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Abstract: Interactions involving Epstein–Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin–
protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the
perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain
of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the
WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded
anti-parallel β-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration
and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with
the XP groove of the WW2 domain (residues located around the third β-strand), and then residues
between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2
domain. In particular, the residue Val15 in the hairpin loop region between β1 and β2 of the WW2
domain exhibited unique changes depending on the terminal residues of the PY motif. This result
suggested that the hairpin loop is responsible for additional interactions outside the XP groove,
and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide
interactions can stabilize the complex formed between the PY and WW domains.

Keywords: LMP2A; EBV; NMR; AIP4; E3 ubiquitin ligase

1. Introduction

Epstein–Barr virus (EBV) is present in all populations, infecting > 95% of humans,
and EBV infection persists asymptomatically during the life of the host [1]. EBV is known
to cause several human tumors, including Burkitt lymphoma, Hodgkin’s disease, and
nasopharyngeal carcinoma (NPC) [2–4]. EBV-associated gastric cancer can also be caused
by EBV infection [5]. EBV might contribute to the development of breast cancer [6],
although this is not yet clear. After infection, EBV maintains latency in most cells, and
EBV latency is regulated by latent membrane protein (LMP) 2A, which mimics the B-cell
receptor (BCR) and perturbs BCR signaling [7–12]. The cytoplasmic N-terminal domain of
Latent Membrane Protein 2A (LMP2A NTD) can bind to the protein tyrosine kinases Lyn
and Syk, which are important signaling molecules involved in the cascade of normal BCR
signaling [13–15]. This mimicking results in negative regulation of B-cell signaling, which
may enable EBV to escape host immunity [11,16,17]. In addition, it has been revealed that
LMP2A modulates STAT and NF-kB transcription factor pathways [18–21] or other cellular
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signaling proteins [22–24], which suggests that the role of LMP2A in infected cells is more
complex than previously thought. In addition, LMP2A expressed in T-cells regulates T-cell
receptor (TCR) signaling in a very similar fashion to that of LMP2A in B-cells [25].

Atrophin 1 Interacting Protein 4 (AIP4) (also named Itch) is a HECT-type E3 ubiquitin–
protein ligase and is a member of the neural precursor cell-expressed developmentally
downregulated gene 4 (Nedd4) family [26]. Various proteins, including Nedd4, Smurf1,
WWP2, AIP4/Itch, and Rsp5p are members of the Nedd4 family. Nedd4 family proteins
modulate various cellular processes, such as regulation of transmembrane protein stability,
membrane protein signaling, and virus budding from infected cells [27,28]. The domain
structure of Nedd4 family members comprises an amino terminal C2 domain, three or four
WW domains, and a carboxyl-terminal HECT domain [27,29].

WW domains are small protein modules (typically 35 to 40 amino acids in length) that
contain two conserved Trp residues that play crucial roles in the domain structure and
function [30–32]. WW domains form a three-stranded antiparallel β-sheet and are linked
to various catalytic domains such as HECT E3 ubiquitin–protein ligase domains (in Nedd4
family proteins), rotomerase/peptidyl prolyisomerase domains (Pin1), neuronal protein
FE65 [33], kidney and brain expressed protein (KIBRA or WWC1) [34], and Rho GTPase-
activating protein domains [27]. In addition to these catalytic domains, the WW domain is
a major protein–protein interaction module that is widely found in all biological systems.
WW domains have been classified into four groups based on their binding to ligands,
and the WW domains of the Nedd4 family are included in group 1, which recognizes
Pro-Pro-X-Tyr (PPXY or PY motifs; X being any amino acid) [35]. Interactions involving
WW and PY motifs have been implicated in several human cellular disorders [36–38]. For
example, the binding of Nedd4 WW domains with PY motifs of the epithelial sodium
channel (ENaC) allows ubiquitination of the channel by the ubiquitin ligase HECT domain,
leading to channel endocytosis and degradation. This process is at least partially impaired
in Liddle syndrome, causing increased cell surface retention of channels [39–42].

LMP2A PY motifs selectively bind to the WW domains of ubiquitin–protein (E3)
ligases. LMP2A recruits Nedd4-like ubiquitin protein ligases through the PY motifs, leading
to the ubiquitination of LMP2A and several LMP2A-associated B-cell tyrosine kinases,
such as Lyn PTK. Ubiquitination of these proteins perturbs normal B-cell signaling by
rapid degradation of LMP2A-associated proteins [43]. Thus, LMP2A serves as a molecular
scaffold to recruit both B-cell tyrosine kinases and ubiquitin protein ligases, disturbing the
essential roles of the B-cell receptor [44–46]. In addition, it was found in a mouse model of
lymphoma that the p29kip1 tumor suppressor is degraded by enhanced MYC expression
promoted by LMP2a [47].

