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Abstract

Medical research increasingly includes high‐dimensional regression modeling

with a need for error‐in‐variables methods. The Convex Conditioned Lasso

(CoCoLasso) utilizes a reformulated Lasso objective function and an error‐
corrected cross‐validation to enable error‐in‐variables regression, but requires
heavy computations. Here, we develop a Block coordinate Descent Convex

Conditioned Lasso (BDCoCoLasso) algorithm for modeling high‐dimensional

data that are only partially corrupted by measurement error. This algorithm

separately optimizes the estimation of the uncorrupted and corrupted features

in an iterative manner to reduce computational cost, with a specially cali-

brated formulation of cross‐validation error. Through simulations, we show

that the BDCoCoLasso algorithm successfully copes with much larger feature

sets than CoCoLasso, and as expected, outperforms the naïve Lasso with en-

hanced estimation accuracy and consistency, as the intensity and complexity

of measurement errors increase. Also, a new smoothly clipped absolute de-

viation penalization option is added that may be appropriate for some data

sets. We apply the BDCoCoLasso algorithm to data selected from the UK
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Biobank. We develop and showcase the utility of covariate‐adjusted genetic

risk scores for body mass index, bone mineral density, and lifespan. We de-

monstrate that by leveraging more information than the naïve Lasso in par-

tially corrupted data, the BDCoCoLasso may achieve higher prediction

accuracy. These innovations, together with an R package, BDCoCoLasso, make

error‐in‐variables adjustments more accessible for high‐dimensional data sets.

We posit the BDCoCoLasso algorithm has the potential to be widely applied in

various fields, including genomics‐facilitated personalized medicine research.
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1 | INTRODUCTION

Modern medical research is increasingly built on modeling
of high‐dimensional data. Sparse regression methods, such
as the Lasso (Tibshirani, 1996), Generalized Lasso (Tibshirani
et al., 2011), Grouped Lasso (Yuan & Lin, 2006), adaptive
Lasso (Zou, 2006), and Elastic Net (Zou & Hastie, 2005), have
been widely applied to perform estimation and variable se-
lection at the same time. However, high‐dimensional data
sets often contain less precise measurements of phenotypes
than those that might be available in smaller studies. For
example, large biobanks often use billing codes from elec-
tronic health care records as proxy measures for a physician‐
made diagnosis. It is well known that applying naïve re-
gression methods to predictor variables that are measured
with error can lead to attenuation of effect estimates
(Chesher, 1991; Rosenbaum et al., 2010). Analogously,
questionnaire data from large cohorts often contain many
missing values (Obermeyer & Emanuel, 2016). Removing
subjects who are missing at least one measurement can ea-
sily lead to removal of most subjects when data are high
dimensional.

Many error‐in‐variables solutions have been pro-
posed. In addition to simple complete case analysis and
pairwise deletion, more rigorous methods, such as
expectation‐maximization algorithms (Dempster, 1977;
Schafer, 1997), multiple imputation methods (Buuren,
2011), and full information maximum likelihood esti-
mation (Enders, 2001; Friedman et al., 2010), have been
developed, but these computationally expensive methods
cannot be easily extended to high‐dimensional settings.
In contrast, Loh and Wainwright (2011) developed a
penalized method for error‐in‐variables regression.
Within a properly chosen constraint radius, a projected
gradient descent algorithm will converge to a small
neighborhood of the set of all global minimizers, and is
promising for variable selection in a high‐dimensional
setting (Loh & Wainwright, 2011). Nevertheless, proper

choice of this constraint radius depends on knowledge of
the parameters yet to be estimated (Datta et al., 2017).
Hence, Datta and Zou (2017) developed the Convex
Conditioned Lasso (CoCoLasso) that does not require
prior knowledge of the unknown parameters. The Co-
CoLasso algorithm is able to correct for both additive
measurement error and missing data, and showed a
substantial increase in estimation accuracy and stability
compared with the naïve Lasso.

However, when the data are only partially corrupted
(i.e., some features are free of measurement error), the
CoCoLasso still performs estimation for all features in an
undifferentiated manner, limiting the implementation of
the approach for large feature sets due to the intensive
matrix computations required. Such circumstances of
partial corruption are common for genetic epidemiology
studies based on large genotyped cohorts, where the
genotypes are accurately measured by highly reliable
high‐throughput sequencing or microarrays, but lifestyle
or clinical risk factors (except for age and sex) are mea-
sured with various types of error. For instance, in the UK
Biobank, one of the largest health registries to date,
participants had accurately measured hundreds of thou-
sands of single nucleotide polymorphisms (SNPs) with
little missing data, but most covariates based on ques-
tionnaires or health care records contained missing data
(Bycroft et al., 2018). Samples with such corrupted cov-
ariates are usually discarded, potentially leading to un-
deruse of information. Therefore, inspired by the
CoCoLasso, we propose here a Block coordinate Descent
Convex Conditioned Lasso (BDCoCoLasso) algorithm that
makes it possible to perform higher‐dimensional error‐
in‐variables regressions by separately optimizing esti-
mation of the parameter estimates for uncorrupted and
corrupted features in an iterative manner. Our proposal
requires the implementation of a carefully calibrated
cross‐validation strategy. Furthermore, we build in the
smoothly clipped absolute deviation (SCAD) penalty
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(Fan & Li, 2001) in the new algorithm. In simulations, we
confirm that our algorithm provides equivalent results to
the CoCoLasso, and demonstrates better performance
than the naïve Lasso, with increasing benefit as the di-
mension increases. Although this approach will still en-
counter computational limitations for many corrupted
features, we substantially enlarge the magnitude of pro-
blems that can be analyzed with an error‐in‐variables
approach. We demonstrate the potential practical utility
of the BDCoCoLasso by deriving covariate‐adjusted ge-
netic risk scores to predict body mass index, bone mi-
neral density, and lifespan in a subset of the UK Biobank
(Bycroft et al., 2018).

The rest of the manuscript is organized as follows. In
Section 2, we briefly review the CoCoLasso method, and
then we describe our new version that allows blocks of
features with different corruption states—BDCoCoLasso.
We describe simulation settings and results in Section 3.
Section 4 illustrates the performance of our algorithm on
the UK Biobank data.

