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Hepatocellular carcinoma (HCC) is a common malignant cancer with poor survival outcomes, and hepatitis B virus (HBV)
infection is most likely to contribute to HCC. But the molecular mechanism remains obscure. Our study intended to identify the
candidate potential hub genes associated with the carcinogenesis of HBV-related HCC (HBV-HCC), which may be helpful in
developing novel tumor biomarkers for potential targeted therapies. Four transcriptome datasets (GSE84402, GSE25097,
GSE94660, and GSE121248) were used to screen the 309 overlapping differentially expressed genes (DEGs), including 100
upregulated genes and 209 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment were used to explore the biological function of DEGs. A PPI network based on the STRING database was
constructed and visualized by the Cytoscape software, consisting of 209 nodes and 1676 edges. Then, we recognized 17 hub
genes by CytoHubba plugin, which were further validated on additional three datasets (GSE14520, TCGA-LIHC, and ICGC-
LIRI-JP). The diagnostic effectiveness of hub genes was assessed with receiver operating characteristic (ROC) analysis, and all
hub genes displayed good performance in discriminating TNM stage I patient samples and normal tissue ones. For prognostic
analysis, two prognostic key genes (TOP2A and KIF11) out of the 17 hub genes were screened and used to develop a prognostic
signature, which showed good potential for overall survival (OS) stratification of HBV-HCC patients. Gene Set Enrichment
Analysis (GSEA) was performed in order to better understand the function of this prognostic gene signature. Finally, the
miRNA–mRNA regulatory relationships of all hub genes in human liver were predicted using miRNet. In conclusion, the
current study gives further insight on the pathogenesis and carcinogenesis of HBV-HCC, and the identified DEGs provide a
promising direction for improving the diagnostic, prognostic, and therapeutic outcomes of HBV-HCC.

1. Introduction

Liver cancer, with about 841,000 new cases diagnosed and
782,000 deaths in 2018, still represents a common lethal solid
tumor and ranks fourth leading cause of cancer-related
deaths worldwide [1]. In China, liver cancer was one of the
first five life killers in 2017 [2]. Hepatocellular carcinoma
(HCC), comprising 75%-85% of all primary liver cancer cases
worldwide [1], is the primary histological subtype. The major

causative etiological factors of HCC are considered as infec-
tion of endemic hepatitis B virus (HBV) or hepatitis C virus
(HCV), followed by exposition to aflatoxin B1, alcohol abuse,
and obesity [1, 3]. Particularly, HBV infection is considered
the dominant cause of HCC, accounting for more than 80%
of all HCC incidences in China and other developing coun-
tries [4]. Despite significant advances in early diagnosis,
prevention and the standard therapeutic interventions such
as surgery, radiation, chemotherapy, or personalized target
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therapeutic strategies developed during the last decade, and
the cumulative 5-year overall survival rate of HCC remains
unfavorable, probably due to its invasive behavior, as well
as its histopathological and molecular heterogeneity that
challenge molecular characterization and targeted therapeu-
tic approaches. Moreover, the majority of patients are diag-
nosed in a more advanced stage, resulted in a much poorer
prognosis. Thus, considerable work is still required to achieve
a better understanding of the underlying mechanism at
molecular level on the pathogenesis and carcinogenesis of
HCC, which may be imperative for the development of
robust biomarkers for early diagnosis and drug discovery.

In recent years, the rapid development of bioinformat-
ics and emerging high-throughput techniques, such as
microarray and next-generation sequencing (NGS), have
enabled us to gain a comprehensive understanding of
carcinogenesis and progression of various types of cancer.
High-throughput platforms have been widely used in early
diagnosis, histological identification, molecular classification,
prognosis prediction, and drug resistance analysis of cancer
[5–9]. Differentially expressed genes (DEGs), microRNAs
(miRNAs), long noncoding RNAs (lncRNAs), and circular
RNAs (circRNAs), as well as differentially methylated CpG
sites have the potential to provide valuable clues to locate bio-
markers in HCC. Nevertheless, data acquired from multiple
studies may lead to false-positive results, considering the
sample heterogeneity, different screening methods, different
data mining approaches, and coupled effect of limited sample
size in a single independent study. Integrated analysis based
on collective datasets is a promising strategy to overcome
these shortcomings. The microarray and sequencing data
that deposited in the public databases such as The Cancer
Genome Atlas (TCGA), Gene Expression Omnibus (GEO),
and International Cancer Genome Consortium (ICGC) have
generated valuable information to identify biomarkers or to
explore molecular landscapes of cancers, especially at tran-
scriptome level [10–15]. Integrated transcriptome analyses
have been employed to disclose the molecular mechanisms
of cancers. However, few reports have been submitted to
examine dysregulated genes and candidate biomarkers
regarding HBV-related HCC (HBV-HCC) with combined
datasets [16].