We previously reported that residues between two PY motifs of LMP2A may be
involved in binding to WW domains directly and/or indirectly [48]. In addition, the
solution structure of the WW3 domain of Itch E3 ligase (AIP4) in complex with the PY
peptide derived from the N-terminal PY motif of LMP2A was reported [49]. Here, we
present the solution structure of the WW2 domain of hAIP4 and the binding mechanisms
involving the WW2 domain and two PY motifs.

2. Materials and Methods
2.1. Sample Preparation

Four constructs from the LMP2A NTD, which contain PY motifs, were prepared.
Detailed information regarding the four constructs is as follows, and the names of the
constructs are designated arbitrarily. The PY peptide: PPPPY; the linker peptide (from
E61 to L96): the region between the two PY motifs excluding both PY motifs; N-PY (from
E54 to L96): containing the first PY motif (N-terminal PY motif: P56P57P58P59Y60) and the
linker region; C-PY (from E61 to P103), containing the second PY motif (C-terminal PY
motif: P97P98P99P100Y101) and the linker region. The constructs were prepared using the
pTWIN1 vector with N-terminal Ssp DnaB intein fusion, and cloning, expression, and
purification were performed as described previously [50]. The gene (114 bp) encoding the
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WW2 domain of human AIP4 was purchased from GenScript Corporation (Piscataway,
NJ, USA). The synthesized DNA was cloned into the pTWIN1 vector and purified using
the same procedures [50]. The sequence of WW2 contained the N-terminal GRA tag (Gly1,
Arg2, and Ala3) derived from the pTWIN1 vector and an additional glycine residue (Gly5)
inserted during cloning. The chemically synthesized PY peptide was purchased from
ANYGEN (Kwang-ju, Korea).

2.2. Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) was carried out on a VP-ITC instrument (Micro-
Cal, Northampton, MA, USA) at 300 K. Solutions of 30 µM WW2 in the cell were titrated
with three kinds of LMP2A constructs (N-PY, C-PY, and linker peptide). The concentrations
of the solutions in the injection syringe were 600 µM (N-PY, C-PY) and 470 µM (linker
peptide). The solutions for the cell and syringe were thoroughly degassed by stirring under
vacuum. In total, 28 injections were performed, and each injection volume was 10 µL (first
injection volume was 5 µL), and the spacing between injections was 300 s.

2.3. NMR Experiments and WW2 Structure Calculation

All NMR spectra were recorded at 303 K on a Bruker AVANCE 600 spectrometer
equipped with a cryoprobe (Bruker, Billerica, MA, USA). Backbone assignments were
performed with HNCA, HNCACB, and HNCO and confirmed with HNCACO. Side-chain
resonances were assigned with HCCH-TOCSY, HBHACONH, 3D 15N-TOCSY-HSQC, and
CCCONH-TOCSY. Slowly exchanging amide proton and ring proton resonances were
assigned by dissolving the protein in D2O and acquiring 2D-NOESY spectra. Chemical
shifts were referenced externally to the DSS. The overall secondary structure was predicted
from the CSI [51] and NOE patterns. The distance restraints for the structure calcula-
tion were collected from 3D 15N-NOESY-HSQC and 13C-NOESY-HSQC by manual and
automatic assignments for which CYANA 2.0 was used [52]. Dihedral angle restraints
were calculated from chemical shifts using TALOS [53]. Only “Good” predictions in the
result by TALOS were used. The “Good” match means that there is no outlier among best
25 database matches. The structures were initially generated with CYANA 2.0, and then
refined through standard annealing and torsion angled dynamics using the program CNS
1.1 [54]. The program MOLMOL [55] and Pymol [56] were used to visualize the results of
the 20 energy-minimized conformers. The quality of the final structure was analyzed using
PROCHECK-NMR [57].

