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Abstract: The GRAS (named after first three identified proteins within this family, GAI, RGA,
and SCR) family contains plant-specific genes encoding transcriptional regulators that play a key
role in gibberellin (GA) signaling, which regulates plant growth and development. Even though
GRAS genes have been characterized in some plant species, little research is known about the GRAS
genes in barley (Hordeum vulgare L.). In this study, we observed 62 GRAS members from barley
genome, which were grouped into 12 subgroups by using phylogenomic analysis together with
the GRAS genes from Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa).
Chromosome localization and gene structure analysis suggested that duplication events and abundant
presence of intronless genes might account for the massive expansion of GRAS gene family in barley.
The analysis of RNA-seq data indicates the expression pattern of GRAS genes in various tissues at
different stages in barley. Noteworthy, our qRT-PCR analysis showed the expression of 18 candidate
GRAS genes abundantly in the developing inflorescence, indicating their potential roles in the barley
inflorescence development and reproduction. Collectively, our evolutionary and expression analysis
of GRAS family are useful for future functional characterization of GA signaling in barley and
agricultural improvement.
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1. Introduction

Transcription factors bind to the specific cis-elements in the promoter region of target genes
to modulate their expression. The GRAS gene family belongs to plant transcription factors to
regulate plant growth and development [1]. The GRAS family is named after the first three-member
including Gibberellic Acid Intensive (GAI), Repressor of GAI-3 mutant (RGA), and Scarecrow (SCR) [1].
Generally, proteins in this family consist of a variable N-terminus and a highly conserved C-terminus.
The C-terminus is composed of five conserved domains including LHRI (Leucine Heptad Repeat
I), VHIID, LHR II (Leucine Heptad Repeat II), PYRE, and SAW [1], while the N-terminus includes
a combination of several molecular recognition features, required for protein–protein association
or molecular recognition [2]. Furthermore, DELLA and VHYNP domains had been detected in the
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N-terminus of GRAS proteins in DELLA subfamily, which is a gibberellic acid (GA) signal perception
domain [3]. The C-terminal GRAS domain is a transcription repressor-domain regulating gene
expression [3]. GRAS-like proteins were also found in bacteria, albeit with methylase activity rather
than transcription modification [4]. This implies the origin of plant GRAS from horizontal gene transfer
from ancient prokaryote genomes of bacteria.

In the past decades, GRAS genes have been identified in a variety of plant species, including 34 in
Arabidopsis, 60 in rice, 84 in maize, and 106 in Populus trichocarpa [5–7]. Previously, GRAS proteins
were initially clustered into eight groups, consisting of LS, HAM, PAT1, LISCL, DELLA, SCL3, SHR,
and SCR, based on the GRAS members identified from Arabidopsis and rice [5,8]. A phylogenetic tree
containing 12 discreet clades was revealed later based on alignment of GRAS protein sequences from a
broader range of species including lycophyte, bryophyte, and vascular plants [9]. Nevertheless, there is
a slight difference in the subgroupings in recently characterized GRAS families from different species.
For instance, the identification and classification of GRAS proteins are divided into 13 subfamilies
in P. trichocarpa [6], 13 in the tea plant (Camellia sinensis) [10], and 16 in Medicago truncatula [11].
These studies indicate substantial divergence of GRAS family in flowering plants and more subfamilies
may be recognized upon analysis of furthermore plant genomes in the future.

With the advancements of genetics and genomics, the biological functions of some GRAS genes
family have been investigated. It is known that DELLA proteins (including GAI, RGA, RGL1/2/3
(GAI/RGA-like 1/2/3) in Arabidopsis, SLR1 (Slender1) in rice, and ZmD8 (Dwarf8) in maize) act as
master growth inhibitors and key components in GA signaling [12]. DELLA binds to GA activated
GID1 (GA-Insensitive Dwarfism1) to form a GA-GID1-DELLA complex, which is subsequently
recognized by SCFSLY1/GID2 (a Skp, Cullin, F-box containing complex, the F-box protein was named
as Sleepy1 (SLY1)/Gibberellin Insensitive Dwarf2 in Arabidopsis) E3 ubiquitin ligase, inducing the
proteasomal degradation of DELLA [13–15], activating the expression of genes repressed by DELLA
protein [16]. Arabidopsis SCL3 is a close paralog of DELLA and functions as GA-positive regulator of
root development [17], and SCL3 protein interacts with DELLA protein and inhibits the transcription
activity of DELLA to attenuate its own expression [18,19]. Two GRAS proteins belonging to two
different subfamilies, SHR and SCR, collectively specify cells as endodermis in the root or bundle
sheath in the shoot [20,21]. Similar to that of SHR and SCR, NSP1 and NSP2 belong to two different
subfamilies (AtSHR and HAM, respectively, with 20.1% identity) and collectively regulate the nodule
development and function in legumes [22,23]. The GA-GID1-DELLA signaling axis is conserved in
plants [12].

Remarkably, some GRAS family genes were shown critical for the improvement of many agronomic
traits in cereals, such as wheat (Triticum aestivum) Rht1 and Rht2 (Reduced height1 and 2) and rice MOC1
(Monoculm 1) [13,15,24,25]. The functions and working mechanisms of those GRAS family genes are
conserved among species, albeit with little variations. For example, tomato (Lycopersicon esculentum)
LS (Lateral Suppressor), Arabidopsis LAS (Lateral Suppressor), and rice MOC1 (Monoculm 1) share only
about 50% similarity and show a few diversified functions in reproductive stages and controlling axillary
meristem initiation. Moreover, they are conserved in promoting shoot branching or tillering [25–27].
Importantly, the Arabidopsis LAS gene can fully complement the tomato ls mutant, suggesting their
functional conservation [27]. It is conceivable that detailed characterization of GRAS family in cereal
crops may be of great application potentials. However, according to our knowledge little is known
about the function of GRAS family in barley, particularly in the barley inflorescence development.

Barley (Hordeum vulgare L.) is the fourth most cultivated cereal crop around the world after rice,
maize, and wheat [28], whose grains are mainly used for feeding human, cattle, and brewing beer. The
flowering process and the formation of spikelet abundantly contribute to the barley grain yield [29].
With bioinformatics analysis, the published whole genome in barley enables us to understand the
functions of GRAS proteins in this crop and inflorescence architectures study. In this paper, 62 GRAS
genes were identified from the recently released barley genome. We also conducted phylogenetic
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analysis of these GRAS members and revealed their structural diversity, and showed their diversified
expressional patterns, providing a basis for further elucidating the function of barley GRAS.

