2

; ð94Þ

where k1 < k2 and k2 > 0.
4. Let
x2 ¼
b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
0 � 4c0

q
2

ð95Þ

where

b0 � b
S�N

¼ �S�AbA h2 þcAIð Þh2 þ�SbAh2h1 þ�AbAh2h1 þbA h1 þcAIð Þh1

cAI cAI þh1 þh2ð Þh1
þbI f �Sh2 þh1ð Þ

dþcIRð Þh1

ð96Þ
c0 � c

S�2N
¼ h2

cAI cAI þh1 þh2ð Þh1

fcAI
dþcIR

�A �1ð Þ�SbAbI þ 1��Að Þ�SbIbAð Þ
� �

: ð97Þ

Thus, R0 � k2 ¼ x2S
�
N .

5. At the disease-free equilibrium, the following equations are
satisfied:
S�D þ S�NþR� ¼ 1 ð98Þ

S�D ¼ h2

h1
S�N: ð99Þ

which gives the relation

S�N ¼ 1� R�ð Þ h1

h1 þ h2
: ð100Þ

R0 ¼ 1� R�ð Þx2 h1

h1 þ h2
: ð101Þ

6. From Eq. (101), it follows that R0 < 1 if and only if
R� >
h1x2 � h1 þ h2ð Þ

h1x2
: ð102Þ
7. For h1 ¼ A
1þBh2

, Eq. (102) is equivalent to
R� > 1� Aþ x2h2 1þ Bh2ð Þ
Ax2

: ð103Þ

B.3. R0 for the seven-compartment SIR model (Eqs. (1)–(7))

Let
22
X ¼

AD

AN

ID
IN

2
6664

3
7775;

F ¼

�SbI IN þ �IIDð ÞSD þ �SbA AN þ �AADð ÞSD
bI IN þ �IIDð ÞSN þ bA AN þ �AADð ÞSN

0
0

2
6664

3
7775;

V ¼

�h2AN þ cAIAD þ h1AD

�h1AD þ cAIAN þ h2AN

�fcAI AD þ pANð Þ þ dI þ cIR ID þ INð Þ
� 1� pð ÞfcAIAN þ cIRIN þ dIN

2
6664

3
7775:

Thus, dX
dt ¼ F � V and

FX ¼

�S�AbASD �SbASD �S�IbISD �SbISD
�AbASN bASN �IbISN bISN

0 0 0 0
0 0 0 0

2
6664

3
7775;

VX ¼

h1 þ cAI �h2 0 0
�h1 h2 þ cAI 0 0
�fcAI �pfcAI dþ cIR 0
0 � 1� pð ÞfcAI 0 cIR þ d

2
6664

3
7775

where FX and VX denote the Jacobian matrices of F and V respec-
tively, and the inverse matrix of VX is:

V�1
X ¼

h2þcAI
cAI cAIþh1þh2ð Þ

h2
cAI cAIþh1þh2ð Þ 0 0

h1
cAI cAIþh1þh2ð Þ

h1þcAI
cAI cAIþh1þh2ð Þ 0 0

x31 x32 1
dþcIR 0

x41 x42 0 1
dþcIR

2
6666664

3
7777775

ð104Þ

with

x31 ¼ f h2 þ cAIð Þ
dþ cIRð Þ cAI þ h1 þ h2ð Þ þ

pfh1

dþ cIRð Þ cAI þ h1 þ h2ð Þ ð105Þ

x32 ¼ fh2

dþ cIRð Þ cAI þ h1 þ h2ð Þ þ
pf h1 þ cAIð Þ

dþ cIRð Þ cAI þ h1 þ h2ð Þ ð106Þ

x41 ¼ 1� pð Þfh1

dþ cIRð Þ cAI þ h1 þ h2ð Þ ð107Þ

x42 ¼ 1� pð Þf h1 þ cAIð Þ
dþ cIRð Þ cAI þ h1 þ h2ð Þ : ð108Þ

Let gij represents the i; jð Þ-entryof thenext generationmatrixG. At

a DFSS (wherewemust satisfy the equation S�D ¼ h2
h1
S�N) we have that,

g11 ¼ �S�AbA h2 þ cAIð Þh2

cAI cAI þ h1 þ h2ð Þh1
þ �SbAh2

cAI cAI þ h1 þ h2ð Þ þ
�SbI �Ix31 þ x41ð Þh2

h1

� �
S�N ð109Þ

g12 ¼ �S�AbAh
2
2

cAI cAI þ h1 þ h2ð Þh1
þ �SbA h1 þ cAIð Þh2

cAI cAI þ h1 þ h2ð Þh1
þ �SbI �Ix32 þ x42ð Þh2

dþ cIRð Þh1

 !
S�N ð110Þ

g13 ¼ �S�IbIh2

dþ cIRð Þh1
S�N ð111Þ

g14 ¼ �SbIh2

dþ cIRð Þh1
S�N ð112Þ

g21 ¼ �AbA h2 þ cAIð Þ
cAI cAI þ h1 þ h2ð Þ þ

bAh1

cAI cAI þ h1 þ h2ð Þ þ �IbIx31 þ bIx41

� �
S�N ð113Þ

g22 ¼ �AbAh2

cAI cAI þ h1 þ h2ð Þ þ
bA h1 þ cAIð Þ

cAI cAI þ h1 þ h2ð Þ þ �IbI3x32 þ bIx42

� �
S�N ð114Þ

g23 ¼ �IbI

dþ cIR
S�N ð115Þ

g24 ¼ bI

dþ cIR
S�N ð116Þ

g31 ¼ g32 ¼ g33 ¼ g34 ¼ g41 ¼ g42 ¼ g43 ¼ g44 ¼ 0: ð117Þ
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Thus,

P kð Þ ¼ k4 � g11 þ g22ð Þk3 þ g11g22 � g12g21ð Þk2

is the characteristic polynomial of G with roots:

k1 ¼ 0 with multiplicity 2 ð118Þ

k2 ¼
g11 þ g22ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 � g22ð Þ2 þ 4g12g21

q
2

ð119Þ
Fig. 22. Basic reproduction number as a function of the social distancing rate paramete
stages. All other parameters as in Table 2.

Fig. 23. Basic reproduction number as a function of the social distancing rate parameter
parameters as in Table 2.

23
k3 ¼
g11 þ g22ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 � g22ð Þ2 þ 4g12g21

q
2

: ð120Þ

Therefore k3 is the basic reproduction number, R0.
Appendix C: Heatmaps corresponding to contour plots of R0

See Figs. 22–24.
r h2 and fraction of individuals who become symptomatic (f) at different pandemic

h2 and infectivity rate of asymptomatics bA at different pandemic stages. All other



Fig. 24. Basic reproduction number as a function of the social distancing rate parameter h2 and the contact rescaling factor (CoRF) � at different pandemic stages. CoRF
measures the impact of social distancing on infectivity rate. All other parameters as in Table 2.
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Appendix D: Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jtbi.2020.110539.
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