2 | METHODS

In this section, we first review the principles of the Co-
CoLasso. We then seek to improve its computational ef-
ficiency and stability when the covariate matrix is partially
corrupted or when different types of measurement error
exist simultaneously, by implementing a block coordinate
descent algorithm (Rosenbaum et al., 2013). We also im-
plement a SCAD penalty (Fan & Li, 2001) to avoid over-
shrinkage when some features have strong effects.

2.1 | The CoCoLasso

Suppose a true covariate matrix Xn p× , with n observa-
tions and p features, is measured as a corrupted covariate
matrix Zn p× , where measurement error can be:

1. Additive error: Z X A= +ij ij ij, where Aij represents
additive error;

2. Missing data: Z X M=ij ij ij, where M = 1ij or M = 0ij .

It has been shown that using a classical Lasso with an
objective function taking the form

   
n
y Zβ λ β

1

2
− +2

2
1 (1)

can lead to biased estimation of β (Datta et al., 2017; Loh
& Wainwright, 2011), where yn×1 is the continuous
response.

Alternatively, this objective function can be re-
formulated as

 β β ρ β λ β
1

2
Σ − + ,′ ′ 1 (2)

where Z ZΣ =
n

1 ′ and ρ Z y=
n

1 ′ . Loh and Wainwright

(2011) proposed that Σ and ρ could be replaced by their
unbiased estimators Σ̂ and ρ̂ such that E (Σ̂ ) = Σ and
E ρ ρ( ˆ ) = . However, since the new covariance matrix Σ̂
can have negative eigenvalues, particularly when the
covariate matrix is high dimensional (p n≥ ), the new
optimization problem with the objective function

 β β ρ β λ β
1

2
Σ̂ − ˆ +′ ′ 1 (3)

is not necessarily convex. Loh and Wainwright (2011)
showed that by setting certain constraints on β, the
problem could become convex, yet it is necessary
to have prior knowledge of β to find a suitable
constraint.

Datta and Zou (2017) therefore proposed the CoCo-
Lasso that adopts the adapted objective function but finds
a nearest positive semidefinite matrix for Σ̂:

 β β ρ β λ β
1

2
Σ
~

− ˆ + ,′ ′
1 (4)

where  Σ
~
= argmin Σ̂ − ΣΣ 0 1 max1≥ . Here, the element-

wise maximum norm for matrix Γ is defined as
   Γ = max Γijmax . This nearest positive semidefinite ma-
trix can then be solved by an alternating direction
method of multipliers (ADMM) algorithm (Boyd
et al., 2011).

2.2 | Two‐block coordinate descent for
partially corrupted covariate matrix

The CoCoLasso enables error‐in‐variables regression
in general, but when the feature set is large, the re-
quired matrix calculations are demanding. Im-
plementing a block coordinate descent could
substantially improve the computational efficiency
when the covariate matrix is only partially corrupted.
Specifically, projection of the covariance matrix onto
a positive semidefinite subspace, that is, Σ̃, within the
CoCoLasso, requires multiple operations on matrices
of dimension p p× , which are order o p( )3 . In con-
trast, our BDCoCoLasso requires these operations only
on the corrupted subblocks of the covariance matrix,
which are anticipated to be much smaller. Suppose
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the true covariate matrix Xn p× is now measured as
[ ]X Z,1 2n p n p× 1 × 2

, where p p p X+ = ,1 2 1 is measured
without error, and Z2 is measured with error. We then
need to estimate β β β= ( , )1 2 where β1 is a coefficient
vector for the noncorrupted covariates, and β2 is a
coefficient vector for the corrupted covariates. We
derive the objective function as

     
n
y X β Z β λ β λ β

1

2
− − + + .1 1 2 2 2

2
1 1 2 1 (5)

We conceive a two‐step block coordinate descent
algorithm based on (2)–(4):

1. We first consider β2 fixed, and we solve

 β β ρ β λ βargmin
1

2
Σ − ~ + ,

β
1
′

1 1 1
′
1 1 1

1

(6)

where ρ X y Z β̃ = ( − ̃ )
n1
1

1
′

2 2 and X XΣ =
n1
1

1
′
1. Z ̃ 2 is

defined as

(a) in the additive error setting, Z Z̃ =2 2;
(b) in the missing‐error setting, specifically, we de-

fine a ratio matrix Rp p×2 2
indicating the presence

or absence of data as

R
n

n
= ,jl

jl

where njl is the number of samples for which both the
jth and the lth features are measured and njj is the
number of samples for which the jth feature is mea-
sured. Note that Z β2̃ 2 is used to correct for measure-
ment error in the corrupted covariates. We then have
Z Z R
~

= diag(1 )2 2 ∕ , that is, Z ̃ =
Z

R2ij
ij

jj

2
for i n= 1, …,

and j p= 1, …, 2.
2. We next consider β1 fixed, with a value optimized in

the previous step, and we solve

 β β ρ β λ βargmin
1

2
Σ
~

− ~ + ,
β

2
′

2 2 2
′

2 2 1

2

(7)

where ρ ̃ 2 is an unbiased surrogate of Z y X β( − )
n

1
2
′

1 1

and Σ̃ 2 is the nearest positive semidefinite matrix of
Σ̂ 2. For ρ ̃ 2 and Σ̂ 2,

(a) in the additive error setting, ρ Z y X β̃ = ( − )
n2
1

2
′

1 1

and Z ZΣ̂ = − Σ
n A2
1

2
′

2 , where ΣAp p2× 2
is a known

variance–covariance matrix for features measured
with additive error;

(b) in the missing error setting, ρ Z y X β~ = ( − )
n2
1

2
′

1 1

Rdiag(1 )∕ and Z Z RΣ̂ =
n2
1

2
′

2∕ . Here, ∕ represents
elementwise division.

We then alternate between the two steps until con-
vergence. Following similar arguments as in Datta et al.
(2017), we can ensure that both problems are equivalent
to a Lasso problem. The complete optimization proce-
dure is described in Algorithm 1.

Of note, the estimation problem can be defined as
finding the global solution for β β( , )1 2 , and our two‐step
procedure can be seen as equivalent to replacing Σ2 by its
nearest positive definite matrix, Σ̂ 2, in (5). Use of this
substitution might not lead to a jointly convex problem.
However, since both marginal problems (6) and (7) are
convex, and both have suitable properties (i.e., both are
strongly convex and smooth), our generalized alternating
minimization algorithm can guarantee global minimiza-
tion (Jain & Kar, 2017; Kelley, 1999).