2. Materials and Methods

2.1. Identification of GRAS Members in Barley

To find the candidate GRAS genes in barley genome, we performed an extensive search and
comparisons analysis for GRAS domain in many plant species using HMMER software. The GRAS
family information of 34 Arabidopsis, 60 rice, and 86 maize were retrieved from the previous studies
(Table S7) [6,7]. The protein sequence of Arabidopsis, rice, and maize downloaded from The Arabidopsis
Information Resource (TAIR, https://www.Arabidopsis.org/), Rice Genome Annotation Project (RGAP,
http://rice.plantbiology.msu.edu/), and MaizeGDB (http://www.maizegdb.org/, v3) respectively [5–7].
The sequence of 176 wheat and 48 Brachypodium distachyon GRAS protein sequences were obtained
from previous studies [30]. The barley genome (Hordeum vulgare r1) was retrieved from the IPK Barley
Blast Server (http://webblast.ipk-gatersleben.de/barley_ibsc/) [31–33]. Based on the results of searching
Hidden Markov Model (HMM) profile of GRAS domain in Arabidopsis, rice, and maize against the
barley genome, the relevant information of GRAS domain in barley was extracted using HMMER
software (version 3.0, http://hmmer.org). The candidate barley GRAS proteins were selected based on
an E-value ≤ e−10. To further confirm the GRAS proteins in barley, the data were continually verified
by Conserved Domain Database (CDD) in NCBI (https://www.ncbi.nlm.nih.gov/) and Pfam value
(the GRAS superfamily, cl15987, GRAS family pfam03514, DELLA family pfam12041) [34]. There is
no doubt that numerous proteins were eliminated due to inadequacy, lacking, or anonymous GRAS
domains. The composition, physical, and chemical characterization of identified HvGRAS proteins
were analyzed using ExPASy software (https://web.expasy.org/protparam/) [35].

2.2. Phylogenetic Analysis of GRAS Members

To further explore the evolutionary relationship among six plant species, including Arabidopsis
(annual herbaceous dicots), rice (perennial in certain countries and annual cereal grain monocot),
barley (major cereal crops), maize, wheat, and Brachypodium distachyon, the phylogenetic analysis was
constructed. Multiple sequence alignments of GRAS proteins were performed using MEGA software
(X version; https://www.megasoftware.net/) with default setting MUSCLE method [36]. Based on this
result, the Maximum Likelihood (ML) phylogenetic tree among Arabidopsis, rice, maize, barley, wheat,
and Brachypodium distachyon was generated by W-IQ-TREE (http://iqtree.cibiv.univie.ac.at/) with default
parameters, bootstrap method 1000 [37]. The best-fit substitution model (in our case, nuclear General
“Variable time” matrix) was automatically chosen by W-IQ-TREE, followed by tree construction [37].
The evolutionary tree was visualized and modified to circle using the iTOL (https://itol.embl.de/) [38].

2.3. Chromosomal Localization and Evolution Pressure of HvGRAS

The chromosomal locations of 62 HvGRAS genes were downloaded from the Phyotozome
database [31–33]. CDS sequences of HvGRAS genes were extracted from Phyotozome and aligned
using MEGA software (version X; https://www.megasoftware.net/), with Clustal X method—proteins
sequence. The results were introduced into DnaSP 6 software to calculate synonymous (Ks) and
nonsynonymous (Ka) nucleotide substitution rates of 17 pairs of paralog genes [39]. The possible
correlation of gene pair duplication and HvGRAS gene location on the barley seven chromosomes was
visualized by the Super Circos in TBtools software [40].

2.4. Analysis of Conserved Motif and Gene Structure

To investigate the GRAS features domain in barley sequence, multiple sequence alignment of
62 HvGRAS proteins was conducted using Jalview software 2.10.5 version, following the parameters
alignment Clustal with defaults and Realign with Clustal [41]. The detailed analysis of conserved
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motif domains in HvGRAS proteins was performed using the MEME suite tool from the website
(http://meme-suite.org/) with non-modification of parameters, except for that the “MEME should find”
was 17 [42]. The exon–intron structure of HvGRAS was examined using the TBtools and the GFF3
database obtained from Phytozome [33]. The full graphics of conversed motif and gene structure were
visualized by TBtools [40]. miRNA target site in barley GRAS family was obtained from the study of
overexpression of microRNA171 [43].

2.5. Expression Analysis of HvGRAS Members

The expression of HvGRAS genes in different tissue was measured using the transcriptome data of
RNA sequence from BARLEX (Barley Genome Explorer, https://apex.ipk-gatersleben.de/apex/f?p=284:
10) [44]. The expression pattern of spike development was generated from the previous study of the
transcriptome profile in barley (Table S4) [45]. The expression value was calculated by the reads per
kilobase per million (Table S3). A heatmap of expression pattern profile on log2

(FPKM+1) scale was
analyzed by the TBtools and a hierarchical clustering algorithm to identify the similarity of expression
pattern [41].

2.6. Plant Materials and Growth

H. vulgare cultivar Golden Promise was grown in the chamber at Shanghai Jiao Tong University.
The soil mixture was followed by the combination of soil, perlite, and vermiculite (with the ratio of
1:1:0.5). The chamber condition was 16 ◦C/14 ◦C—16/8 h day/night period and 50% relative humidity.
To investigate the expression level of HvGRAS genes in barley inflorescences, the development of barley
main shoot apex (MSA) from W2.0 to W6 were collected under the microscope, and the developmental
stages were based on the inflorescence architecture study in barley [46,47]. These stages included the
double ridge stage (DR), the lemma primordium (LP) stage, the stamen primordium stage (SP), the awn
primordium stage (AP), the white anther stage (WA) and the green anther (GrA). Two-week-old
seedlings were used as control. At double ridge stages (W2.0), MSAs were collected after sowing
17–20 days, LP stage (W3.0), SP stage (W3.5), AP stage (W4), WA stage (W5-5.5), and GrA stage
(W6) [46].

