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Abstract

Backgrounds: The Loeys-Dietz syndrome (LDS) is an inherited connective tissue disorder caused by mutations in the
transforming growth factor b (TGF-b) receptors TGFBR1 or TGFBR2. Most patients with LDS develop severe aortic aneurysms
resulting in early need of surgical intervention. In order to gain further insight into the pathophysiology of the disorder, we
investigated circulating outgrowth endothelial cells (OEC) from the peripheral blood of LDS patients from a cohort of 23
patients including 6 patients with novel TGF-b receptor mutations.

Methods and Results: We performed gene expression profiling of OECs using microarray analysis followed by quantitative
PCR for verification of gene expression. Compared to OECs of age- and sex-matched healthy controls, OECs isolated from
three LDS patients displayed altered expression of several genes belonging to the TGF-b pathway, especially those affecting
bone morphogenic protein (BMP) signalling including BMP2, BMP4 and BMPR1A. Gene expression of BMP antagonist
Gremlin-1 (GREM1) showed the most prominent up-regulation. This increase was confirmed at the protein level by
immunoblotting of LDS-OECs. In immunohistochemistry, abundant Gremlin-1 protein expression could be verified in
endothelial cells as well as smooth muscle cells within the arterial media. Furthermore, Gremlin-1 plasma levels of LDS
patients were significantly elevated compared to healthy control subjects.

Conclusions: These findings open new avenues in the understanding of the pathogenesis of Loeys-Dietz syndrome and the
development of new diagnostic serological methods for early disease detection.
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Background

The Loeys-Dietz syndrome (LDS) is an inherited autosomal

dominant connective tissue disorder described first in 2005 by Bart

Loeys and Harry Dietz [1]. Most common characteristics of LDS

patients are 1) craniofacial features such as hypertelorism, cleft

palate with bifid uvula, 2) skeletal manifestations including joint

laxity, scoliosis and arachnodactyly, 3) cutaneous findings such as

translucent skin or easy bruising and 4) vascular manifestations

affecting the aorta and other arterial branches resulting in early

need of surgical intervention [1,2].

The Loeys-Dietz syndrome is caused by a mutation in the

transforming growth factor b (TGF-b) type II receptor TGFBR2
or type I receptor TGFBR1. More than 50 different mutations in

TGFBR2 or TGFBR1 have been described in LDS patients. The

great majority of those mutations represent missense mutations

which are located within the kinase domain of the receptor

probably resulting in impaired receptor signalling [1–3]. Recently,

mutations in the gene for TGFB2 and the TGF-b pathway

downstream mediator SMAD3 have also been associated with the

pathogenesis of Loeys-Dietz syndrome [4–6].

The TGF-b superfamily consists of several isoforms of TGF-b,

activin and bone morphogenic proteins (BMP). Signalling is

mediated through two related transmembrane type I and type II

serine/threonine kinase receptors, which form heteromeric

complexes upon ligand binding and propagate the downstream
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signal by phosphorylation of intracellular SMAD proteins which

transduce the signal to the nucleus [7].

The vascular wall is a complex construct composed of different

cell types including the inner layer of endothelial cells (EC),

surrounded by smooth muscle cells (SMC) within the media and

finally the adventitia composed of fibroblasts [8]. For function of

the vascular wall, interdependency between endothelial cells and

mural cells is required. Communication can take place via direct

cellular or via paracrine interactions induced by secretion of

molecules such as platelet-derived growth factor [9]. With regard

to the endothelium’s crucial role for the maintenance of the

integrity of the vascular wall, we decided to concentrate our studies

on endothelial cells to elucidate the pathogenesis of Loeys-Dietz

syndrome. A population of circulating endothelial cells, so called

outgrowth endothelial cells (OEC), can be easily isolated from

peripheral blood for this purpose [10]. Moreover, OECs isolated

from patients with hereditary haemorrhagic teleangiectasia (HHT)

carrying mutations in TGF-b receptors ACVRL1 (ALK-1, activin

receptor-like kinase 1) or ENG (endoglin) displayed abnormalities

comparable to the vascular lesions observed in HHT patients [11].

Therefore, we isolated outgrowth endothelial cells from the

peripheral blood of LDS patients and healthy donors and

performed gene expression profiling in order to study aberrant

gene regulation caused by mutated TGF-b receptors. The aim of

our study was to identify candidate genes contributing to the

disease pattern of Loeys-Dietz syndrome.