In the current study, seven datasets of gene expression
profiles from GEO, TCGA, and ICGC were used to identify
the hub genes that may play pivotal roles in the pathogenesis
of HBV-HCC, comprising a total of 514 HBV-HCC tumor
samples and 452 normal tissues. The common differentially
expressed genes between tumors and adjacent normal liver
tissues of four datasets (GSE84402 [17], GSE25097 [18],
GSE94660 [19], and GSE121248 [20]) were screened by the
R language software. The R package clusterProfiler [21] was
utilized to conduct Gene ontology (GO) enrichment analysis
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis to reveal the biological functions of DEGs.
The protein-protein interaction (PPI) network of all com-
mon DEGs was constructed with information from the
Search Tool for the Retrieval of Interacting Genes (STRING)
database. Based on the entire network, hub gene identifica-
tion and submodule analysis were performed using the Cyto-

Hubba plugin or the Molecular Complex Detection
(MCODE) plugin of Cytoscape [22–24], respectively. The
expression levels and correlation analysis of hub genes were
then validated with the aid of complementary three datasets
(TCGA, ICGC, and GSE14520). Furthermore, the diagnostic
effectiveness of the hub genes was evaluated from TCGA and
GSE14520, and the prognostic value was also determined in
the GSE14520 dataset using univariate and multivariate anal-
yses. Finally, Gene Set Enrichment Analysis (GSEA) and
mRNA–microRNA interactions were operated to further clar-
ify their possible molecular mechanisms. Taken all together,
the crucial hub genes and associated key pathways identified
from our findings would provide a potential indication for
the molecular mechanism of HBV-HCC development and
progression, and the particular proposed genes may shed
additional insight into the early diagnosis, prognosis predic-
tion, and therapeutic targets of HBV-HCC in the near future.

2. Materials and Methods

2.1. Gene Expression Dataset Acquisition. We chose four
datasets of gene expression profiling from the GEO (https://
www.ncbi.nlm.nih.gov/geo/) database to fetch the DEGs
between HBV-HCC tumor samples and normal liver tissues,
with the accession numbers of GSE84402, GSE25097,
GSE94660, and GSE121248. GSE84402 and GSE121248 were
both based on GPL570 (Affymetrix Human Genome U133
Plus 2.0 Array), while GSE25097 was based on GPL10687
(Merck Human RSTA Affymetrix 1.0 microarray, Custom
CDF), and GSE94660 was based on GPL16791 (Illumina
Hiseq 2500 (Homo sapiens)). HBV-HCC cases or samples
were carefully filtered from all of the above studies. The
dataset of GSE84402 contained 13 pairs of HBV-related
hepatocellular carcinoma tissues and corresponding non-
cancerous tissues. The dataset of GSE25097 comprised 73
HBV-HCC tissues and 67 paired adjacent nontumor sam-
ples. The dataset of GSE94660 consisted of 21 pairs of tumor
and nonneoplastic liver tissues of HBV-HCC patients. The
dataset of GSE121248 included 70 tissues from chronic hep-
atitis B-induced HCC and 37 adjacent normal tissues. In
addition, we downloaded another three transcriptome data-
sets and corresponding clinical information for valida-
tion—GSE14520 from the GEO database including 213
HBV-HCC tissues and 220 normal samples, TCGA-LIHC
data from The Cancer Genome Atlas (TCGA, http://www
.tcga.org/) database including 70 HBV-HCC tissues and 49
normal samples, and ICGC-LIRI-JP data from the Interna-
tional Cancer Genome Consortium (ICGC, https://icgc.org/)
including 53 HBV-HCC tissues and 45 paired normal sam-
ples. Table 1 summarized the detailed information of the
selected datasets in this study.

2.2. Data Preprocessing and DEG Identification. All data were
analyzed by the R software (version3.6.0, https://http://www
.r-project.org/). For the microarray data, we downloaded
the raw data (.CELL files) and used the robust multiarray
average algorithm [25] to conduct the background correction
and quantile normalization; probes were subsequently
matched with the corresponding gene name according to
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the platform annotation packages. When multiple probes
were matched one the same gene, the highest expression
value of all probes was selected to represent the final expres-
sion level. For RNA-seq data, we collected the normalized
gene expression matrixes from the GEO database or HCCD
database [26] directly. Meanwhile, the limma package [27]
was applied to screen DEGs between HBV-HCC samples
and noncancerous samples, with P value <0.05 and ∣log2 FC
∣ ≥1 were set as the statistical cutoff criteria. The overlapping
DEGs were identified by Venn plot. Besides, to minimize the
chance for making type I error, we also adopted the integrat-
ing strategy by removing batch effect via “sva” [28] package
for the three microarray datasets.

2.3. Functional Enrichment Analysis. To explore a further
understanding of the potential biological function, GO and
KEGG pathway enrichment analyses were performed on
the overlapping dysregulated genes using the package “clus-
terProfiler” [21], and P < 0:05 was determined as a cutoff
for significance.