2.4. NMR Titrations of WW2 with Various LMP2A Constructs

The conventional 2D-[1H,15N]HSQC spectra of the [U-15N] WW2 domain titrated
with various unlabeled LMP2A constructs were obtained at 303 K on a Bruker DRX
500 spectrometer. The WW2 domain and added constructs were dissolved in 50 mM
sodium phosphate (pH 6.0), 100 mM sodium chloride, and 7% D2O. Unlabeled LMP2A
constructs (N-PY, C-PY, linker peptide, and PY peptide) were added to the 50 µM [U-
15N] WW2 domain at various molar ratios. The spectra were processed and analyzed
using NMRPipe/NMRDraw [58] and analyzed using th NMRview program [59]. The
chemical shifts of the WW2–LMP2A complexes were compared with the chemical shifts
of the free protein in solution. The average chemical shift differences, ∆δave for the
WW2 backbone amide (1H and 15N) upon binding the LMP2A constructs were calculated
using ∆δave = [(∆δ2

HN + ∆δ2
N/25)/2]1/2 where ∆δHN and ∆δN are the amide proton and

nitrogen chemical shift differences, respectively [60].
The dissociation constant (kd) for the WW2–PY peptide complex was determined

from ∆δave by an iterative nonlinear least squares analysis using the program DataFit
(Oakdale Engineering, Oakdale, PA, USA). Titration data were analyzed assuming that
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the observed chemical shift perturbation is a weighted average between the two extreme
values corresponding to the free (∆δ = 0) and the bound state (∆δ = ∆δmax) such that

∆δ/∆δmax =
(A0 + B0 + Kd)−

√
(A0 + B0 + Kd)2 − 4A0B0

2
(1)

where A0 and B0 are the total molar concentrations of the WW2 and the PY peptides,
respectively.

The 1H-15N heteronuclear NOE experiment was performed under the same conditions.
A total of 1024 data points and 128 increments were measured in the direct and indirect
dimensions. The amide–proton exchange (H/D exchange) experiment was started immedi-
ately after the addition of D2O to a sample of 15N-labeled proteins (apo WW2, WW2/N-PY,
and WW2/C-PY complexes) lyophilized from the buffer. 1H-15N HSQC spectra of the
proteins dissolved in D2O were obtained at 288 K on a Bruker DRX 500 spectrometer.

2.5. Protein–Peptide Docking

To obtain the modeled structure of the WW2 domain–PY motif complex, the docking
process was performed with the solution structure of the AIP4 WW2 domain (PDB ID:
2kyk) that was determined in this study, and the structure of the peptide (EEPPPPYED)
that was extracted from the complex structure involving Itch WW3 domain and PY-peptide
(PDB ID: 2JOC). The GRAMM-X program was used in this process, following the authors’
guidelines [61].

3. Results
3.1. WW2 Domain Binding Properties of Two LMP2A PY Motifs

To identify whether each of the two PY motifs has different binding specificity for
WW domains, NMR titration experiments and ITC studies were conducted. In particular,
the experiments focused on the importance of expanded regions of the PY motif in binding.
We employed the AIP4 WW2 domain and several peptides derived from the N-terminal
domain of LMP2A for these interaction studies. The peptides used in this study are
presented in Figure 1.
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Figure 1. Schematic representation of LMP2A constructs used in this study. The numbers represent
the residue numbers of the protein. For N-PY, C-PY, and linker peptide, the exact amino acids
sequences are represented.

The chemical shift perturbation (CSP) of the WW2 domain following the addition
of the unlabeled LMP2A peptides was monitored by recording a series of 1H-15N HSQC
spectra (Supplementary Materials Figures S1–S3). The average chemical shift differences
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(∆δave) for the WW2 backbone amide upon binding to LMP2A constructs are plotted in
Figure 2. As shown in Figure 2, most resonances of the 1H-15N HSQC spectra of the WW2
domain were perturbed upon binding with the LMP2A peptides, and the changed patterns
were similar to those constructs (PY peptide, N-PY, and C-PY, Figures S1–S3). This result
indicated that the binding core is conserved in all the complexes between WW2 domain
and LMP2A peptides.
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Figure 2. Spectral perturbation of the WW2 domain upon PY motifs binding. (A) Average chemical shift differences (∆δave)
for the WW2 domain backbone amide (1H and 15N) upon binding to LMP2A constructs (WW2:LMP2A constructs = 1:4).
CSP values were calculated according to the formula ∆δave = [(∆δ2

HN + ∆δ2
N/25)/2]1/2. (B) Mapping of the perturbed

residues by the LMP2A constructs (N-PY and C-PY) binding. Strong chemical shift changes (∆δave > 0.5 ppm) are indicated
by red color, and medium (0.2 < ∆δave < 0.5) and weak (0.1 < ∆δave < 0.2) chemical shift changes are colored blue and
yellow, respectively.