2.7. RNA Extraction and Quantitative Reverse Transcription PCR (qRT-PCR)

Total RNA was isolated from tissue by TRIZOL reagent (Invitrogen), followed by the instruction
guide in the chemical products. The reserve transcriptional reaction was performed by a PrimeScript
RT reagent kit with gDNA Reaser (Takara), followed by the instruction guide in the chemical products.
The qPCR was conducted using SYBR Green SuperReal PreMix Plus (TIANGEN) on a CFX96 Real-time
PCR machine (Bio-Rad). The internal control in this study was HvACTIN (HORVU5Hr1G039850.3) [48].
Three biological replicates with three technical replicates were conducted (Table S6). Detailed primer
information is attached to Supplementary Materials (Table S5).

2.8. HvGRAS Proteins Interaction Network

To illustrate the protein–protein interaction network in HvGRAS, the orthologs with Arabidopsis
were performed to predict the correlation network in barley. Black lines connect the Arabidopsis
interacting GRAS proteins based on the protein interaction databases, plant.MAP (http://plants.
proteincomplexes.org/), BioGRID (https://thebiogrid.org/), and STRING (http://string-db.org/) [49–51].
The HvGRAS protein orthologs were listed in parenthesis. Red color marked genes indicate the
HvGRAS expression in spike.

http://meme-suite.org/
https://apex.ipk-gatersleben.de/apex/f?p=284:10
https://apex.ipk-gatersleben.de/apex/f?p=284:10
http://plants.proteincomplexes.org/
http://plants.proteincomplexes.org/
https://thebiogrid.org/
http://string-db.org/
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3. Results

3.1. Identification and Characterization of GRAS Proteins in Barley

Briefly, 62 GRAS proteins identified in barley and designated as HvGRAS3 to HvGRAS62 according
to the physical location on the chromosomes, except for HvGRAS1 and HvGRAS2 whose locations on
chromosome remained unknown. Furthermore, the basic properties of these GRAS proteins such as
molecular weight, the number of amino acid, and theoretical Isoelectric Point (pI) are summarized in
Supplementary Table S1. Except for those lacks of certain GRAS domains HvGRAS53 were excluded
from this study. The GRAS domain sequence is around 300 amino acids long, whereas HvGRAS53
is relatively short, leading to the unreliable result in phylogeny analysis [10]. The length of GRAS
proteins in barley was between 121 and 792 amino acids, and correspondingly the molecular weights
were from 30 kDa to 50 kDa (Table S1). The theoretical isoelectric point (pI) value varied from 0.93
(HvGRAS22) to 11.56 (HvGRAS57). Judging from the pI value, more than half of HvGRAS proteins
(45/62) were rich acidic amino acid, and the rest HvGRAS proteins (17/62) were alkaline. Almost all
HvGRAS proteins belonged to the hydrophilic group because the hydropathicity values were below 0,
varying from −0.63 to −0.11. 9 HvGRAS proteins had hydropathicity values above 0, ranging from
0.015 to 0.107. The structure and stability of the HvGRAS proteins were determined based on the
instability index [35], providing an estimate of the stability of proteins. Most HvGRAS proteins were
unstable with an instability index greater than 40. Eight HvGRAS proteins were probably stable with
the instability of index from 25.76 to 39.77. Aliphatic index was described as the domination of aliphatic
side chains in protein volume, highly aliphatic side indicated the thermal stability [35]. The aliphatic
index of all HvGRAS proteins on average was 83.37, ranging from 60.28 to 101.08.

3.2. Phylogenetic Analysis of GRAS Proteins in Barley, Arabidopsis, Rice, Maize, Wheat and
Brachypodium Distachyon

To obtain clues about the evolutionary history of GRAS family proteins, the GRAS domain of
34 Arabidopsis, 60 rice, 86 maize, 179 wheat, 48 Brachypodium distachyon, and 62 barley GRAS were
aligned with MUSCLE, and the results were used to generate phylogenetic trees using Maximum
Likelihood method in W-IQ-TREE [37]. According to both the two clusterings and the relationship
with known Arabidopsis, maize, rice and Brachypodium orthologs, barley GRAS proteins were
clustered into 12 subfamilies including SCL3 (five members), Os43 (three members), DELLA (three
members), SCR (five members), HAM (seven members), Os19 (one member), SCL4/7 (two members),
LAS (two members), PAT1 (six members), SHR (10 members), LISCL (14 members), and DLT (two
members). The features of each subfamily will be discussed later with their protein motifs (Section 3.4).
We constructed two trees with or without wheat GRAS. The evolution relationships of the barley GRAS
were identical, except that HvGRAS48 together with two rice pseudogenes and two unknown function
maize genes were grouped out of LISCL subfamily if wheat is included (Figure 1 and Figure S5).
This can be interpreted as proteins in the overexpanded LISCL in the hexaploid share less conservation
with HvGRAS48 than the other barley LISCL orthologs. Considering HvGRAS48 shares same motif
arrangement with other barley LISCL (Section 3.4), we carried further analysis based on the tree
without wheat. Similar to the GRAS family analysis in Arabidopsis and rice, the majority of HvGRAS
mainly enriched in LISCL, SHR, SCR, PAT1, and HAM subfamilies. SCL3, Os43, DELLA, Os19, SCL4/7,
LAS, and DLT comprised a few members [9]. Besides, subgroups lacking homolog to Arabidopsis were
found, which was grouped with rice specific-protein namely Os43 and Os19 [10]. Strikingly, SCL3
subfamily consisted of only one Arabidopsis protein (AtSCL3). This similar phenomenon was also
observed in DLT subfamily, where AtSCL28 separated individually from rice, maize, Brachypodium,
and barley (Figure 1). The result suggests the divergent evolution of monocot or the process of gene
loss during the duplication process. The phylogenetic tree indicated the random distribution of GRAS
proteins in these five analyzed species. Take SHR subfamily as an example, Arabidopsis has four
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members, rice has five members, and Brachypodium has four members, while barley and maize
consisted of 10 members (Figure 1).
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and Brachypodium distachyon (yellow) were generated. “θ” indicates for the pseudogene fragments.