2.4. PPI Network Construction. STRING database (version
11.0; http://string-db.org/), a free online tool to evaluate
PPI information, was used to assess and integrate the interac-
tive relationships among these DEGs. A combined confi-
dence score of ≥0.7 (high confidence) was set as the
threshold value. The Cytoscape software [24] (version 3.2.1;
http://www.cytoscape.org) was then used to construct and
visualize the PPI network. Besides, we also used a plugin from
Cytoscape, the MCODE [23] (MCODE; version 1.5.1), to
carry out the submodule analysis. For the identification of
hub genes, we used the CytoHubba app [22] in Cytoscape
with a combined method. Generally, nodes with top 60 scores
of all the 11 algorithms in CytoHubba were picked up; then,
the intersection based on more than 8 algorithms was taken
as candidate hub genes, and two packages including UpSetR
[29] and Venn detail [30] were used for visualization. Finally,
the potential function of submodule genes or the hub genes
was verified and displayed by the clusterProfiler [21] and
the GOplot R packages [31].

2.5. Validation of Hub Gene Expression. As mentioned above,
three datasets including GSE14520, TCGA-LIHC, and
ICGC-LIRI-JP were used to verify the differential expression
level of hub genes. The violin plots and heatmaps were drawn
to compare the expression pattern between HBV-HCC
tissues and noncancerous tissues, with the Wilcoxon test to

measure the statistical significance. The same three datasets
were also used to perform the coexpression analysis of the
selected hub genes. The correlation of hub genes’ expression
and the clinical stages was investigated with the GSE14520
dataset and exhibited with boxplots.

2.6. Assessment of the Diagnostic and Prognostic Values. The
receiver operating characteristic (ROC) analysis was con-
ducted by means of R package pROC [32] to determine the
power of potential hub genes in the diagnose of early phrase
and whole phrase of HBV-HCC carcinogenesis, using their
expression values from GSE14520 and TCGA-LIHC. The
appropriate expression levels of the hub genes were served
as cutoff values. For prognostic assessment, because of the
sample size (n < 100) limitation of other datasets, only
GSE14520 containing 213 HBV-HCC patients with complete
OS data and sufficient clinicopathologic information were
analyzed. In order to increase the robustness of the selection,
we applied the “multi-split” strategy with log-rank test for
100 randomizations (75% portion of all samples were sub-
sampled at each time) to evaluate the correlation between
the OS and each hub gene expression level (Supplementary
Figure 1). Those genes repeatedly showed significance for
more than 75 times were considered as prognostic key genes
and were further used to construct a linear combination as
the risk signature with the following formula: risk score =
sum ðcoef ðkÞ × expression value of kÞ, where k represents the
candidate prognostic key genes. All patients were divided as
high-risk or low-risk groups according to the median risk
score. Kaplan-Meier method with a log-rank test was used to
compare the survival curves by using the survival package
[33]. The time-dependent ROC was depicted to estimate the
predictive ability of the risk signature for patients’ OS
survival. The associations of clinicopathologic features and
the risk signature were determined by Pearson chi-square
test or Fisher’s exact test. Univariable and multivariable Cox
regression analyses were conducted to identify independent
prognostic factors. For all statistical tests, P < 0:05 was set as
significant cutoff.

2.7. Gene Set Enrichment Analysis. The genes that differen-
tially expressed and associated with risk stratification of OS
survival were analyzed by GSEA, which was employed to
examine the statistical significance of a priori defined set of
genes between different phenotypes. In the current study,
we focused on the KEGG pathways (c2.cp.kegg. v7.1) and
molecular function of GO gene sets (c5.mf.v7.1). 1000 times

Table 1: Detailed information of selected datasets in this study.

Study Platforms Etiology Tumor Normal Total Technology

GSE84402 GPL570 HBV 13 13 26 Microarray

GSE25097 GPL10687 HBV 73 67 140 Microarray

GSE94660 Illumina Hiseq HBV 21 21 42 RNA-seq

GSE121248 GPL570 HBV 70 37 107 Microarray

GSE14520 GPL3921 HBV 213 220 433 Microarray

TCGA Illumina Hiseq HBV 71 49 120 RNA-seq

ICGC Illumina Hiseq HBV 53 45 98 RNA-seq
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of permutations were performed to obtain the enrichment
score (ES) and the normalization enrichment score (NES)
for each gene set. Significant gene sets were identified with
a nominal P value <0.05, combined with an FDR < 25%
and normalized enrichment score ðNESÞ > 1 or <-1.

2.8. miRNA-mRNA Interaction Prediction. We predicted the
liver-specific miRNA-mRNA interaction of all hub genes
using an online tool—miRNet [34], which integrated several
well-annotated databases, including miRTarBase v7.0,
TarBase v7.0, and miRecords. miRNA-mRNA correlation
network was constructed with the Cytoscape software. In
the network, diamond nodes denoted the mRNAs while the
rectangle nodes represented the miRNAs.