In the cases of N-PY and C-PY peptides, the three consecutive threonine residues in
the third β-strand of the WW2 domain (Thr30, Thr31, and Thr32) were highly affected at
relatively low molar ratios, and the changes were almost saturated at a molar ratio of 1:4.
In addition, the residues around the third β-strand (Thr28, Arg29, Trp33, Gln34, and Arg35)
experienced large perturbations in their chemical shifts. Some residues in the first and
second β-strands were also perturbed. The peaks in the 1H-15N HSQC spectra of the WW2
domain are continuously shifted during the course of the titrations for all LMP2A peptides.
This indicates that exchange is rapid (picoseconds to nanoseconds) in the chemical shift
time scale. To determine the binding affinity of the WW2 domain for the two LMP2A
peptides (N-PY and C-PY), ITC experiments were performed. Figure 3 shows the titration
isotherm of WW2 by N-PY and C-PY, and these curves were fitted using a single binding
site model. The dissociation constants (Kd) for the interaction between WW2 domain and
N-PY, WW2 domain and C-PY were 56.23 µM ± 11.6 and 22.61 µM ± 4.8, respectively. The
affinity of the WW2 domain for C-PY was approximately two times higher than that for
N-PY. The NMR Kd values were similar to that of ITC results; the calculated Kd values for
N-PY and C-PY were 41.19 µM ± 1.91 and 15.30 µM ± 6.34, respectively.

Basically, the synthesized 5-mer PY peptide (PPPPY) exhibited low affinity for the
WW2 domain because the CSP values affected by the PY peptide were much smaller
than those affected by the other peptides flanking the linker region at the same molar
ratio. Most of the WW2 domain resonances did not show significant changes due to PY
peptide binding, even at a molar ratio 1:32 (WW2:PY peptide). However, the residues
around the third β-strand (Tyr22, Tyr23, Val24, Asp25, His26, Thr28, Arg29, Thr30, Thr31,
Thr32, Trp33, Gln34, and Arg35) showed meaningful spectral changes compared to other
residues (Figure 2A). This result indicated that the region around the third β-strand of
WW2 is the major binding site for the PY motif. The binding constant of the PY peptide
(PPPPY) was determined from the chemical shift changes obtained from the NMR titration
experiment. The Kd value of the PY peptide was 389 µM, which was higher than that of
N-PY or C-PY.
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Figure 3. Isothermal titration calorimetry of WW2 domain binding to LMP2A constructs. An amount of 30 µM WW2 (in
50 mM sodium phosphate (pH 6.0), 100 mM NaCl, 1 mM EDTA) was titrated with 600 µM N-PY (A), and 600 µM C-PY (B),
respectively. The best-fitting curve was obtained at the 1:1 binding model.

However, the addition of the linker peptide (the linking region between two PY
motifs) did not perturb any resonances in the NMR spectrum of the WW2 domain (data
not shown), and the titration of WW2 domain by the linker peptide did not induce any
detectable heat change in the ITC experiment neither. For further analysis, we also added
an excess of the linker peptide (800 µM) into the fully saturated WW2–PY peptide complex
(50 µM:800 µM) and measured the 1H-15N HSQC spectrum. As a result, there were no
additional peak changes upon addition of the linker peptide to the complex (data not
shown), which indicated that the bonded N- or C-ends of the PY motif are required for
accurate binding.

These results revealed not only the major binding site of the WW2 domain, but also
the importance of the expanded region of the PY motif, since PY motifs with linker region
exhibited a significant increase in binding affinity. Although the residues between the two
PY motifs affected WW2 domain binding, it seems that this region could not bind to the
WW2 domain by itself.

3.2. Solution Structure of the WW2 Domain

The backbone amide (1H and 15N) resonances of the hAIP4 WW2 domain were
completely assigned, except for the four prolines. All carbon resonances (Cα, Cβ, and CO)
were also assigned. Hα and Hβ resonances in the protein were completely assigned, except
for one isolated proline, N-terminal methionine, and glycine. In addition, the assignments
of the side-chain C and H resonances were almost complete. Based on the NOE data,
structural calculations of the WW2 domain were performed. The 20 final structures were
well converged with a root-mean-square deviation of 0.39 Å for backbone atoms and 0.99 Å
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for all heavy atoms of the ordered regions (PDB ID:2kyk). Statistics for the calculated
structures are listed in Table 1. As expected, the structure of the hAIP4 WW2 domain is
similar to the known WW domain structures, which form a three-stranded anti-parallel
β-sheet. The β-strands correspond to residues 11–15 (β1), 21–25 (β2), and 31–32 (β3). The
two conserved tryptophan residues are located in the starting position of β1 (Trp11) and the
position followed by β3 (Trp33) (Figure 4A). Unlike other structures of homologous WW
domains, the third β-strand (β3) seems to be flexible because the result of the deuterium
exchange experiment showed no hydrogen bonding between β2 and β3 (Figure 4D). The
heteronuclear NOE experiment also supported that the strand β3 is not well ordered; the
NOE values of Thr31 and Thr32 were below 0.6, while other β-stranded regions presented
≥0.7 NOE values (Figure 4).