Algorithm 1 Two‐block coordinate descent

Input R y λ X ZΣ , Σ̃ , , , , ,1 2 1 2, error
Initialize β 001 ← ; β 002 ←

while until convergence do
if error = missing then

Z Z R
~

= diag(1 )2 2 ∕

end if
if error = additive then

Z Z̃ =2 2

end if
ρ X y Z β̃ ( − ̃ )

n1
1

1
′

2 02←

 β β β ρ β λ βargmin Σ − ̃ +β1
1

2 1
′

1 1 1
′

1 1 11
←

if error = missing then
ρ Z y X β R~ ( − )diag(1 )

n2
1

2
′

1 1← ∕

end if
if error = additive then

ρ Z y X β̃ ( − )
n2
1

2
′

1 1←

end if
 β β β ρ β λ βargmin Σ̃ − ̃ +β2

1

2 2
′

2 2 2
′

2 2 12
←

Update β β01 1← ; β β02 2←

end while
Output β β,1 2

Cross‐validation to choose the penalization parameter,
λ, must be appropriately implemented for the block im-
plementation. Therefore, extending the concept in CoCo-
Lasso (Datta et al., 2017), a K ‐fold cross‐validated λ can be
obtained by minimizing the total cross‐validation error
while correcting for the two blocks separately,
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λ
K

β λ β λ

β λ β λ ρ β ρ β

β β

ˆ = argmin
1 ˆ ( )Σ ˆ ( )

+ ˆ ( )Σ
~ ˆ ( ) − 2~ ˆ − 2~ ˆ

+ 2 ˆ Σ̂ ˆ .

λ k

k K

k k k

k k k k k k k

k k k

=1

=

,1
′

,1 ,1

,2
′

,2 ,2 ,1
′

,1 ,2
′

,2

,2

′
,21 ,1 (8)

Here, β̂ k,1 and β̂ k,2 are estimated as described above

for β̂ 1 and β̂ 2 based on data not in the kth‐fold; Σk,1 and
Σ̃ k,2 are derived as described above for Σ1 and Σ̃ 2 based
on data in the kth‐fold. Σ̂ k,21 is an unbiased surrogate of

Z XΣ =k n k k,21
1

,2
′

,1, where Zk,2 and Xk,1 are in the kth‐fold.
More specifically,

1. in the additive error setting, where the additive error
is centered to have zero mean, Z XΣ̂ =k n k k,21

1
,2
′

,1;

2. in the missing error setting, Z XΣ̂ = ̃
k n k k,21

1
,2
′

,1

where Z Z R
~

= diag(1 )k k k,2 ,2 ∕ .

Although either an additive error setting or a missing
error setting can be approached in the aforementioned
two‐step manner, data often contain variables subject to
both types of errors. Therefore, we further propose a
generalized algorithm that copes with a mixed error
setting, described in Supporting Information.

2.3 | Implementation of a SCAD penalty

For potential application in scenarios where the causal
variables are few but have large effect sizes, using the
Lasso penalty may lead to overshrinkage (Fan & Li,
2001). To resolve this potential issue, we have also im-
plemented a nonconcave SCAD penalty (Fan & Li, 2001).
The SCAD penalty is given by









   
    

p β

λ β β λ

λ β aλ( ) =

if ,

− if ,

otherwise

λ j

j j

β aλ β λ

a j

a λ

SCAD
−2 +

2( − 1)

( + 1)

2

j j
2 2

2

≤

≤ ≤ (9)

and its first derivative with respect to βj is given by








 
 p β

λ β β λ

λ β aλ( ) =

sign( ) if ,

if ,

0 otherwise .

λ j

j j

β aλ β

a j

′SCAD − + sign( )

− 1

j j

≤

≤ ≤ (10)

Substituting the regular L1 penalty used in the
Lasso by the SCAD penalty can retain large

coefficients while shrinking smaller coefficients to
zero. Thus, the SCAD penalty is able to produce a
sparse solution and more accurate estimation for large
coefficients.

Following Zou and Li (2008), we implement a local
linear approximation of the penalization function:

         p β p β p β β β( ) (
~
) + (

~
)( −

~
),λ j λ j λ j j j

SCAD SCAD ′SCAD≈
(11)

where pλ and pλ
′ are given by Equations (9) and (10),

respectively, and β ̃j is the estimate obtained from the
previous iteration.

Equivalently,

       p β λ
p β

λ
β λw β( ) =

(
~
)

= ,λ j
λ j

j j j
SCAD

′SCAD

(12)

where a weight wj specific to the jth feature is introduced
to the regular L1 penalty and is updated after each
iteration. This implementation enables an adaptive
BDCoCoLasso.

In principle, the hyperparameter a in the SCAD
penalty should be estimated through cross‐validation.
However, the resulting two‐dimensional cross‐validation
would be computationally expensive. Fan and Li (2001)
proposed that a = 3.7 should be suitable for many pro-
blems, and that the algorithm performance does not
improve significantly with a selected by data‐driven ap-
proaches. We therefore set a = 3.7 in all simulations
described below.

In addition to the SCAD penalty, other weighting
schemes, such as the minimax concave penalty (Zhang,
2010), could be implemented in the future for improved
generalizability.

3 | SIMULATION STUDY

Simulations were designed to explore the performance of
BDCoCoLasso as a function of the number and propor-
tion of corrupted features. Furthermore, we wanted to
ensure that our results matched CoCoLasso when both
methods could be implemented, that is, for fairly modest
p, and a single type of error.

3.1 | Simulation design

We first simulated an uncorrupted covariate matrix
Xn p× from a multivariate normal distribution with
n observations, zero mean, and a predefined correla-
tion structure across p features. We explored a
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lower‐dimensional setting (n = 10, 000 and p = 200)
and a higher‐dimensional setting (n = 1000 and
p = 2000) in combination with two common covar-
iance matrix designs to introduce correlation between
features (ΣX ):

1. An autoregressive setting:  Σ = 0. 5X
i j−

ij
.