3. Results

3.1. Identification of DEGs in HBV-HCC. With the filtering
criteria mentioned above, DEGs in HBV-HCC carcinogene-
sis were achieved using a total of 315 clinical samples from
four GEO datasets (GSE25097, GSE84402, GSE121248, and

GSE94660). In all, there were 623 upregulated and 1144
downregulated genes identified from GSE25097, 319
upregulated and 775 downregulated genes from GSE84402,
319 upregulated and 564 downregulated genes from
GSE121248, and 1329 upregulated and 534 downregulated
genes from GSE94660. The volcano plots of all DEGs in each
of the four datasets were shown in Figures 1(a)–1(d). For
overlapping analysis of the Venn diagram, 121 upregulated
genes or 302 downregulated genes were firstly shared by
Affymetrix biosystems (Figure 1(e)); then, 309 common
DEGs were obtained by Affymetrix and Illumina platforms,
consisting of 100 upregulated genes and 209 downregulated
genes (Figures 1(f) and 1(g)). To increase the robustness of
these 309 DEGs, we conducted the integrating analysis of
the three microarray datasets. After removing the batch
effect, all 309 DEGs were still showed significant (Supple-
mentary Figure 2, Supplementary Table 1).

3.2. DEG Function Analysis. Three categories of GO compris-
ing of biological process (BP), molecular function (MF), and
cellular component (CC), together with KEGG enrichment,
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Figure 1: Identification of overlapping DEGs among the screening datasets of HBV-HCC. (a–d) Volcano plot for GSE84402, GSE25097,
GSE121248, and GSE94660. (e) Venn diagram for the overlapping DEGs from Affymetrix biosystems. (f) Common DEGs shared by
Affymetrix and Illumina platforms. (g) Heatmap of 309 common DEGs. Blue represents downregulated genes while red represents
upregulated genes. Each column represents one dataset, and each row represents one gene. DEGs: differentially expressed genes; HBV-
HCC: HBV-related hepatocellular cancer.
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were performed for the upregulated and downregulated
genes. For GO functions analysis, upregulated genes were
involved in multiple GO terms, such as mitotic nuclear divi-
sion, chromosome segregation, nuclear division, and spindle.
On the other hand, significant GO terms that associated with
downregulated genes were organic acid catabolic process,
carboxylic acid catabolic process, small molecule catabolic
process, carboxylic acid biosynthetic process, and so on. For
KEGG pathway analysis, the upregulated genes were mostly
enriched in the cell cycle, DNA replication, oocyte meiosis,
progesterone-mediated oocyte maturation, p53 signaling
pathway, and mismatch repair. Meanwhile, the downregu-

lated genes were mainly related to chemical carcinogenesis,
retinol metabolism, tryptophan metabolism, bile secretion,
and linoleic acid metabolism (Figure 2).

3.3. PPI Network Construction. For the DEG interaction
inspection, we constructed a PPI network of 209 nodes and
1676 edges by the STRING database and Cytoscape software,
with a strict criterion (combined interaction score ≥ 0:7). The
PPI network contained 84 upregulated DEGs and 125 down-
regulated DEGs (Supplementary Figure 3). The clustering
coefficient was 0.525, and the average degree was 16.038. In
addition, the MCODE app of Cytoscape detected the most
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Figure 2: Function enrichment analysis of the overlapping DEGs. (a) GO analysis for the upregulated DEGs (top 20 GO terms are shown). (b)
KEGG pathway enrichment for the upregulated DEGs. (c) GO analysis for the downregulated DEGs (top 20 GO terms are shown). (d) KEGG
pathway enrichment for the downregulated DEGs. BP: biological process; CC: cellular component; MF: molecular function.
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significant module with a high network score (>40), which
consisted of 47 nodes and 1017 edges (Figure 3(a)).
Functional analysis revealed that mitotic nuclear division
and cell cycle were the most significant GO and KEGG
pathway enriched by the module (Figures 3(b) and 3(c)).

For the hub gene identification, we used a combined
method by CytoHubba. Interestingly, all of the 17 hub genes
were upregulated DEGs, and most of them (UBE2C, RRM2,
RFC4, TOP2A, MCM2, CDK1, CCNB1, HMMR, CDC20,
CCNA2, NEK2, NDC80, DLGAP5, and KIF11) were
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Figure 3: Subnetwork analysis of the DEGs PPI. (a) The most significant module selected byMCODE plugin (MCODE score > 40), comprising
47 nodes. (b) Top five related GO terms enriched by the DEGs in the module. (c) KEGG enrichment analyses for the DEGs in the module.
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involved in the significant module, while only 3 hub genes
(MCM6, MCM3, and PRIM1) were not included
(Figure 4(a)). We also employed the GO and KEGG analyses
of all the hub genes for further validation of their biological
functions, such as DNA replication and cell cycle regulators
(Figures 4(b) and 4(c)).