Table 1. Structural statistics for the ensemble of 20 structures of WW2 domain.

Experimental Constraints

NOE constraints total 305
Intra-residue (i = j) 114
Sequential (|i-j| = 1) 100
Medium range (1 < |i-j| < 5) 30
Long range (|i-j| ≥ 5) 61
Dihedral constraints
Φ 15
ψ 16
RMSD from idealized geometry
Bonds (Å) 0.002 ± 0.00007
Angles (◦) 0.3455 ± 0.0062
RMSD to the mean structure (residues 7–16,
20–34)
#Backbone atoms (N, Cα, CO) 0.41 ± 0.09
#All heavy 0.99 ± 0.11
CNS energy (kcal/mol) a

Eoverall 55.72 ± 0.97
Ebond 2.71 ± 0.19
Eangle 21.44 ± 0.77
Eimproper 2.66 ± 0.31
Evdw 20.77 ± 0.96
Enoe 8.11 ± 0.59
Ecdih 0.02 ± 0.03
Violations per conformer

Distance constraints (>0.1 Å) 0
Dihedral angle constraints (>5 Å) 0

van der Waals (<1.6 Å) 0
Ramanchandran plot (%) b

Most favored region 70.7
Additionally allowed region 20.2
Generously allowed region 8.6

Disallowed region 0.5
a The default parameters and force constants of protein-allhdg.param, and anneal.inp in CNS 1.2 were used for
structure calculation. b PROCHECK-NMR was used for calculation. The ramanchandran analysis was done for
the ordered region (residues 7–16 and 20–34) except the unordered loops or tails.

3.3. Modeled Structure of WW2 Domain–PY Motif Complex

To analyze complex formation, we attempted to obtain intermolecular NOEs between
WW2 domains and N-PY or C-PY. However, the long, non-structured tail of the PY mo-
tif showed many overlaps of signals, which made NOE analysis very difficult. As an
alternative method, we modeled the complex structure of the WW2 domain and PY pep-
tide based on the WW3 domain–PY peptide (EEPPPPYED) complex structure previously
published [49].
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Figure 4. NMR solution structure of the hAIP4 WW2 domain. (A) The 20 conformers with the lowest
energy are shown after superposition of backbone atoms of residue 7–34 (PDB ID: 2kyk). (B) Ribbon
drawing of the representative conformer of WW2. (C) Surface distribution of charged residues.
Positive-charged residues are blue, and negative-charged residues are red. (D) 1H-15N HSQC spectra
of the 15N-labeled WW2 domain in 100% D2O. The spectra were obtained 15 min after the samples
were dissolved in D2O. The total measurement time for each spectrum was 30 min. (E) Backbone
flexibility of the WW2 domain. 1H-15N-Heteronuclear NOE values were plotted as a function of
residue number.

The AIP4 WW2 domain has high structural similarity with the AIP4 WW3 domain
as well as high sequence homology. As shown in Figure 5, the overall topology shares
similarity except for the N- and C-termini and the residues involved in PY motif interaction
are well conserved. For example, the important residues in the WW3 domain (Glu11, Tyr21,
Val23, His25, Thr30, and Trp32) that closely interact with the PY motif are well conserved
and match those of the WW2 domain (Glu12, Tyr22, Val24, His26, Thr31, and Trp33). In
addition, the side-chain orientations of each residue are almost similar. This result implies
that the WW2–PY peptide complex is similar to the WW3–PY peptide complex. Therefore,
the modeled structure of the WW2 domain–PY peptide could provide reasonable insights
into the interactions involved.
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Figure 5. Structural comparison between WW2 and WW3 domains. (A) WW2 domain (red) is
superimposed on WW3 domain (gray). The six residues mainly required for the PY motif binding
are depicted. Four AIP4 WW domains show high sequence homology between the domains. At the
bottom of Figure 5A, the conserved residues located in the PY motif binding interface are colored
gray. (B) The modeled complex structure of WW2–PY peptide (-EEPPPPYED-). The six residues
compared in (A) are depicted on the structure. The modeling was conducted using the program
Gramm-X [61]. (C) The reference complex structure of WW3–PY peptide [PDB ID: 2JO9, ref. [49]].