Based on the phylogenetic tree results, distant relationship and classification suggested that the
monocot specific Os43 group and Os19 group were likely divergent from SCL3 and HAM groups,
respectively, during the evolutionary divergence between monocot and dicot (Figure 1). In each group,
the hexaploidy wheat has roughly as three times members as the diploid counterparts (maize, rice,
barley and Brachypodium). These proteins functions of Os43 group and Os19 group might have a
monocot specific role. Not surprisingly, barley GRAS proteins generally share higher similarity with
their orthologs in cereals (wheat and Brachypodium) than that in rice, maize, and Arabidopsis (Figure 1
and Figure S5) species relationships. The exceptions otherwise indicate uneven diversification rates
of these orthologs. HvGRAS61, HvGRAS32, HvGRAS33, HvGRAS48, HvGRAS41, and HvGRAS42
outgroup with their orthologs in other species, indicating these barley proteins have more specific
diversification from their common ancestors than in other species. More strikingly, a cluster of barley
paralogs HvGRAS62/HvGRAS16/HvGRAS15/HvGRAS60/HvGRAS49/HvGRAS12/HvGRAS52 show
less conservation than their counterparts in the same cluster. It appears that the ancestor gene diversified
and duplicated in barley. It is also evident that these paralogs were formed after the divergence of
the three cereal plants: HvGRAS17/HvGRAS18, HvGRAS29/HvGRAS30, HvGRAS37/HvGRAS38,
HvGRAS56/HvGRAS57, and HvGRAS58/HvGRAS59.
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3.3. Chromosomal Location and Evolutionary Analysis of HvGRAS Genes

All 62 HvGRAS genes were mapped on barley chromosomes, except two chromosome P1-derived
artificial chromosomal localization unmapped genes: HvGRAS1 (Accession No.: HORVU0Hr1G003230)
and HvGRAS2 (Accession No.: HORVU0Hr1G004640). The corresponding PAC (P1-derived artificial
chromosome) consisting their coding sequences (PAC Accession No.: 38339934 and 38343134
respectively) are yet unmapped on the Hi-C (high-throughput/resolution chromosome conformation
capture) map [32]. Generally, most HvGRAS genes were unevenly distributed on chromosome 2 and 4,
with 12 and 16 genes. By contrast, chromosome 6 only consisted of 3 HvGRAS genes (Figure 2). The rest
of the HvGRAS genes were located dispersedly on other chromosomes 1, 3, 5, and 7, but it was mainly
positioned on the distal ends of the chromosome arm (Figure 2).
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Colorful lines and neighboring HvGRAS genes in same color indicate duplication.

Duplication events were dominantly forced to the expansion of GRAS family during the
evolutionary history. The phylogenetic analysis results identified 17 homologous pairs, which based
on evolutionary relationship and distance between the homolog gene pairs (Figure 2 and Figure S3).
Seven and 10 pairs of genes were predicted to undergo tandem and segmental duplication, respectively
(Figure 2) [33]. The same subfamily genes located within 30 kb or neighboring intergenic region were
registered as the tandem duplication [52]. Segmental duplication genes were determined based on
duplication of genomic segment on different chromosomal location [52]. Supporting the results in
many HvGRAS homology pairs were identified among the chromosome. The result indicated that
both tandem and segmental duplication possibly contributed to the expansion of the subfamilies in
barley. For instance, HvGRAS17 and HvGRAS18 in SCL3 could probably under the process of tandem
duplication, whereas HvGRAS27 and HvGRAS45 within the same family were certainly the results from
segmental duplication (Figure 2 and Table S2). Tandem duplication was probably observed in SCR
group between HvGRAS33 and HvGRAS32; meanwhile, HvGRAS47 may be a segmental counterpart
of these two genes.
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To further explore the pressure of selective process in barley, synonymous (Ks) and nonsynonymous
(Ka) nucleotide substitution rate of 17 homolog pairs was calculated (Table S2). Our results showed
that 88.2% (15/17 GRAS pairs genes) had the ratio of Ka/Ks below 1, suggesting a purified selection
proceed in barley GRAS genes.

3.4. Protein Motif and Gene Structure Analysis of HvGRAS Family

To investigate the GRAS domain in barley, multiple peptide sequence alignment was performed.
Generally, most HvGRAS proteins consisted of more than two highly conserved domain regions: LHRI,
VHIID, LHRI, PFYRE, and SAW (Figure S1). However, all GRAS domains were absent in HvGRAS57
proteins, and only a partial VHIID domain was existent (Figure S1). Likewise, almost GRAS domain
was completely absent in HvGRAS48, except for the partial part of LHRI. However, numerous domains
in HvGRAS48 were observed in the N-terminal region, suggesting that the potential functions of this
protein which was different from other HvGRAS.

To further explore the characteristic of conserved domains in barley, 62 HvGRAS proteins were
subjected to an online tool MEME [40]. Briefly, a total of 17 motifs were identified in barley and
assigned from motif 1 to motif 17 (Figure 3, Figures S1 and S2). Generally, the distribution and
characteristics of conversed motif were similar in the same GRAS subfamilies, suggesting the probably
functional conversation. Consistent with the previous report in GRAS domains characterization
analysis, the arrangements of motifs were identified in the LHRI-VHIID-LHRII-PRYRE-SAW structure
domain [1]. Motifs 10 and 7 belonged to LHRI; motif 4, motif 2, and motif 5 were located in VHIID;
the N-terminal part of motif 9 was LHRII; and the remaining C-terminal part of motif 9 connected
with motif 8 and motif 3 corresponds to domain PRYRE and motif 1 and motif 6 to SAW domain
(Figure 3). Certain domains were not found to form a structure, but it was still a part of the conserved
structure domain [15]. If the rule was followed the nomination of Pysh, Wysocka-Diller, Camilleri,
Bouchez, Benfey, lacking certain characteristics domains or a few motifs in barley, was generally
normal, except for PAT1 members. For instance, several HvGRAS proteins in SCL3, SCR, SCL4/7, DLT,
HAM has truncated either motif 10 or 7, or fully missed both motifs.