3.4. Hub Gene Validation. To validate the differentially
expressed levels of the selected hub genes, three other data-
sets were used in this study. Consistent with the screening
cohorts from the GEO database, all of the 17 definitive hub
genes showed the significantly higher expression trends
between HBV-HCC cancer samples and adjacent liver
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Figure 4: Hub gene identification and functional analysis. (a) The combination of Upset plot and Vennpie plot shows the 17 hub genes
identified by CytoHubba plugin through DEG PPI network, with an overlapping strategy. (b) Top five related GO terms of the hub genes.
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Figure 5: Validation of the aberrant expression levels for the selected hub genes and coexpression analysis. (a–c) Violin plots showing the
significantly increased expression values for all of the 17 hub genes based on GSE14520, TCGA-LIHC, and ICGC-LIRI-JP. (d) Pearson
correlation analysis among expression levels of the 17 hub genes for GSE14520, TCGA-LIHC, and ICGC-LIRI-JP. The color depth
indicates the degree of correlation. The darker the color, the higher the correlation coefficient. ∗∗∗P < 0:001.
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normal ones (Figures 5(a)–5(c)). Moreover, the hierarchical
clustering of the hub genes and samples based on the three
datasets revealed their good potential in discriminating the
tumors from healthy tissues (Figure 6). Heatmaps of Pearson
correlation suggested the high correlations of these hub genes
in all three datasets, supporting the underlying hypothesis
that hub genes may strongly interact with each other and play
critical roles in the development of HBV-HCC (Figure 5(d)).

To seek for the clinical relevance of these hub genes, we ana-
lyzed the transcription expression levels of the hub genes
according to patients’ TNM stages and their BCLC stages.
Consequently, most of the hub genes showed no statistical
difference between TNM stage I and other stages, which sug-
gested their predominant roles in the initiation of carcino-
genesis, but they may not good indicators for HBV-HCC
progression (Figure 7). A similar result was reached based
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Figure 6: Clustering heatmaps of 17 hub genes based on (a) TCGA-LIHC, (b) ICGC-LIRI-JP, and (c) GSE14520. Red denotes high expression
levels while green denotes low expression levels.
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on the BCLC staging system, which implied that only
MCM6, RRM2, and CCNB1 might be associated with
HBV-HCV progression (Supplementary Figure 4).

3.5. Diagnostic Value Assessment. The above findings
prompted us to speculate that these hub genes may have good
diagnostic efficiency for HBV-HCC, which was verified by
plotting ROC curves using TCGA-LIHC and GSE14520. As
the result, the area under the curves (AUCs) of all hub genes
ranged from 0.91 to 0.99 (Supplementary Figure 5),
indicating their excellent diagnostic values for distinguishing
tumor tissues and adjacent normal ones. Next, we were
curious whether these hub genes also play a role in the early
detection of HBV-HCC, which was even more crucial for
clinical intervention. Thus, we especially focused on early
stage (TNM stage I) cases, and ROC analysis of individual
hub genes proved their great potential in the early diagnosis
of HBV-HCC (Figure 8).

3.6. Survival Analysis. To elucidate the prognostic values of
the hub genes, we performed the OS survival analysis with
the cohort from GSE14520, including 213 HBV-HCC

patients. The resample-based log-rank test resulted in
two robust prognostic hub genes (with high repentance
frequency of >0.75 showing significant during resampling):
TOP2A and KIF11. Then, a prognostic signature was built
with these two hub genes, and all patients were assigned to
high- or low-risk group based on the median risk score
(0.997189). The result of risk score for each patient was
shown in Figure 9(a). Figure 9(b) suggested the significant
difference of risk scores between high- or low-risk group,
and OS survival rate was significant higher in low-risk
group by chi-square analysis (Figure 9(c)). As for predic-
tion accuracy, we plotted the time-dependent roc curves
by risk score, and the risk signature showed the AUC
values at 1, 3, and 5 years was 0.626, 0.643, and 0.693,
respectively (Figure 9(d)). For Kaplan-Meier survival anal-
yses, both the OS survival rate and the recurrence-free sur-
vival rate were shown to be significantly higher in low-risk
group than high-risk group (Figures 9(e) and 9(f)).

Furthermore, we stratified patients into different risk
subgroups by several clinicopathologic parameters (age,
gender, ALT, AFP, level, main tumor size, cirrhosis, BCLC
stage, TNM stage, and CLIP stage) using the two-hub gene-
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Figure 7: Boxplots showing the relative expression levels of 17 hub genes across normal liver tissues and cancer tissues with different TNM
stages for HBV-HCC. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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based signature. Interestingly, results showed that our clas-
sifier was still statistically significant in most subgroups
(Supplementary Figure 6), suggesting its good potential and
possible application to add prognostic value to the existing
staging systems.