Figure 5B illustrated the modeled complex structure of the WW2–PY peptide. The
overall ternary structure of WW2–PY peptide is almost identical to that of WW3–PY peptide
(Figure 5); Pro4 of the PY peptide mainly contacts Trp33 and Pro5 contacts Tyr22 and Thr31
as in the WW3–PY complex. Tyr7 of the PY peptide is also located between His26 and Arg29.
This model structure is consistent with chemical shift changes. Based on this model, the
binding mechanism of the short PY peptide may be elucidated to be similar between the
WW2 and WW3 domains.

3.4. Differences Between Two Tailed PY Motifs Upon Binding

It is known that the WW2 domain binds to both PY motifs with similar affinity [44],
which is largely consistent with our results. However, the NMR titration data provided
details of the binding mode between WW2 domain and two PY motifs. As described above,
the overall chemical shift changes in the WW2 domain by N-PY and C-PY peptides appear
similar in distance and direction. It is notable, however, that resonances from residues in
loop 1 (Val15, Asn17, and Gly19) exhibited somewhat different changes. The cross-peak of
Asn17 moved only in the N-PY titration, whereas the cross-peak of Gly19 highly moved
only in the C-PY titration (Figure 6). In particular, the changes in the directions of Val15
were quite different in both titrations. The directions of the peak movement of Val15 in
the N-PY and C-PY titrations were nearly perpendicular (Figure 6). It is well known that
chemical shift changes are highly sensitive to the surrounding chemical environment. Thus,
the different patterns of chemical shift changes involving residues in loop 1 reflected that
this region experienced different surroundings upon binding. Although the CSP values of
these residues were smaller than those of other residues in the XP groove, loop 1 seems to
be responsible for distinguishing between the two PY motifs.

This result was also supported by a deuterium exchange experiment. In the free
form of the WW2 domain, only Tyr22 and Val24 were highly protected by deuterium
exchange, which indicated that the hydrogen bond network between the β-strands of the
WW2 domain was not easily detected in the apo-state. However, the N-PY/WW2 and C-
PY/WW2 complexes showed that the amide hydrogens of Trp11, Glu12, Arg14, Val15, Asp16,
Arg20, Ile21, Tyr22, Tyr 23, Val24, and Asp25 were protected from solvent exchange upon
complexation (Figure 7). This suggests that, in the presence of the N-PY or C-PY peptides,
major protection was shown in the β1 and β2 stands of the WW2 domain consisting of the
binding interface of the PY motif. Interestingly, the end residues of β1 and β2 stands, Val15
and Ile21 whose amide hydrogens are not involved in the hydrogen bond network between
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strands and exposed to the surface of the backside of the PY motif binding interface, were
protected in the complexes (the slow exchange of Ile21 was only detected in the WW2/N-
PY complex). In addition, residues in hairpin loop 1, Asp16 and Arg20 exhibited slow
exchange with deuterium (Figure 7). Thus, this protection pattern may also indicate that
an additional interaction occurs between the terminal residues of the PY motif and the loop
1 region.
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Figure 6. Spectral changes to Val15, Asn17, and Gly19 resonances upon binding PY peptide, N-PY,
and C-PY. The superimposed 1H-15N HSQC spectra of the WW2 domain in the apo-form (black),
the PY peptide bound form (red), the N-PY bound form (green), and the C-PY bound form (blue).
1H-15N HSQC spectra of WW2 were obtained in the presence of 4 molar equivalents of N-PY and
C-PY, respectively. The resonances of WW2–PY peptide were obtained at the molar ratio 1:32
(WW2:PY peptide).
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Figure 7. Amide proton exchange (H/D exchange) experiments involving the WW2/N-PY and
WW2/C-PY complexes. (A) Superimposition of 1H-15N HSQC spectra of the uncomplexed WW2
domain (black), the bound form of N-PY (green), and the bound form of C-PY (red) in 100% D2O at
288K. The molar ratio of the complexes was 1:4 (WW2:ligand). (B) Hydrogen bonding network of the
WW2 domain. Main-chain hydrogen bonds of the apo WW2 domain are depicted as dashed lines.
Four residues showing unexpected protection are colored red. (C) Four residues, Val15, Asp16, Ile21,
and Arg20 are depicted on the WW2–PY peptide complex (red).

4. Discussion

Many studies regarding interactions between WW domains and PY motifs have been
conducted, but most structural studies have focused on the binding of short PY motifs with
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WW domains [49,62–65]. The current study may expand our understanding of the binding
mode of long-tailed PY peptides and emphasize the effect of the expanded region outside
the PY motif upon binding.