2. A symmetric setting: IΣ = 0.5 + 0.5X i j=ij
.

We then generated the response as

( )y Xβ X Z β σ= + ϵ = ( , ) + ϵ, where ϵ ~ 0, .0 1 2 0 ϵ
2

(13)

To ensure a realistic signal‐to‐noise ratio, we set σ = 2ϵ .
When assessing the performance of the CoCoLasso al-
gorithm, Datta and Zou used β = (3, 1.5, 0, 0, 2, 0, …, 0)0

′

to generate strong signals from only a few features.
Likewise, to start with a simulation that was similar to
theirs, we set

β = (3, 1.5, 0, 0, 20, …, 0, 2, 0, 0, 1.5, 3),0

without error with error

′
     

where three of the features measured without error and
three of the features measured with error were assigned
to be causal with relatively large effect sizes.

Since we anticipate that this algorithm will be useful
in large cohorts where n p> , and anticipating multiple
associated features with small effect sizes, we simulated
more scenarios with n = 10, 000 and p = 200. We as-
signed different fractions of features to be causal (5% or

20%), and created higher dimensionality (p = 200, 500,
or 1000) while sampling β0 from a standardized normal
distribution (0, 1) .

Next, we introduced different types of error to the
covariate matrix:

1. For the additive error setting, the corrupted design
matrix was generated as Z X A= +2 2 where
A τI~ (0, ) . We explored different τ parameters in
combination with different fractions (at least 10%) of
features measured with additive error.

2. For the missing error setting, the corrupted design matrix
was generated as Z X M=2 2 ⊙ where each element of
M follows a Bernoulli distribution:m r~ (1 − )ij  where
r is the missing rate. We explored different values for the
missing rate r in combination with different fractions (at
least 10%) of features measured with missing data.

3. For the mixed error setting, we generated
y X Z Z β= ( , , ) + ϵ1 2 3 0 where Z2 and Z3 were gener-
ated as the additive error setting and the missing
error setting, respectively. We explored different
combinations of τ for Z2 and r for Z3.

All parameters used in the simulations are sum-
marized in Table 1. In all simulations, simulation of Z
and y was repeated for the same β0 twice to create a
training data set for model fitting and a test data set of
equal size (n = 10,000 or 1000) for assessing prediction
accuracy. We used fivefold cross‐validation in the
training data to optimize the λ parameter. We repeated
each simulation scenario 100 times. Data were then
analyzed with BDCoCoLasso, naïve Lasso, and for the
simulation scenarios with strong signals in Table 1,

TABLE 1 Summary of simulation design

Err. No. Obs. No. Fts. No. Causal Fts.
% Fts. with
Additive Err. % Fts. Missing β τ r

Additive 10,000 200 6 10 β0 τ0

Missing 10,000 200 6 10 β0 r0

Additive 1000 2000 6 10 β0 τ0

Missing 1000 2000 6 10 β0 r0,high‐ dim.

Additive 10,000 200 5%, 20% 10, 20, 50 ~ (0, 1) 0.2

Missing 10,000 200 5%, 20% 10, 20, 50 ~ (0, 1) 0.2

Additive 10,000 500, 1000 5% 10, 20, 50 ~ (0, 1) 0.2

Missing 10,000 500, 1000 5% 10, 20, 50 ~ (0, 1) 0.2

Mixed 10,000 200 5% 10, 20, 50 10, 20, 50 ~ (0, 1) 0.2, 0.5, 0.8 0.2, 0.5

Note: All simulations were replicated 100 times in each of the autoregressive covariance setting and the symmetric covariance setting, respectively.
β0 = (3,1.5,0,0,2,0,…,0,2,0,0,1.5,3), τ0∈ {0,0.05,0.10,…,0.70,0.75,0.80}, and r0,high‐dim.∈ {0,0.05,0.10,…,0.30,0.35,0.40} as high missing rates lead to completely
missing data in some features with a small number of observations.

Abbreviations: Err., errors; Fts., features; Obs., observations.
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also with BDCoCoLasso‐SCAD, using the variant of
SCAD penalty, as well as the adaptive Lasso. All
methods were implemented using a 2.6‐GHz quad‐core
processor with 32 GB of random access memory. The
data sets were also analyzed with CoCoLasso for
comparison of computational cost. The four following
criteria were used to compare the performance of dif-
ferent methods:

1. Computational time (for some scenarios).
2. Total‐mean‐square error in the training data

set:  β β− ˆ
0 2.

3. False‐positive rate (FPR), that is, the number of truly
zero coefficients estimated to be nonzero.

4. Sparsity: The fraction of features correctly estimated
to be zero or nonzero.

5. Variance explained (R2) in the test data set:

( )
X β y

X β y

Cov( ˆ, )

Var( ˆ )Var( )

2test test

test test

.

When the naïve Lasso and the adaptive Lasso were
applied to corrupted data in the additive error setting,
estimates could be directly obtained, without taking the
measurement error into account. However, in the miss-
ing error setting, since removing all observations with
missing data would occasionally lead to insufficient
numbers of samples, we used the classical mean im-
putation method to impute missing data. The adaptive
weight ŵj,adaptive for the jth feature in the adaptive Lasso
was obtained by Ridge regression with fivefold cross‐
validation:  ŵ =j

β
,adaptive

1
ˆ
j,Ridge

. We did not apply more

sophisticated imputation methods, such as the Multi-
variate Imputation by Chained Equations (Buuren,
2011), since they would have prohibitive computational
costs in a high‐dimensional setting.

3.2 | Simulation results

3.2.1 | BDCoCoLasso outperforms Lasso
when covariate matrix is partially corrupted,
and can cope with much larger data sets than
the CoCoLasso

To ensure validity of our implementation, we analyzed
the same data with BDCoCoLasso as well as the Co-
CoLasso algorithm without the block coordinate des-
cent procedures. As expected, we found that all the
estimates obtained by the BDCoCoLasso were nu-
merically the same as those obtained by the CoCoLasso
(numerical discrepancies were below the convergence
tolerance), while the latter had a higher computational
cost (Figure 1c,d). The computational efficiency of the

BDCoCoLasso was more prominent in higher‐
dimensional data with stronger correlations between
features. For instance, on 1000 observations of 2000
features simulated with a symmetric covariance
structure, it took the BDCoCoLasso approximately
10 min, on average, to construct the model, whereas
the ordinary CoCoLasso had an average running time
above 10 h.