Moreover, risk levels based on the two-hub gene-based
signature also suggested to be significantly associated with
other aggressive clinicopathological parameters, such as
TNM stage (P = 0:002), BCLC stage (P = 0:013), CLIP stage
(P = 0:003), and alpha fetal protein (AFP) level (P = 0:003)
by chi-square test (Table 2). Multivariate Cox regression
analysis indicated that after adjusting for main tumor size,

cirrhosis, TNM stage, BCLC stage, CLIP stage, and AFP level,
the risk signature was still significantly correlated with OS
survival outcome (HR = 1:807, 95%CI = 1:126 – 2:899, and
P = 0:014), implying that the two-hub gene signature served
as an independent prognostic factor for HBV-HCC patients
(Table 3).

3.7. Gene Set Enrichment Analysis. GSEA is a powerful statis-
tical approach to identify classes of genes that are signifi-
cantly associated with different disease phenotypes. Thus,
inspired by the results of the prognostic analysis, we operated
the GSEA to investigate the molecular mechanisms between
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Figure 8: The ROC curves and AUC (95% CI) for each of the selected hub genes to evaluate their efficiency in the early diagnosis of HBV-
HCC based on (a–c) TCGA-LIHC cohort and (d–f) GSE14520 cohort. Colored lines denote sensitive curves for each hub gene, and grey line
denotes the identify line. ROC: receiver operating characteristic; AUC: area under the curve.
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Figure 9: Continued.
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high- and low-risk groups divided by the risk signature.
GSEA was performed by KEGG at first, and top significant
pathways were identified as KEGG_spliceosome (P < 0:001
and NES = 2:149), KEGG_cell_cycle (P < 0:001 and NES =
1:959), and KEGG_oocyte_meiosis (P < 0:001 and NES =
1:934) (Figure 10(a)). For the gene set distribution from
molecular function component of the GO database, GO_
translational_initiation (P < 0:001 and NES = 2:233), GO_
meiotic_cell_cycle (P < 0:001 and NES = 2:191), and GO_
RNA_splicing_via_transesterification_reactions (P < 0:001
and NES = 2:149) were ranked as the most significant terms
(Figure 10(b), Supplementary Tables 2–3). These results
suggested that this risk signature may exert a poorer survival
for HBV-HCC patient via known crucial cancer pathways.

3.8. Prediction of miRNA-mRNA Interaction Network. MiR-
NAs have been extensively documented to regulate tumori-
genesis at transcriptome level or posttranscriptional level in
various cancers. Thus, we predicted the candidate miRNAs
that may target these hub genes in human liver by using the
miRNet online platform. Then, the miRNA-hub gene inter-
action network was established by Cytoscape (Supplemen-
tary Figure 7). There were 55 nodes and 77 edges involved
in the network, including 16 hub genes (NDC80 was
excluded) and 39 miRNAs. In the network, PRIM2,
CCNA2, and RRM2 were recognized as the top 3 hub genes
that had most neighbors of miRNAs, while hsa-mir-34a-5p,
hsa-mir-192-5p, and hsa-mir-24-3p were the top 3 miRNAs
with most targeted hub genes. The miRNA-hub gene
network based on their regulatory relationships may

provide a forceful basis for the further exploration of the
molecular mechanisms of HBV-HCC.

4. Discussion

Despite the great advances in clinical management and
remarkable progress in understanding the pathogenesis of
HCC, the incidence and mortality rates of this malignant
cancer remain unacceptably high. Chronic hepatitis B is the
primary etiological factor for HCC in China and other parts
of Asia [4]. With the identification of diagnostic and prog-
nostic biomarkers of HBV-HCC, we have attempted to
provide valuable insight into the molecular mechanism of
HBV-HCC during tumorigenesis and development.

Public databases like GEO, TCGA, and ICGC that
deposit massive datasets of high-throughput technologies
like microarray and NGS platforms have facilitated the strat-
egies for mining of integrated data, which could overcome
the limitations of the small sample size in one individual
cohort and heterogeneity among different studies. In the
present study, we conducted DEG screening based on the
transcription profiling data of GSE84402, GSE25097,
GSE94660, and GSE121248 at first, and there were 309 over-
lapped DEGs were identified between the tumor and normal
patients, comprising 100 upregulated genes and 209 down-
regulated genes. The result of GO analysis revealed that the
upregulated DEGs were significantly enriched in the regula-
tion of cell division activities (such as mitotic nuclear
division, chromosome segregation, and nuclear division),
while the downregulated DEGs were closely related to
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Figure 9: Prognostic assessments of hub genes by GSE14520 cohort. (a) Risk score, survival outcome, and hub gene expression values for each
patient in high- and low-risk groups. (b) Comparison of risk scores between high- and low-risk groups. ∗∗∗∗P < 0:0001. (c) Distribute of
different survival status in high- and low-risk score groups. Statistical significance was determined by chi-square test. (d) The time-
dependent ROC curves for the two-hub gene-based signature at 1, 3, and 5 years to assess accuracy of prognostic prediction. (e, f) Kaplan-
Meier curves of (e) OS and (f) RFS in HBV-HCC patients based on the risk score classification. P was calculated by the log-rank test, and
P < 0:05 was considered statistically significant. HBV-HCC: HBV-related HCC; OS: overall survival; RFS: relapse-free survival.
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multiple cellular “catabolic process” and “biosynthetic pro-
cesses” (such as organic acid catabolic process and carboxylic
acid biosynthetic process). KEGG pathway analysis revealed
that the upregulated DEGs were mainly involved in the cell
cycle, DNA replication, oocyte meiosis, and others. Mean-
while, the downregulated DEGs were relevant to chemical
carcinogenesis, retinol metabolism, tryptophan metabolism,
bile secretion, and so forth.