4.1. Importance of Linker Region Outside of PY Motif

Based on the modeled complex, the core binding interface of the PY motif in the WW2–
PY peptide complex showed topological similarity to that of the WW3–PY peptide complex.
Compared to the WW3–PY complex, the binding interface of the WW2 domain, namely
the XP groove, has a similar sequence composition and provides a similar open space for
binding to the PY motif. However, even though the complex structures are similar, the Kd
values of WW2/N-PY, C-PY, or PY and WW3/PY peptides showed significant differences
(the current result and [49]). The tailed PY motif (N-PY and C-PY) in our study showed
higher affinity for the WW2 domain than the short PY peptide. Interestingly, the linker
peptide between PY motifs did not reveal any evidence of binding by itself (refer to the
Results section), which suggested that the PY motifs and the linker peptide should be
covalently bonded for optimal binding.

Considering that the major interaction surface of the WW domains (i.e., the XP groove)
are well conserved, these differences imply that there is another determinant for regulating
binding except for the XP groove. In other words, this may suggest that the area outside
the core XP groove may play an important role in binding to the peptide containing the PY
motif and may determine specificity for the PY motif. This hypothesis could be supported
by our result of deuterium exchange experiments and the difference in chemical shift
changes in loop 1. Besides the residues involving the XP groove, residues Val15, Glu16,
Ile20, and Arg21 of the loop 1 region were additionally protected upon complexation. The
chemical shift changes in Val15, Asn17, and Gly19 indicated that loop 1 experienced different
chemical surroundings depending on the species of PY peptides involved. A recent study
also showed that the phosphorylation of residues outside of the PY motif affected the
binding affinity of Nedd4 WW domains by up to two-fold [66].

There are several reports that the WW domain additionally binds to residues outside of
the PY motif. The complex structure of the Smad7 PY motif-containing peptide and Smurf2
WW3 domains revealed that six residues flanking the C-terminus of the PY motif bind to the
first and second β-strands and the first loop, and some mutations involving these residues
reduced the binding affinity for the WW3 domain [62]. This kind of interaction was also
shown in the solution structure of the Nedd4 WW3 domain complexed with the Comm
PY motif; the flanking residues to the N- and C-termini of the PY motif interacted with
the WW3 domain. These contacts are important for affinity and specificity in binding [67].
These results emphasize the importance of loop1 (or β1/β2 loop) in binding with the PY
motif, as the residues in the β1/β2 loop are less conserved and are likely to be responsible
for interactions with the residues expanded from the C-terminus of the PY motif, which
may explain the differences in specificity of Smurf1 and 2 [62]. The interactions between
loop 1 and PY peptides have also been observed in other cases, such as the FBP11 WW1–
PPLP ligand complex [68] and Nedd4 WW3 domain–Comm PY motif [67]. In addition,
loop 1 of the Pin WW domain is intrinsically flexible, and Arg17 in loop 1 is responsible for
ligand recognition [63,69].

Taken together, it is proposed that PY motifs of LMP2A can recognize and weakly
interact with residues spatially located around the third β-strand (XP groove) of WW
domains, and then, the linker region optimizes the binding by contacting other residues
around loop 1 of WW domains. These weak but wide-scale interactions can stabilize the
complex formed between PY motifs and WW domains.

4.2. Models of AIP4 and LMP2A Interaction

Previously, we showed that the linker region between two PY motifs of LMP2A NTD
was highly affected by WW domain binding (Figure 8A) [48]; upon WW2 domain binding,
the peaks of six residues (Tyr60, Glu61, Asp62, Trp65, Gly66, and Asn67) that follow the first
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PY motif (N-terminal PY motif: P56P57P58P59Y60) and three residues (Asp94, Gly95, Leu96)
that precede the second PY motif (C-terminal PY motif: P97P98P99P100Y101) disappeared.
In addition, the peaks corresponding to Tyr74, Thr79, Leu84, Tyr85, Leu86, Gly87, Gln89,
and His90 also disappeared, indicating that these residues are involved in WW2 domain
binding. In the case of WW3 domain binding, the peaks of eight residues (Tyr60, Glu61,
Asp62, Trp65, Gly66, Leu86, Gly87, and Asp94) in the linker region disappeared. These
results support wide-scale interactions involving the linker region. In addition, the current
study suggested that this interaction should occur through the loop 1 of WW domains,
which is not highly conserved in sequence. The difference in peak disappearances in the
linker region could be caused by a difference of the loop 1 region between the WW2 and
WW3 domains. The tandem WW domains showed higher affinity and sequence specificity
for tandem PY motifs compared to the single WW domain [34], which may support the
importance of the linker region.
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Figure 8. Models of interaction modes involving AIP4 and LMP2A. (A) Effects of WW domain
binding on the 1H-15N HSQC spectrum of LMP2A NTD [48]. Upon the binding of WW domains, the
resonances from the red colored residues completely disappeared in the two-dimensional 1H-15N
HSQC spectra of the LMP2A NTD, and those of the blue colored residues broadened and/or shifted.
(B) Domain composition of human AIP4. Residue numbers are depicted on the schematic drawing.
(C) Two models of interactions. Model 1 represents the consecutive WW domains binding LMP2A
NTD. Model 2 represents an alternative way. The potential interaction residues in the linker region
are depicted in red color (disappeared in (A)) or with blue color (shifted in (A)). The residue Val in
loop 1 of the WW2 or WW3 domain is depicted in the figure.