The complete VHIID domain was detectable in LISCL and PAT1 subfamily. The motif components
motif 4 and motif 2 were more highly conserved in other subfamilies than motif 5. For example,
over 40 HvGRAS proteins had motif 4 and motif 2; and 17 proteins had motif 5. Generally,
these incomplete VHIID domains were connected to either motif 11 or motif 13, which was specific to
SHR subfamily. Motif 9, corresponding to LHRII, was absent in SCR, HAM, and Os19 subfamilies.
Although motif 8 was the most conserved motif found among all the HvGRAS proteins (52/62),
the complete PRYRE domain was only distributed in LISCL and PAT1 subfamilies. The rest of the
subfamilies proteins were lacking in either motif 9 or motif 3. Within the SHR subfamily, the truncated
PRYRE domain was connected to motif 14. Similarly, though the high occurrence of motif 6 in HvGRAS
proteins, the complete SAW domain was only identified in SCL3, Os43, DELLA, DLT, PAT1, and SHR.
Motif 6 in the rest proteins was connected with either motif 12 or motif 1 and motif16. Motif 1, motif 16,
and motif 6 types of SAW domain were unique in the LISCL subfamily. The HAM subfamily proteins
(HvGRAS40, HvGRAS55, HvGRAS43 and HvGRAS4) contain a plant conserved ILARLN hexapeptide
in front of motif 7 (Figure S4) [53]. The corresponding coding sequences are the target site of barley
miR171 (Hv-miR171a/b: UGAUUGAGCCGU/[C]GCCAAUAUC) (Figure S4). Moreover, we found
that motif 15 and motif 17 were specifically present in the N-terminal of LISCL subfamily proteins.
The two motifs were probably related to transcriptional co-activation functions [2]. Therefore, we
propose that the further discovery in GRAS proteins family possibly focuses to define the GRAS
proteins by these shorter motifs and to characterize each motif function rather than the previous five
domains. After all, they are not certainly conserved than previously thought. The interaction and
forming of a heterodimer with cross subfamilies proteins were common in GRAS family, such as SHR
and SCL3. The distinct motif composition among subfamilies may explain why this is necessary. In this
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study, we found different motif arrangement in both barley SHR and SCL3 subfamilies. It is interesting
to examine the possible link between the two families in the future.
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To evaluate the different evolutionary and functional diversification of subfamilies in GRAS
proteins, the structural organization of exons, introns, and UTR was further investigated (Figure 3).
The results revealed that most HvGRAS genes had no intron 74.2% (46 out of 62). Particularly, all genes
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in DELLA subfamily (HvGRAS7, HvGRAS22, and HvGRAS28), DLT subfamily (HvGRAS58 and
HvGRAS59), and LAS subfamily (HvGRAS54 and HvGRAS61) were intronless. The abundant introns
were observed in SHR, SCR subgroups (Figure 3, Table S1). Besides, HvGRAS17 (SCL3 subfamily) had
a particularly long intron which covered up to 36 kb. Generally, gene structures were not in accord
among the same subfamily, suggesting diversification of gene family.

3.5. Expression Profile of HvGRAS Genes in Different Barley Tissue

To preliminarily understand the functional role of GRAS genes in the barley developmental
process, the expression pattern of HvGRAS genes in different tissues were retrieved from publicly
available transcriptome data in BARLEX (Barley Genome explorer) [44]. The available transcriptome
data were generated from the six-row Morex cultivar (one central spikelet and two fertile lateral
spikelets). In general, the expression profiles of most HvGRAS genes were diverse among different
subfamilies and expressed in at least one developmental stage. However, the expression of five HvGRAS
genes (HvGRAS18, HvGRAS19, HvGRAS27, HvGRAS59, and HvGRAS60) were undetectable in the
data set, and the expression pattern data of those genes were unavailable in the BARLEX, which is
probably explained by the presence of uncharacterized pseudogenes. Hierarchical clustering following
two normalization methods was adopted to cluster genes according to expression level (Figure 4A)
and tissue specificity (Figure 4B). Based on the expression level information, HvGRAS genes were
clustered as high, moderate and low expression (clade A, B, and C, respectively) (Figure 4A). Although
a highly expressed gene could not be simply interpreted as physiologically more important than a
lower expressed gene, and vice versa, these generally low expressed genes in clade C were likely
not functional (Figure 4A). These genes are not only lowly expressed, but HvGRAS18, HvGRAS19,
HvGRAS27, HvGRAS59, and HvGRAS60 show no expression in any tissues (Figure 4A and Table S3),
and also encode atypically short proteins that lack important domains (HvGRAS27 with 179 aa,
HvGRAS32 with 156 aa, HvGRAS33 with 121 aa, HvGRAS59 with 126 aa, HvGRAS57 with 194 aa,
HvGRAS16 with 142 aa, and HvGRAS53 with 61 aa) (Table S1). As shown in Figure 4B, the heat map was
divided into four clusters according to the tissue specificity. Cluster I consisted of 14 members, in which
PAT1 and LISCL subfamily were a dominantly high expression in various tissues such as inflorescence
lemma, dissected inflorescences, inflorescences rachis, development tillers, and inflorescences, lodicule.
Compare to other clusters, many HvGRAS genes in PAT1 and LISCL subfamilies were expressed
specifically in these tissues, suggesting that these two subgroups participated in the regulatory of
barley inflorescence formation (Figure 4B). Cluster II (13 members) had several genes belonged to
LISCL, HAM, SCR, and SHR subfamily with the abundant expression in etiolated seedling, epidermal
strips, shoots from seedlings, and senescing leaves. Generally, the similar expression pattern was
identified in LISCL subgroup (HvGRAS48, HvGRAS46, HvGRAS51, and HvGRAS3), or HAM subgroup
(HvGRAS56 and HvGRAS57), (Figure 4B). Taking HvGRAS56 and HvGRAS57 genes as an example,
HvGRAS genes, which may probably be a product of tandem duplication, also had a slightly similar
the expression pattern (Figures 2 and 4B). Fifteen members in Cluster III particularly expressed in
roots from seedling development. The high expression of most HvGRAS genes in SHR subfamily
was observed in root, indicated that the functionally conversed role of SHR subfamily in barley root
formation. Interestingly, the new functional role of HAM and Os19 subfamily were explored in which
HvGRAS40 and HvGRAS2 were also expressed abundantly in root respectively. Cluster IV consists of
20 members, numerous GRAS subfamily including SCL4/7, LAS, SCR, SHR, LISCL, HAM, and DELLA
predominantly participate in embryos, inflorescence and grain development in barley. LISCL subfamily
was also abundantly dominated in cluster IV, suggesting the imperative role in spike development.
Rice (OsMOC1) and its putative ortholog in wheat controlled the number of spikelets per spike and
panicle [25–27]. HvGRAS54 and HvGRAS61 orthologs with Arabidopsis (AtLAS), rice (OsMOC1) and
maize, had a widen expression in various tissue (Figures 1 and 4). Particularly, HvGRAS61 with
high expression in spike was detectable, indicating the potential functions in barley inflorescence
architecture (Figure 4).
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Figure 4. Gene expression profile of GRAS family member in barley (Morex cultivar) in different
tissue. Expression profile of different tissue developing root, shoot, inflorescences and seedling stage
were performed in barley. EMB, 4-day embryos; ROO1, roots from seedlings (10 cm shoot stage);
LEA, shoots from seedlings (10 cm shoot stage); INF2, developing inflorescences (1–1.5 cm); NOD,
developing tillers, 3rd internode (42 DAP); CAR5, developing grain (5 DAP); CAR15, developing grain
(15 DAP); ETI, etiolated seedling, dark cond; LEM, inflorescences, lemma (42 DAP); LOD, inflorescences,
lodicule (42 DAP); PAL, dissected inflorescences, palea (42 DAP); EPI, epidermal strips (28 DAP); RAC,
inflorescences, rachis (35 DAP); SEN, senescing leaves (56 DAP). (10 DAP); ROO2, roots (28 DAP).
(A) heat map is separated based on the high (Clade A), moderate (Clade B) and low (Clade C) expression.
(B) heat map is performed by clusters row and column, Euclidean distribution method is applied to
categorize similar expression pattern to one group (Cluster I to Cluster IV).