After that, we utilized a combined strategy to identify the
17 hub genes (MCM6, MCM3, UBE2C, RRM2, RFC4,
TOP2A, MCM2, CDK1, PRIM1, CCNB1, HMMR, CDC20,
CCNA2, NEK2, NDC80, DLGAP5, and KIF11) from the
PPI network established by the STRING database. Most of
these hub genes were previously reported as oncogenes, ther-
apeutic targets, or potential biomarkers in HCC [35–51]. We
then validate the dysregulated mRNA expression levels of
these hub genes using GSE14520, TCGA-LIHC, and ICGC-

LIRI-JP datasets. The positive coexpression relationships of
the hub genes were proved by Pearson’s correlation analysis,
implying the highly active interactions during the tumori-
genesis. Boxplots were used to demonstrate the relevance
between gene expression levels and pathological stages;
however, most of the hub genes showed no significant associ-
ation between early stages and late stages, stimulating us to
propose that they may be used in early diagnosis for HBV-
HCC. As the consequence, the ROC curves of all the 17
hub genes showed high diagnostic values for TNM stage I
patients and adjacent normal tissues, suggesting their good
potential in further exploiting early diagnosis, including
related miRNAs, circRNAs, and aberrantly methylation
markers that based on these hub genes.

For the overall survival analysis, with the aid of cohort
from GSE14520, we established a risk signature with two
prognostic hub genes: TOP2A and KIF11, which was demon-
strated to be an independent prognostic predictor for HBV-
HCC patient by univariate and multivariate analyses and
was significantly correlated with tumor staging systems and
AFP levels. Our GSEA result also revealed key molecular
functions and KEGG pathways (especially for gene sets
related to cell cycle) that involved in carcinogenesis that
may be associated with OS survival stratification by the risk
signature for HBV-HCC patients.

TOP2A, encoded by TOP2A gene, is a DNA topoisomer-
ase that participates in many processes during transcription
and replication through altering DNA topological structure.
Previous studies confirmed that the aberrant TOP2A expres-
sion was observed in various cancer subtypes, such as breast
[52], colon [53], ovarian [54], gastric [55], prostate cancer
[56], and HCC [40]. In the current study, TOP2A showed
high expression value in HBV-HCC, which agreed with pre-
vious results. Recent studies substantiated its oncogenic role
during the tumorigenesis and development of many malig-
nancies [52, 53]. For example, Zhang et al. found that knock-
down of TOP2A could induce apoptosis and suppress cell
proliferation and invasion via Akt and ERK signaling path-
ways in colon cancer [53]. These findings strongly imply that
TOP2A may be served as an anticancer therapeutic target for
clinical treatment. Actually, several TOP2A inhibitors have
been approved by the US Food and Drug Administration
[57], and other compounds were tested in multiple trials
[58, 59]. A study on adrenocortical carcinoma (ACC) mani-
fested that aclarubicin was the best agent of 14 TOP2A inhib-
itors that can decrease proliferation and tumor spheroid size
in locally advanced and metastatic ACC [58]. But candidate
TOP2A inhibitors with high efficacy for HCC were still rare.
Considerable effort was required to explore effective reagents
for HCC. Furthermore, early discoveries revealed that the
elevated TOP2A expression implicated the worse overall sur-
vival for multiple cancers [52, 54, 56]. In accordance with
these findings, our present study demonstrated that upregu-
lation of TOP2A was closely related to the poor outcome
for HBV-HCC patients.

KIF11 or as BimC, Eg5, belonging to kinesin superfamily,
which function as nanomotors to mediate various kinds of
spindle dynamics, is well known to play an essential role dur-
ing cell mitosis, including chromosome positioning, bipolar

Table 2: Clinicopathological features of HBV-HCC patients
according to the two-hub gene-based signature in the cohort of
GSE14520.