Based on our results, we propose a model of the interaction between human AIP4
and LMP2A (Figure 8). Human AIP4 is a large protein of 862 amino acids and consists of
six domains [18]: C2 domain (19–111), WW1 (288–318), WW2 (320–349), WW3 (400–429),
WW4 (439–468), and HECT domain (507–860) (Figure 8(B)). Theoretically, two PY motifs
of the LMP2A NTD could bind to any of these WW domains. However, there are no or
few linking residues between the WW1–WW2 domains and WW3–WW4 domains. This
characteristic defines the possible binding of WW domains, as shown in Figure 8(C). Model
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1 shows that the two consecutive WW domains (WW1–WW2 or WW3–WW4) interact
with LMP2A NTD simultaneously. In this case, two LMP2A molecules could theoretically
bind to one hAIP4. In the other model, Model 2, one of the WW1 or WW2 domains binds
one PY motif and one of WW3 or WW4 binds the other PY motif of LMP2A. If this is the
case, the linking region between WW2 and WW3 should be folded to make the two WW
domains spatially adjacent. In both models, the linker region of LMP2A seems to regulate
the selectivity of the WW2 domain by interacting with the loop 1 regions of WW domains.
Generally, hAIP4 interacts with many proteins containing the PY motif to determine the
fate of these proteins in the cell cycle. In any interacting system, the XP grooves of WW
domains and PY motifs are almost similar and well conserved. This means that the PY
motif itself could not define specificity for WW domains. Thus, hAIP4 needs to specifically
regulate binding to a ligand protein, and our model explains this well. In addition, our
models have another benefit for additional interactions; the linker region of LMP2A NTD
contains the immunoreceptor tyrosine-based activation motif (ITAM, residues 62–88) that
binds Syk tyrosine kinase [43]. In our model, ITAM is sufficiently exposed to the water
environment, which allows ITAM to be easily accessed by Syk.

Maintaining latency in infected cells and tumorigenesis by LMP2a may be related
with the recruiting ability of E3 ligases that provoke the unwanted proteolysis of signal
molecules such as protein tyrosine kinases. It is known that Syk is a main molecule in
LMP2a signaling [70] and dramatically decreases by LMP2A [71]. As described above,
the binding region of Syk is located at the linker region and the mutation of Y74 in the
linker region causes loss of functionality of LMP2A in B-cells [72]. Our result showed that
Y74 was affected by WW2 binding (Figure 8A), which might support that conformational
importance of the linker region for E3 ligase recruiting and substrates binding. In addition,
it is noteworthy that the ITAM deletion mutant of LMP2A causes a decrease in cytoplasmic
Itch E3 ligase in epithelial cells [23].

5. Conclusions

This study provides structural insights into the interaction between two PY motifs of
LMP2A NTD and WW domains of the E3 ubiquitin–protein ligase. The XP groove of the
WW2 domain may provide a binding pocket for LMP2A NTD PY motifs, and this binding
may be optimized by additional interactions between the linker region and WW2 domain.
In this process, the hairpin loop region between strands β1 and β2 is likely to act as a
sensor for detecting different chemical environments. Further studies of the interactions
between PY motifs and WW domains, especially complex structure of two consecutive
WW domains and LMP2A NTD, would contribute to understanding the mechanisms and
role of the ubiquitination process of LMP2A, which will eventually enable us to elucidate
the general mechanisms involving binding between PY motifs and WW domains.

Recently, proteolysis targeting chimera (PROTAC) techniques have become popular
to discover novel drugs, which overcome the traditional small chemical drug. It uses
cellular E3 ligase systems to degrade target proteins through physically linking between
E3 ligases and target proteins [73]. Our studies on the interaction of AIP4 E3 ligase and its
substrate may also be helpful to discover a peptide-mediated PROTAC that is worthy of
investigating [74].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11050379/s1, Figure S1: Spectral perturbation of the WW2 domain upon the PY peptide
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Figure S3: Spectral perturbation of the WW2 domain upon the C-PY peptide binding.
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