Also as expected based on Datta et al. (2017), the
BDCoCoLasso achieved better performance than the
naïve Lasso in most scenarios. In both the lower‐
dimensional setting (n = 10, 000 and p = 200) and the
higher‐dimensional setting (n = 1000 and p = 2000),
with 10% features measured with error and strong sig-
nals, the BDCoCoLasso yielded smaller total‐mean‐
square error, lower FPR, and higher sparsity compared
with the naïve Lasso (Figures 1, S1, and S2). The
BDCoCoLasso was relatively insensitive to the increase in
additive error rates or missing rates, while the naïve
Lasso had considerably worse performance as corruption
rates increased. Although the naïve Lasso achieved a
slightly better prediction accuracy in the test data set
with small values of τ or r , its predictive performance
deteriorated more rapidly than the BDCoCoLasso
(Figures S1 and S2).

Moreover, implementing a SCAD penalty in the
lower‐dimensional setting (n = 10, 000 and p = 200)
with strong signals further improved the estimation ac-
curacy of the BDCoCoLasso. As indicated in Figures 1a
and S1, the BDCoCoLasso with SCAD penalty yielded
smaller total‐mean‐square error with a 100% sparsity
when no measurement error occurred (τ = 0 or r = 0).
Further, it consistently outperformed the BDCoCoLasso
implementing an L1 penalty, the naïve Lasso as well as
the adaptive Lasso with increasing τ and r . Notably,
while the adaptive Lasso had comparable performance to
the BDCoCoLasso with SCAD penalty, and was slightly
better than BDCoCoLasso with an L1 penalty when the
intensity of measurement error was considerably weak,
its accuracy could attenuate substantially with a higher τ
or r . However, the SCAD penalty implementation had a
low prediction accuracy despite consistently achieving an
FPR close to 0 and almost 100% sparsity (Figures S1 and
S2). This situation can arise when there are many highly
correlated predictor variables. Since SCAD has good
performance in variable selection, it does not retain
many noncausal variables. In contrast, prediction models
created by some other methods may retain several non-
causal variables that are highly correlated with the true
causal predictors; this obviously leads to worse metrics
for sensitivity and sparsity, but can in fact lead to better
R2 even in test data.

880 | ESCRIBE ET AL.



3.2.2 | The BDCoCoLasso also outperforms
naïve Lasso with weakened signals, increased
error rate, and increased dimensionality

In the lower‐dimensional setting (n = 10, 000 and
p = 200), when the magnitude of causal feature effect sizes
was reduced, and more causal features were introduced,
the estimation accuracy and stability for the naïve Lasso
decreased substantially (Figures 2 and S3). In contrast, al-
though an increase in the number of causal features and
the correlation between features rendered the signals more
elusive and resulted in an increase in FPR and a decrease in
sparsity, the BDCoCoLasso always maintained better esti-
mation accuracy than the naïve Lasso with better

consistency across replicates (Figures 2 and S3). Also as
expected, the BDCoCoLasso was clearly less sensitive to
changes in the proportion of features measured with error
(Figure 2). Such an improved estimation accuracy persisted
when the covariate matrix contained more features
(p = 500 or 1000; Figures 3 and S4).

3.2.3 | The BDCoCoLasso handles
measurement error with mixed types

The new three‐block coordinate descent algorithm (Sup-
porting Information) copes seamlessly with coexistence of
both types of error (Figures 4 and S5). As demonstrated in

(a) (b)

(c) (d)

FIGURE 1 Performance of BDCoCoLasso, BDCoCoLasso‐SCAD, and Lasso with increasing additive error (τ) and missing rates (r) for the
simulation scenarios in the first four rows of Table 1, where six features were assigned to be causal with large effect sizes. Panels (a) and (b) show
squared bias. Dots denote median total‐mean‐square error and error bars show the interquartile range based on 100 replicates in each simulation
setting. When τ = 0 or r = 0, no measurement error exists. All simulations were based on (a) 10,000 observations of 200 features or (b) 1000
observations of 2000 features where 10% of the features were measured with error. In (b), as r increased, frequently all observations of a feature were
missing. Therefore, scenarios with r > 0.4 were not explored. Comparison of running time in (c) the lower‐dimensional settings and (d) the higher‐
dimensional settings indicates the substantially improved computational efficiency of the BDCoCoLasso over CoCoLasso. Running time was
summarized over all replicates in each simulation setting. All methods were implemented using a 2.6‐GHz quad‐core processor. BDCoCoLasso,
Block coordinate Descent Convex Conditioned Lasso; CoCoLasso, Convex Conditioned Lasso; SCAD, smoothly clipped absolute deviation
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FIGURE 2 Squared bias of BDCoCoLasso and Lasso with higher error rates and weaker signals (rows 5 and 6 in Table 1). Dots and
triangles denote median total‐mean‐square error and error bars denote interquartile range based on 100 replicates in each simulation
setting. Error rates denote the fractions of features measured with either additive error or missing data. Causal features denote the fractions
of features assigned to be causal. Effect sizes of causal features were sampled from a standardized normal distribution. All simulations were
based on 10,000 observations of 200 features. BDCoCoLasso, Block coordinate Descent Convex Conditioned Lasso

FIGURE 3 Squared bias of BDCoCoLasso and Lasso with high‐dimensional feature sets of 500 or 1000 features (rows 7 and 8 in Table 1).
Dots denote median total‐mean‐square error and error bars denote interquartile ranges based on 100 replicates in each simulation setting.
Error rates denote the fractions of features measured with either additive error or missing data. In all simulation settings, 5% of the features
were assigned to be causal with effect sizes sampled from a standardized normal distribution. Features were simulated to have an
autoregressive covariance matrix. BDCoCoLasso, Block coordinate Descent Convex Conditioned Lasso
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previous figures, the BDCoCoLasso achieved higher esti-
mation accuracy than Lasso in all combinations of τ r, ,
and error rates. Its advantage became more prominent
when the covariate matrix was more corrupted with a
higher τ r, , and error rate. In particular, when all features
were measured with error, a two‐block coordinate descent
iterating between the additive‐error block and the
missing‐error block retained its superiority over the naïve
Lasso.