3.6. Expression of 18 HvGRAS Genes during Barley Spike Development by RT-PCR

We conducted quantitative RT-PCR to further dissect the expression profiles of these inflorescence
expression genes based on in silico analysis (above section). In this case, we used Golden Promise
cultivar so that we could compare GRAS genes expression in the two-rowed Golden Promise and
six-rowed Morex, where RNA-Seq data was generated, at the same time. We collected barley spike at
different developmental stages: double ridge stage (DR), the lemma primordium stage (LP), the stamen
primordium stage (SP), the awn primordium stage (AP), the white anther stage (WA), and the green
anther (GrA), with two-week-old seedling as a control [54].

Except for HvGRAS54, whose expression was not detectable (not as the RNA-Seq data suggested),
most of our detected genes were highly expressed in developing inflorescence (Figure 5). Our data is



Genes 2020, 11, 553 12 of 21

largely consistent with the RNA-Seq data, demonstrating that the two-rowed barley and the six-rowed
barley have no difference in GRAS genes expression. That also hints that these detected genes except
HvGRAS54 may not account for the row types difference between the two cultivars. LP stages peaked
expressing genes include HvGRAS10, HvGRAS34, HvGRAS48, HvGRAS44, HvGRAS55, HvGRAS46,
and HvGRAS21; HvGRAS37, HvGRAS30, and HvGRAS58; and HvGRAS14 (Figure 5). There was a
differential expression pattern in qRT-PCR result of HvGRAS47 with highest expression at DR stages,
suggesting that they could play a function of spikelet primordia initiation (Figure 5). Interestingly,
our qRT-PCR analysis revealed that the canonical DELLA HvGRAS28, whose protein product
consisted of a DELLA motif, was only moderately expressed, while the noncanonical counterparts
HvGRAS22 was abundantly expressed in spike developmental stages (Figure 5). This finding further
demonstrated that this uncharacterized DELLA subfamily gene could probably control the barley
inflorescence development.
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green anther (GrA). Two-week-old seedling as a control. Bars indicate SD of three technical replicates.

3.7. Interaction Network of HvGRAS Spike Proteins

Forming a complex with other GRAS or other proteins is often required for GRAS proteins to
exert their function. For instance, more than a dozen of direct DELLA interactors were reported,
which explains the multifaceted role of DELLA in plant [55–57]. Interaction between two GRAS proteins
are also common in this family, such as NSP1 and NSP2, SHR and SCR, etc. [21–23]. As 17 HvGRAS
proteins are found highly expressed in developing spike (Figure 5), it is interesting to test their
association and function dependence on each other. To this end, we conducted a barley protein
interaction network based on the orthologs relationship with that in Arabidopsis, rice, and maize as
the lack of sufficient evidence of protein-protein network in the large GRAS family in barley. A direct
GRAS-GRAS interaction or indirect interaction though one common non-GRAS interactor were put in
the network.
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In general, 20 GRAS family protein in Arabidopsis, five in rice, three in maize, and 38 HvGRAS
proteins orthologs were identified in the correlation network (Figure 6). Besides, the protein–protein
interaction network of Arabidopsis SCL31, SCL28, SCL8, and LAS proteins were not found.
Our correlation network prediction provided clue for studying the HvGRAS complexes in barley spike.
The results indicated that barley DELLA proteins (HvGRAS28, HvGRAS7, and HvGRAS22) represent an
interaction hub for connecting gibberellin receptor proteins, other HvGRAS proteins, and transcription
factors (Figure 6). Besides, other proteins such as the bHLH family transcription factors may mediate
interaction between HvGRAS (Figure 6). Our analysis also revealed that SHR-SCR-SCL23 module
is another interacting hub (Figure 6). The two hubs are connected by the SCL3-DELLA protein
interaction. Besides, PAT1 subfamily proteins (HvGRAS41 and HvGRAS50) are likely interact with
that in SCL21 (HvGRAS11). These predictions based on homology are helpful in investigating the
function mechanism of barley HvGRAS proteins.
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4. Discussion

GRAS is a transcription factor family controlling a board range of developmental processes and
stress response in plant [58]. The study of GRAS genes mutation in wheat Rht-1 and Rht-2 alleles
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provided a paradigm for using genetic variation in this gene family for crop improvement. It is
particularly interesting that the functions in regulating cell division and differentiation of some GRAS
members are conserved in angiosperms and these functions are generally important for agronomy traits.
Although conserved function of HAM in maintaining apical meristem niche was shown in Arabidopsis
and Petunia hybrida, whether they function similarly in cereal is not unclear yet [59]. MicroRNA miR171
directly targets HAMs mRNA to repress HAM expressions. Overexpression of miR171 in both rice
and barley displayed defects in floral transition and spikelet architecture, consisting of the finding
in Arabidopsis [43,60]. This provided a piece of indirect evidence for the conservation of HAM as
well as its upstream regulator miR171 in cereals such as barley. We identified HvGRAS40, HvGRAS55,
HvGRAS43, and HvGRAS4 as the putative target of barley miR171. Direct evidence, however, is
needed to show their function in meristem maintenance. In contrast, the function of LAS/LAS/MOC1
in flowering development varies in species. The tomato ls mutant is characterized by the absence of
petals, while Arabidopsis las-4 mutant developed a complete whorl of petals [27]. In rice and wheat,
MOC1 regulates spikelet numbers in the panicle/spike [25,61]. It may be interesting to investigate
how the orthologs of LAS/LAS/MOC1 in barley control inflorescence development. Besides, GA is
shown as a florigenic signal and regulator of row numbers in barley [62,63]. It is thus perceivable that
GRAS proteins are important for GA signaling to regulate barley inflorescence architecture. Indeed,
transcriptome data suggest barley inflorescence development may require multiple factors from the
GRAS family [45]. Nevertheless, the detailed investigation of GRAS family proteins in regulating
barley spike development is scarce.