Characteristics Low risk (n = 107) High risk
(n = 106) P value

Gender

Female 17 13
0.447

Male 90 93

Age

<50 48 47
0.939

≥50 59 59

ALT level

High (>50U/L) 41 47
0.518

Low (≤50U/L) 66 59

Main tumor size†

Large (>5 cm) 35 40
0.412

Small (≤5 cm) 72 65

Cirrhosis

Yes 96 100
0.213

No 11 6

TNM stage

I 56 33
0.002∗

II+III 51 73

BCLC stage

0-A 90 74
0.013∗

B-C 17 32

CLIP stage

0 58 36
0.003∗

≥1 49 70

AFP level†

High (≥300 ng/ml) 37 58
0.007∗

Low (<300 ng/ml) 67 49
†The information was missing for certain patients. ∗P < 0:05 by χ2 test.
HBV-HCC: HBV-related HCC; ALT: alanine aminotransferase; AFP: alpha
fetoprotein; TNM: tumor-node-metastasis; BCLC: Barcelona Clinic Liver
Cancer; CLIP: Cancer of the Liver Italian Program.
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spindle formation and maintenance, and antiparallel micro-
tubule sliding, as well as microtubule crosslinking [60–62].
It may also increase translational efficiency by mediating
the association of ribosomes andmicrotubules [63]. Recently,
KIF11 has been reported to be a novel potential candidate
prognostic biomarker or therapeutic target in human cancers
including breast cancer [64], ovarian cancer [65], oral cancer
[66], peripheral nerve sheath tumors [67, 68], and lung can-
cer [69]. In line with previous findings, we identified KIF11 as
an oncogene during tumorigenesis of HBV-HCC, and its
expression level was significantly higher in tumor samples
compared with adjacent normal tissues. It was also proved
to hold good potential for early detection of HBV-HCC.
For prognostic analysis, KIF11 and TOP2A performed

jointly well in predicting prognosis by multivariate regres-
sion. In fact, a growing body of well-known KIF11 inhibitors
such as monastrol [70], S-trityl-L-cysteine (STLC) [71],
HR22C16 [72], and CK0106023 [73] have been extensively
studied, and small-molecule inhibitors such as Ispinesib
(SB-715992) [74], Filanesib (ARRY-520) [75], and litronesib
(LY2523355) [76] have entered clinical trials. However,
although these inhibitors have demonstrated excellent effica-
cies in certain human cancer with no neurotoxicity [75, 77],
none have been used as a marketed anticancer agent; thus,
further investigation is warranted to in the development of
KIF11-based anticancer drugs.

There are several limitations to our study. First, a larger
cohort is required to further validate these results. Second,

Table 3: Univariate and multivariate analyses of the cohort GSE14520.

Variables Group
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Risk level High/low 2.293 1.461-3.600 <0.001† 1.807 1.126-2.899 0.014∗

Gender Male/female 0.599 0.289-1.242 0.168 - - -

Age ≥50/<50 1.190 0.771-1.837 0.432 - - -

ALT level (U/L) ≥50/<50 1.107 0.716-1.712 0.648 - - -

Main tumor size (cm) ≥5/<5 2.063 1.330-3.199 0.001† 1.269 0.77-2.091 0.349

Cirrhosis Yes/no 0.224 0.055-0.910 0.036† 0.349 0.084-1.440 0.145

TNM stage II+III/I 0.348 0.210-0.577 <0.001† 0.579 0.326-1.027 0.061

BCLC stage B-C/0-A 0.283 0.18-0.445 <0.001† 0.478 0.27-0.848 0.012∗

CLIP stage ≥1/0 2.133 1.338-3.398 0.001† 1.129 0.549-2.322 0.741

AFP level (ng/ml) ≥300/<300 1.572 1.019-2.426 0.041† 1.006 0.541-1.869 0.986
†Significant in univariate Cox regression and were further enrolled for multivariable Cox regression analysis. ∗P < 0:05 by both univariate and multivariate
analyses. AFP: alpha fetoprotein; TNM: tumor-node-metastasis; ALT: alanine aminotransferase; BCLC: Barcelona Clinic Liver Cancer; CLIP: Cancer of the
Liver Italian Program.
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Figure 10: GSEA results of high- or low-risk groups divided by the two-hub gene-based signature in GSE14520 cohort. (a) Results of GO
terms enriched in highly risk group vs. low-risk group. (b) Results of KEGG pathways enriched in highly risk group vs. low-risk group.
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because of the cautious approach adopted in the study, we
failed to enroll the adequate number of HBV-HCC cases with
complete clinical characteristics and sufficient long-term
follow-up, which did not allow us to conduct informative anal-
yses of better risk stratification and validation. Third, further
in-depth studies are necessary to confirm the oncogenic roles
of the selected hub genes via in vitro and in vivo assays.

5. Conclusion

In summary, with the integrated bioinformatics analysis, 309
robust DEGs involved in HBV-HCC were screened, which is
helpful for a better understanding of molecular pathogenesis
and tumorigenesis of HBV-HCC. Based on a series of com-
prehensive downstream analysis, 17 potential hub genes were
identified that may play critical roles in the development of
HBV-HCC. TOP2A and KIF11 can be jointly used to predict
overall survival for HBV-HCC, and all the hub genes may
hold good potential in exploring early detection biomarkers
and therapeutic targets for HBV-HCC.
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