4 | REAL DATA APPLICATION
EXAMPLES IN THE UK BIOBANK

The UK Biobank provides deep genetic and phenotypic
data collected from nearly 500,000 participants between
2006 and 2010, and has enabled many important ad-
vances in human genetics and health care (Bycroft et al.,
2018). One important advance is the development of
genetic risk scores, which have demonstrated the po-
tential in improving risk screening and possibly guiding
prevention and intervention (Khera et al., 2018; Lu et al.,
2020; Lu, Forgetta, Keller‐Baruch, et al., 2021; Lu,
Forgetta, Wu, et al., 2021; Lu, Zhou, et al., 2021). No-
tably, several genetic risk scores have been developed
using Lasso (Lu, Forgetta, Keller‐Baruch, et al., 2021; Lu,
Forgetta, Wu, et al., 2021; Lu, Zhou, et al., 2021). Similar
to most large‐scale cohort studies, measurement errors,

especially missingness, affected a substantial proportion
of clinical and lifestyle variables. We thus tested whether
the BDCoCoLasso could help improve the predictive
performance and clinical utility of covariate‐adjusted
genetic risk scores compared with the naïve Lasso or the
adaptive Lasso.

For the purpose of testing BDCoCoLasso in a rea-
sonably large high‐dimensional setting, we randomly
selected 4500 unrelated individuals from the UK Biobank
of white British ancestry with self‐reported age, sex,
measured body mass index, bone mineral density, ma-
ternal and paternal living status or age of death, and 30
clinical and lifestyle variables (Figure 5a). We randomly
split this data set into a training data set, including 3000
individuals possibly with missing data, and a test data
set, including 1500 individuals without missing data. For
all three examples, genotypes had been imputed to the
Haplotype Reference Consortium panel (McCarthy
et al., 2016).

4.1 | Predicting body mass index with
accurate genotype variables and corrupted
clinical and lifestyle measurements

Obesity is a highly polygenic trait involving multiple genes of
small or moderate effects (Speliotes et al., 2010; Willer et al.,
2009). Previously, the genetic basis of obesity was explored

FIGURE 4 Squared bias of BDCoCoLasso and Lasso in the mixed error setting using a three‐block coordinate descent algorithm. Dots and
triangles denote median total‐mean‐square error and error bars denote interquartile range based on 100 replicates in each simulation setting.
Additive error rates and missing error rates were set to be equivalent taking values in 0.1, 0.2, or 0.5. When both the additive error rate and the
missing error rate are 0.5, all features are measured with error and a two‐block coordinate descent algorithm supplants the three‐block
coordinate descent algorithm. All simulations were based on 10,000 observations of 200 features. A 5% of the features was assigned to be causal
with effect sizes sampled from a standardized normal distribution. BDCoCoLasso, Block coordinate Descent Convex Conditioned Lasso
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by a genome‐wide association study of body mass index, a
widely used measure to define obesity, in 322,154 individuals
of European ancestry from the Genetic Investigation of
ANthropometric Traits Consortium (Locke et al., 2015).
Despite tens of independent genetic risk loci identified, many
clinical and lifestyle risk factors are also strongly associated
with body mass index (Marti et al., 2004; Speakman, 2004),
yet measurements of these risk factors may be missing in
large‐scale cohort studies. Such missingness limits the in-
vestigation of the joint effects of the genetic and nongenetic
risk factors for obesity. We therefore applied the BDCoCo-
Lasso to a subset of data from the UK Biobank (Bycroft et al.,
2018) to examine whether incorporating variables that

previously had to be discarded due to missingness could
improve the prediction of body mass index.

An existing large meta‐analysis of genome‐wide as-
sociation studies identified 1882 SNPs strongly associated
with body mass index p( < 5 × 10 )‐8 (Locke et al., 2015),
hence we retrieved genotypes of these SNPs as candidate
genetic predictors. Among these SNPs that were re-
presentative of causal signals, many were correlated due
to linkage disequilibrium. Thus, L1 penalty was adopted
for variable selection. Genetic variants together with age
and sex were considered features measured without error
or missing data, while the other clinical or lifestyle fea-
tures containing missing values were further processed

FIGURE 5 Comparison of Lasso and BDCoCoLasso in developing a covariate‐adjusted genetic risk score for the body mass index z score.
(a) Summary of missing rates for the covariates in the training data set (left). The test data set does not have missing data. The coefficients of
these covariates estimated by Lasso based on complete observations (second panel; N= 895) or mean imputation (third panel; N= 3000),
and by BDCoCoLasso (rightmost panel; N= 3000) on the training data set are aligned. (b) Comparison of model metrics for the Lasso and
BDCoCoLasso models. Standard errors of the proportion of variance explained and root‐mean‐square error were generated using 100
bootstrap replicates of the test data set (N= 1500). The five models were evaluated on the same bootstrap replicates. (c) Comparison of
running time in logarithmic scale. All methods were implemented using a 2.6‐GHz quad‐core processor. BDCoCoLasso, Block coordinate
Descent Convex Conditioned Lasso; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity

884 | ESCRIBE ET AL.



by BDCoCoLasso. In addition, we compared the perfor-
mance of BDCoCoLasso with two types of implementa-
tion of naïve Lasso and adaptive Lasso (with adaptive
weights obtained from fivefold cross‐validation Ridge
regression as in the simulation study), respectively: We
built Lasso models either on only 895 individuals with no
missing data in the training data set, or on the entire
mean‐imputed training data set. These five models were
constructed based on the same fivefold cross‐validation,
such that in each fold the optimization was high di-
mensional, and were evaluated on the independent test
data set. Proportion of variance explained and prediction
root‐mean‐square error were examined based on 100
bootstrap replicates.

As anticipated, because of a largely compromised sample
size, the Lasso models relying on only the complete ob-
servations explained the least proportion of variance in body
mass index in the test data set with the least number of
predictors activated (Figure 5b). On the other hand, the
naïve Lasso model and the adaptive Lasso model with mean
imputation derived similar estimates for clinical and lifestyle
covariates as the BDCoCoLasso model, that were sub-
stantially different from those estimated by the Lassomodels
on complete observations (Figure 5a). However, the BDCo-
CoLasso achieved significantly higher proportion of variance
explained (0.622 vs. 0.584 of the naïve Lasso, paired t test
p value of bootstrap replicates = 5.5 × 10−46; 0.622 vs. 0.583
of the adaptive Lasso, paired t test p=1.1 × 10−49) and
significantly lower prediction root‐mean‐square error (0.725
vs. 0.783 of the naïve Lasso, paired t test p value of bootstrap
replicates = 9.1 × 10−71; 0.725 vs. 0.784 of the adaptive
Lasso, paired t test p=1.6 × 10−73) than this Lassomodel on
the test data set. Notably, the BDCoCoLasso only required
twice as much the running time as the mean‐imputed naïve
Lasso model, whereas the CoCoLasso without the block co-
ordinate descent procedures had more than 100 times higher
time cost to yield the same parameter estimates (Figure 5c).