In the current report, we identified 62 barley GRAS proteins, most of which share five main highly
conversed domains, namely, LHRI, VHIID, LHRII, PFYRE, and SAW motif (Figure 3 and Figure S1).
Previous studies showed these motifs could mediate protein-protein and protein-DNA interaction [64].
For example, a point mutation in the conserved LHRI region of NSP2 interrupted the formation of the
NSP1-NSP2 complex, an interfamily heteropolymer important for nodulation signaling, and hence
interfered with nodule development in M. truncatula [65]. Mutations of rice SCL7 in the conserved
LHRII and PFYRE motifs abolished the DNA binding capability of the protein [64]. Our phylogeny
analysis clustered the barley GRAS to 12 subfamilies: SCL3, Os43, DELLA, SCR, HAM, Os19, SCL4/7,
LAS, PAT1, SHR, LISCL, and DLT (Figure 3). The previous phylogenetic clusterings of this family were
in substantial agreement though some fine-tuning in different plant species, indicating an intensive
diversification in GRAS genes in angiosperms [7,66]. Our dendrogram is consistent with a phylogenetic
analysis of GRAS proteins from a broad range of species including lycophyte and the bryophyte [9].
The GRAS protein numbers are similar with that in rice (57 GRAS), thought the barley genome (2n = 14,
5.1 Gb) is over 10 times bigger than that of rice (2n = 24, 430 Mb), explaining that barley genome consists
abundant repetitive DNA region [33]. We identified two yet unknown function monocot specific GRAS
subfamilies, Os43 and Os19, but no dicots unique GRAS subfamily. Nevertheless, the greater GRAS
number comes from not so much in the advent of monocot specific protein families as greater gene
duplication in barley. Tandem repeats of closely related GRAS homologs are commonly observed in
chromosomal location diagram (Figure 2). Remarkably, seven close homologs (HvGRAS35-HvGRAS39
genes belonging to the LISCL subfamily) are encompassed in a narrow 3 Mb region in chromosome 4.
Besides, we identified 10 pairs of homologs arisen from segmental duplication across chromosomes,
the pattern of which roughly resembles with the genome-wide synteny map in barley [67]. Like many
other plant species [6,68], a large number of GRAS genes (74.2%, 46 out of 62) are intron free (Figure 3
and Table S1). Not surprisingly, the largest subfamilies (LISCL, SHR, HAM1 and PAT1) contain the
most intronless genes (13, 8, 7, and 6, respectively). A big proportion of intronless genes are also
common in other big gene families [69]. Generally, the intronless genes are likely resulted from
horizontal gene transfer from intronless ancient prokaryotes genes, duplication of existing intronless
genes, or retroposition of intron-containing genes [70]. It is reported that at least part of GRAS genes
are originated from the horizontal gene transfer from ancient prokaryote [4]. Nevertheless, it neither
rules out the other two ways of intronless genes generation nor an alternative “introns-early” model,
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i.e., the intronless gene are younger than and generated from intron containing genes [71]. Collectively,
our data suggest that the duplication events are the major mechanism contributing to the massive
expansion of GRAS gene family members in different species.