4.2 | Predicting bone mineral density
and fracture risk

Osteoporotic fractures affect up to 1 in 3 women and 1 in
5 men aged above 50 years, and incur a heavy socioeconomic
burden among elderly populations (Kanis et al., 2000).
Therefore, good predictions of the risk of osteoporotic frac-
ture are essential to public health management. Bone mi-
neral density is a key indicator of bone mass and bone
quality, and has been included in successful risk factor‐based
fracture risk prediction tools, such as FRAX (Kanis, 2002;
Kanis et al., 2008). Recently, it has been shown that, when
combined with clinical risk factors, genetically predicted
bone mineral density could significantly improve the

predictive performance in identifying individuals at an ele-
vated risk of fracture (Lu, Forgetta, Keller‐Baruch, et al.,
2021). Therefore, we attempted to leverage BDCoCoLasso to
further improve the prediction of bone mineral density and
fracture risk.

We retrieved 7307 SNPs strongly associated with bone
mineral density (estimated by quantitative ultrasound
speed of sound and broadband ultrasound attenuation);
SNPs had demonstrated p< 5 × 10−8 in a previous
genome‐wide association study (Morris et al., 2019). We
implemented BDCoCoLasso, the naïve Lasso (with com-
plete data or mean‐imputed data) and the adaptive Lasso
(with complete data or mean‐imputed data) as in
Section 4.1 with the same training data set and the same
clinical and lifestyle features. We found that the
covariate‐adjusted genetic risk score constructed using
the BDCoCoLasso again had the highest proportion of
variance explained and the lowest prediction root‐mean‐
square error for bone mineral density on the independent
test data set, and its computational cost was tre-
mendously reduced compared with the CoCoLasso
(Figure S6).

Moreover, among the 1500 individuals in the test data
set, 170 self‐reported or had a medical record of major
osteoporotic fractures affecting hip, radius/ulna, hu-
merus, or vertebrae upon recruitment. The score con-
structed by BDCoCoLasso also exhibited the strongest
discriminative power in identifying individuals who ex-
perienced fractures, with an area under the receiver op-
erating characteristic curve (AUROC) of 0.571 and an
area under the precision‐recall curve (AUPRC) of 0.132
(Figure 6). In contrast, the naïve Lasso with mean im-
putation achieved the best performance among the four
naïve Lasso or adaptive Lasso implementations, but only
obtained an AUROC of 0.554 and an AUPRC of 0.123
(Figure 6), respectively.

4.3 | Predicting human lifespan

Longevity is a highly complex trait in which genetics
plays a debatable role (van den Berg et al., 2017). It was
only recently that genes and genetic variants influencing
extreme longevity (Deelen et al., 2019) or human lifespan
(Timmers et al., 2019) have been systematically identified
in large‐scale genome‐wide association studies. We tested
whether a covariate‐adjusted genetic risk score could
predict lifespan and inform lifetime risk of death.

We retrieved 462 SNPs strongly associated with hu-
man lifespan (p< 5 × 10−8) identified in a recent genome‐
wide association study (Timmers et al., 2019) as candidate
genetic predictors. Because the majority of the UK Bio-
bank participants were alive at the time of the latest
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follow‐up, we sought to predict parental lifespan instead.
Since BDCoCoLasso has not been adapted to time‐to‐event
outcomes, we created two subtraining data sets containing
1814 individuals whose mother had died and 2254 in-
dividuals whose father had died, from the original training
data set of 3000 individuals. We trained models to predict
maternal or paternal age of death separately, to account
for potential sex‐specific effects (Timmers et al., 2019). We
again implemented BDCoCoLasso, the naïve Lasso (with
complete data or mean‐imputed data), and the adaptive
Lasso (with complete data or mean‐imputed data) as
above with the same clinical and lifestyle features. No-
tably, the naïve Lasso models with complete data did not
select any of the predictors, probably due to the reduced
sample size (Figure S7).

Next, we tested the predictive performance of these
covariate‐adjusted genetic risk scores based on the test
data set using Cox regression models. Of the 1500 in-
dividuals in the test data set, 902 mothers, and 1109 fa-
thers had died upon recruitment. Although a genetic risk
score based on offspring genotypes is not an ideal way to
estimate parental genetic predispositions, our BDCoCo-
Lasso‐based scores achieved modest discriminative
power in identifying individuals whose parents lived
longer in the test data set, and outperformed the other
naïve Lasso or adaptive Lasso models (Figure 7). Speci-
fically, a one standard deviation decrease in the maternal
score (corresponding to a shorter predicted lifespan) was
associated with a lifetime hazard ratio for time to death
of 1.104 (95% CI, 1.032–1.181) while a one standard de-
viation decrease in the paternal score was associated with
a lifetime hazard ratio of 1.071 (95% CI, 1.009–1.137). In
contrast, the runner‐up score for maternal lifespan using
an adaptive Lasso with mean imputation had a hazard

ratio of 1.084 (95% CI, 1.013–1.161) per standard devia-
tion increase and the runner‐up score for paternal life-
span using naïve Lasso with mean imputation had a
hazard ratio of 1.068 (95% CI, 1.006–1.134) per standard
deviation increase.

5 | DISCUSSION

With the increasing availability of large population‐based
cohorts, developing rigorous methods for model estima-
tion and variable selection is a pressing need in con-
temporary medical research. The CoCoLasso algorithm
proposed by Datta and Zou (2017) utilizes a reformulated
form of the Lasso objective function with a modified
covariance estimator to allow for high‐dimensional error‐
in‐variables regression. More recent studies have
combined the principles of the CoCoLasso with other
techniques that render more complicated scenarios tract-
able. For example, Brown et al. (2019) developed a Mea-
surement Error Boosting algorithm with a measurement
error‐corrected score function to enable Poisson, Gamma,
and Wald. However, no algorithm to our knowledge spe-
cifically targets data that are only partially corrupted by
measurement or have mixed error types, but such char-
acteristics are common in most large‐scale genomics and
medical studies. In this study, we developed a block co-
ordinate descent algorithm as an extension to the CoCo-
Lasso algorithm to improve both computational efficiency
and estimation accuracy. We also implemented an op-
tional SCAD penalty for further improved model estima-
tion and variable selection when the signals are strong.
These adaptations make it possible to use error‐in‐
variables penalized models for data sets with large feature

FIGURE 6 Comparison of predictive
performance of covariate‐adjusted genetic
risk scores for bone mineral density in
identifying individuals who had fractures.
(a) Receiver operating characteristic curves
and (b) precision‐recall curves. Scores were
evaluated based on the test data set
(N= 1500). Other model metrics are
provided in Figure S6. BDCoCoLasso,
Block coordinate Descent Convex
Conditioned Lasso
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dimension, as long as the number of corrupted features
remains modest. Computational time depends linearly on
sample size, but is cubic as a function of the number of
corrupted features. Therefore, although these develop-
ments achieve an important step towards being able to
analyze large‐scale data, to work with data of the size of
the UK Biobank, while allowing for corrupted data, ad-
ditional developments would be required. Perhaps by
combining these approaches with new methods for
working with biobank data at scale (Bi et al., 2020; Jiang
et al., 2019; Qian et al., 2020), it may be possible to achieve
the orders‐of‐magnitude expansions required.

In multifaceted simulations, the BDCoCoLasso algo-
rithm substantially outperformed the naïve Lasso (as ex-
pected), achieving smaller total‐mean‐square error, lower
FPR, and higher sparsity. The BDCoCoLasso was also less
sensitive to increases in the intensity of additive error and/
or missing rate, fraction of features measured with error,
dimensionality as well as reduction in the magnitude of
signals. We further derived covariate‐adjusted genetic risk
scores for body mass index, bone mineral density, and
parental lifespan in the UK Biobank and showed that the
BDCoCoLasso leveraged more information than the naïve
Lasso without the need to discard missing data or perform
imputation, and achieved better prediction accuracy. It
should be noted that, while we worked on well‐genotyped
and well‐imputed genotypes (INFO> 0.3), poorly imputed
SNPs that were filtered out before our analysis could po-
tentially be considered as measured with error, and hence
used more effectively by our algorithm. We do not pursue
this here since most genetic studies analyze only well‐
imputed genotypes.

Considering that genomics‐facilitated personalized med-
icine is booming, and large data sets are being rapidly re-
leased containing both accurate genotyping information and
other partially corrupted features, we posit the BDCoCoLasso
algorithm has the potential to be applied in various medical
research settings and we have provided a freely available R
package for public use.

Since our algorithm utilizes corrupted covariates,
BDCoCoLasso on an extremely small sample size may have
less stable performance than the naïve Lasso. Particularly
with small n‐large p situations, results should be carefully
examined and data perturbed to assess stability. If cross‐
validation were to be employed, the number of folds
should be chosen such that each fold contains sufficient
observations. Our simulations with n = 1000 (fivefold
cross‐validation) experienced no trouble, but with n = 100

or 200 (and p double these values, using fivefold cross‐
validation), convergence was not always achieved. Leave‐
one‐out cross‐validation may be an appropriate alternative
under such circumstances. Extra caution should also be
taken when implementing the SCAD penalty in a high‐
dimensional setting if the features are correlated, as it may
introduce instability in parameter estimation or prediction.

Given that our algorithm exhibited better model
sparsity in multiple simulation settings, it may be com-
bined with various approaches for post‐selection in-
ference, including but limited to those proposed by Lee
et al. (2016, with closed‐form p values and confidence
intervals), Taylor et al. (2016, forward stepwise regres-
sion and least angle regression), and possibly in the fu-
ture, Taylor and Tibshirani (2018, generalized regression
models). The improved control of false discovery rate

FIGURE 7 Comparison of predictive performance of covariate‐adjusted genetic risk scores for lifespan. (a) Kaplan–Meier curves for
time to maternal death and (b) Kaplan–Meier curves for time to paternal death. Parents of individuals with the top 20% highest scores
(predicted to be the most likely to live longer) and the top 20% lowest (predicted to be the least likely to live longer) were compared. Hazard
ratios (HRs) were estimated based on standardized covariate‐adjusted genetic risk score using Cox regression models. Scores were evaluated
based on the test data set (N= 1500). Other model metrics are provided in Figure S7
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may benefit various fields, including genetic epidemiol-
ogy studies.

Our algorithm has some important limitations. First, it
assumes that each feature can harbor at most one type of
error (either additive or missing error) and does not cope
with coexistence of both types of error in one feature.
Therefore, BDCoCoLasso could be combined with a com-
plete case analysis removing features with both types of error
but a low missing rate, or an imputation of only the features
with a low missing rate to control potential bias. Second, a
useful extension of our algorithm could be to allow for
varying penalty factors for different coefficient blocks, for
example, λ1 for β1 and λ2 for β2 in Equation (5). However,
without strong prior knowledge of the features, selecting
optimal penalty factors with cross‐validation becomes non-
trivial and requires future investigations. Third, the ADMM
algorithm becomes unstable when the missing rate is high.
Replacing the max norm by a Frobenius norm when de-
fining the nearest positive semidefinite matrix, or down‐
weighting features with a high missing rate in the ADMM
algorithm may boost its stability; in fact, the recently devel-
oped high missing Lasso (HMLasso) algorithm has success-
fully adopted similar concepts to handle scenarios where
features are subject to very high missing rates (Takada et al.,
2019). Our package includes an option with HMLasso fea-
tures, although we did not observe a clear benefit to this
adaptation in our simulations. Furthermore, in the additive
error setting, similar to the CoCoLasso (Datta et al., 2017),
our algorithm requires knowledge about the variance of the
error, and therefore it is essential to be able to find relevant
literature, such as measures of precision of an instrument
used for measurement. Lastly, we noted that with a very
large feature dimension and strong correlations between
features (e.g., a symmetric covariance matrix for X ), the al-
gorithm became time intensive. Enhanced memory handling
and parallelization may assist in enabling and accelerating
computation in higher‐dimensional data sets with more
complex correlation structures. Nevertheless, the algorithm
copes extremely efficiently with large sample sizes—our UK
Biobank example analyzed over thousands of samples and
could easily have analyzed more.
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