The phylogeny together with the expression profile also provides a clue for exploring the protein
functions. Arabidopsis DELLA proteins including GAI, RGA, RGL1, RGL2, and RGL3 are negative
master growth regulators involved in GA signaling [56]. These proteins are characterized as a
conserved D-E-L-L-A (amino acids sequence) domain. Barley SLN1 or HvGRAS28 according to
our nomination is the only barley protein to fulfill the criteria. It was reported to be regulated by
GA in protein level, a conserved GA-DELLA module regulating plant height [55,72,73]. Following
the GRAS analysis in Arabidopsis, rice, and Populus, we also classify HvGRAS7 and HvGRAS22,
which share similarity with the known DELLA but without DELLA motif, into the DELLA subfamily [6].
The DELLA subfamily proteins form an interacting hub with many proteins (Figure 6). Our data
revealed surprisingly HvGRAS7 and HvGRAS22, but not the canonical DELLA HvGRAS28 highly
expressed in inflorescence development (Figure 5), where gibberellin has been shown as an important
regulating role [63]. It is yet possible that a low-level expression of the DELLA protein in spike is
enough for the gibberellin signaling. Otherwise, HvGRAS7 and HvGRAS22 have overtaken part of
the DELLA role in spike perhaps in a different way with DELLA since DELLA motif has been shown
important for gibberellin mediated DELLA degradation [74]. Five HvGRAS genes were clustered
as SCL3 subfamily, a subfamily closely related to DELLA. Arabidopsis SCL3 interacts with DELLA
and its expression is regulated by DELLA [17]. The LHRI-VHIID-LHRII region is important for
the interaction [21]. For instance, the expression of HvGRAS18 and HvGRAS27 lacking this region
are undetectable (Figures 3 and 4), thus are not likely functional in barley. In the SCL3 subfamily,
HvGRAS34 is ubiquitously expressed, while HvGRAS17 and HvGRAS45 are developing grain specific
suggesting their diverged functions. Though castor beans Os43 proteins are closely related to SCL3
subfamily, they appear to be non-functional as their expression levels are relatively low in every tissue
in castor beans [66]. Consistent with the study in castor bean, the barley Os43 members are also low
expressed (Figure 4), and their loss of function remains to be vindicated. In Arabidopsis, the SHR
and SCR subfamily proteins act together in endodermis specification in vasculature tissues [21,75].
SHR is the only characterized and perhaps the only functional protein within the Arabidopsis
SHR subfamily, while the others include a pseudogene and two very low expressed genes [6,8].
Noticeably, the T-DNA insertion of the two genes did not interrupt their expression, providing further
evidence to indicate their loss of function [8]. The barley orthologs of Arabidopsis SHR is HvGRAS10,
whose function may interact with both SCR and SCL23 subfamily proteins in barley. In Arabidopsis,
the SHR-SCR-SCL23 module was originally found to regulate endodermis development in roots [21].
Recently, accumulating data suggested that this module also regulates endodermis equivalent tissues
in leaves [76,77]. As suggested by the previous studies, this module is likely conserved in angiosperms
including barley [21]. Combining the putative interaction and expression profile, our data pointed for
the first time that HvGRAS47 and HvGRAS10 may work similarly as Arabidopsis SHR and SCR in roots
and leaves (Figures 4–6). Nevertheless, we did not find high expression of SCL23 orthologs (HvGRAS1
and HvGRAS6), but SHR (HvGRAS10) and SCR (HvGRAS47) expression in developing spike, suggesting
a difference between roots and leaves. On the other hand, the two SCR proteins, SCR and AtSCL23, are
functionally related but diversified, forming different heterodimers with the mobile master regulator
SHR [77]. Their interaction combination, location of the expression and cross-regulation of SHR, SCR
and AtSCL23 generate a regulatory network in the endodermis development of Arabidopsis roots
and shoots [76].The 10 SHR and 5 SCR identified in the barley are likely sharing function with SHR
and SCR in Arabidopsis, whose functions in rice and Arabidopsis have been shown conserved [21].
Like the Arabidopsis SHR subfamily, nevertheless, the partial or fully gene loss of function in the
even more expanded SHR and SCR subfamilies in barley need to be carefully examined in the future,
as large proportion of them are expressed at low level (Figure 4). We identified 7 HAM subgroup
GRAS protein in barley. The upstream regulator of HAM1 type GRAS, microRNA miR71 was shown
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to include a conserved function as in rice and Arabidopsis. It supports that barley HAM1 subfamily
proteins, as well as their upstream micro RNA function, are conserved. We identified HvGRAS40,
HvGRAS55, HvGRAS43, and HvGRAS4 as the putative target of barley miR171. Direct evidence,
however, is needed to show their function in meristem maintenance. Conceivably, the barley HAM1
proteins may participate in similar processes like HAM1/HAM2/HAM3 in maintaining meristem
homeostasis but in different stages, as their expression patterns are dramatically different (Figure 4).
Two barley GRAS were identified belonging LAS subgroup, whose function has been shown conversed
in Arabidopsis, tomato, and rice [1,8,27]. The two barley LAS GRAS genes, HvGRAS54 and HvGRAS61,
probably arose from segmental duplication (Figure 2). They likely share the conserved function with
LAS/LAS/MOC1 in regulating lateral organ initiation, such as tillering [25]. One Os19 family GRAS,
HvGRAS2 was identified in barley, whose rice homolog, OsGRAS19, participates in brassinosteroid
signaling to regulate leaf morphology, leaf angle, stem and grain size [78,79]. Further evidence is needed
to see whether HvGRAS2 act similarly as OsGRAS19 to controls traits through brassinosteroid signaling
pathway, as HvGRAS2 is widely expressed in many tissues like OsGRAS19, DLT subfamily proteins
are also reported participating in brassinosteroid signaling in rice and Arabidopsis [80,81]. The DLT
is a direct target of GSK protein kinases, an important brassinosteroid signaling transductor [81].
Two tandemly arranged barley DLT, HvGRAS58 and HvGRAS59, were identified. However, HvGRAS58
may be the only DLT1 equivalent, as HvGRAS59 is likely a pseudogene as encoding a short protein
missing multiple domains and not detected expression in every tissue (Figure 3). SCL4/7 subfamily is
a phylogenetic neighbor of DLT1 subfamily. We found two tandem arranged genes, HvGRAS29 and
HvGRAS30 belong to this family. Their expression especially HvGRAS30 gene in early inflorescence
suggesting their roles for barley spike development. PAT1 proteins in Arabidopsis involves in light
signaling pathways, with the close homologs within the family physically interacting with each
other [58,82]. The PAT1 proteins also participate in other processes such as stem cell regeneration after
wound by interacting with ETHYLENE RESPONSE FACTOR115 [83]. We identified six PAT1 subfamily
members in barley. Five of them are highly homologs each other, while HvGRAS14 orthologous
with AtSCL8 contains only two of those conserved domains shared by other PAT1 (Figures 1 and 3).
AtSCL8 is also the same, which was even categorized out of the PAT1 group by another research [82].
Remarkably, all the barley PAT1 are ubiquitously highly expressed (Figure 4), in agreement with that in
rice and Arabidopsis [82]. Interestingly, HvGRAS11 and HvGRAS14 were observed highly expressed in
developing spike (Figure 5). It suggests a previously unidentified PAT1 function in barley reproductive
organ. LISCL subfamily is the largest GRAS subfamily in many species. There are two conserved
subfamily restricted motifs in the N terminal of LISCL subfamily proteins, which have many acidic
amino acids flanking hydrophobic or aromatic residue repeats. The two motifs are responsible for
transcription activation [84]. This big subfamily has undergone dramatic function diversification.
They were shown to regulate a range of processes such as microsporogenesis, adventitious root
formation, abiotic stress resistance, and mycorrhiza symbiosis [84–88]. Fourteen barley LISCL proteins
were identified. Our phylogenetic analysis suggests the subgroup could be further divided into
two clades (Figure 1). While one clade has Arabidopsis, maize, rice, and barley members, the other
is monocot-specific. As discussed above, extensive tandem duplication and segmental duplication
may be evident for the monocot specific barley LISCL (Figure 2). The analysis of quantitative
RT-PCR suggests that LISCL subgroups, including HvGRAS21, HvGRAS37, HvGRAS39, HvGRAS44,
and HvGRAS46, are specifically expressed in the barley inflorescence, peaking at LP stages (Figure 6).
This LP peaking expression pattern of these barley genes gives indication that they may function in
the spikelet primordia development, as the number of spikelet primordia reach the maximum at LP
stage. Given the gene expression profile and potential role in lateral organ initiation [25–27], it will be
interesting to study the function of these HvGRAS in the lateral organs including floral components
within a spikelet. It is noteworthy that these GRAS peak the maximum expression earlier than the
row-type determinators, Six-rowed spike (VRS) genes (VRS1-5), repress the lateral spikelet fertility to
different extend at carpel and awn emergence in developing lateral spikelets [89].
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5. Conclusions

Taken together, our work laid a foundation to further elucidate the function of the barley
GRAS members and provides valuable information about the gene functions of GRAS family in the
development of barley inflorescence.
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