Methods

Generation of outgrowth endothelial cells
The investigation conforms with the principles outlined in the

Declaration of Helsinki. Written informed consent was obtained

from individuals participating in the study after the study had been

approved by the local ethical committee [PV3893, Ärztekammer

Hamburg]. Mononuclear cells (MNC) were isolated from periph-

eral blood of LDS patients and healthy donors, plated in collagen-

coated 12-well tissue culture plates and cultured in endothelial

growth medium (Lonza, Walkersville, MD, USA) supplemented

with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA). In

order to remove non-adherent cells and debris, cultures were

rinsed daily with fresh medium for one week followed by medium

replacement every other day. On day 30, cultures were screened

for outgrowth of endothelial colonies. Endothelial character of

OEC clones was confirmed in PCR analysis and flow cytometry

based on expression of a panel of endothelial-specific markers

including CD31, CD144 and vascular endothelial growth factor

receptors and non-expression of haematological markers CD45

and CD14 (see methods and table S1 in file S1).

Mutation analysis and prediction of the functional impact
of nucleotide or amino acid substitutions

DNA was extracted from EDTA-blood using standard proce-

dures. The entire coding sequence of TGFBR1 (NM_004612.2)

and TGFBR2 (NM_003242.5) was sequenced as well as the 20

bases of the flanking intronic sequences. The amplified PCR

products were sequenced and analysed with the following

bioinformatics tools for prediction of impact on protein function:

Mutation Taster (http://www.mutationtaster.org/), PMut (http://

mmb2.pcb.ub.es:8080/PMut/), PolyPhen (http://genetics.bwh.

harvard.edu/pph/), PolyPhen2 (http://genetics.bwh.harvard.

edu/pph2/). Presumptive splice site changes caused by silent or

intronic mutations were analysed with the Human Splicing Finder

tool, [12] Berkeley Drosophila Genome Project ‘‘Splice Site

Prediction’’ (http://www.fruitfly.org/seq_tools/splice.html) and

NetGene2 Server (http://www.cbs.dtu.dk/services/NetGene2/).

The non-mutation carrying chromosomes of 400 Marfan and

Loeys-Dietz syndrome patients were used as control chromo-

somes.

RNA isolation and microarray analysis
RNA was extracted using RNeasy Mini Kit (including RNase-

free DNase Set, Qiagen, Hilden, Germany). For microarray

analysis, quality and concentration of isolated RNA was deter-

mined using the Agilent RNA 6000 Nano Kit (Agilent Technol-

ogies, Loveland, CO). Procedures for cDNA synthesis, labelling

and hybridization were carried out according to 39 IVT Express

Kit and Hybridization, Wash and Stain Kit (Affymetrix, Santa

Clara, CA) using 100 ng total RNA. All experiments were

performed using Human GeneChip U133 Plus 2.0 Array

(Affymetrix). Microarrays were scanned with the GeneChip

Scanner 3000 7G. The signals were processed with GeneChip

Operating Software (version 1.4, Affymetrix). Signal quality

control and data normalization via gcrma procedure was

performed using the webserver www.arrayanalysis.org. Differen-

tially expressed genes were determined by filtering out genes that

were increased or decreased at least 1.74 fold (Signal Log Ratio $

0.8) in each sample pair and exhibited a permutation p-value

below 0.05. Gene expression data are available at GEO Accession

No. GSE38961.

cDNA synthesis and Real-Time quantitative PCR
RNA was reverse transcribed using the Ready-To-Go You-

Prime First-Strand Beads (GE Healthcare, Fairfield, CT) and

Random Primers (Invitrogen). Primers were designed with Primer

3 software (Whitehead Institute for Biomedical Research, Boston,

MA). Quantitative Real-Time PCR analysis was carried out on the

capillary-based Light Cycler (Roche, Basel, Switzerland) using the

FAST Start DNAMaster Sybr Green Kit (Roche). Relative

expression of cDNA of the target gene in comparison to a

reference gene was calculated using a mathematical model

proposed by Pfaffl [13]. Samples were analysed in duplicate and

averaged. Calculated cDNA amounts of the target genes were

normalized to the reference gene glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). All data are represented as ratio of the

target gene/GAPDH. Primers are shown in table S2 in file S1.

Immunohistochemistry
For immunohistochemical labelling, formalin-fixed paraffin-

embedded aortic tissue sections of LDS patients or healthy donors

were pre-treated in citrate buffer and incubated with antibodies

against Gremlin-1 (bs-1475R, Bioss, Woburn, MA) in an

automated stainer (Ventana Medical Systems, Tucson, AZ)

according to a standard protocol (CC1st). For double labelling

with Gremlin-1 and muscle actin (ENZ-30931, Enzo Life Sciences

GmbH, Loerrach, Germany) or Gremlin-1 and CD34 (M7165,

Dako, Hamburg, Germany), incubation with Gremlin-1 antibod-

ies was followed by a short denaturing step and incubation with

the second antibody. Bound antibodies were detected by the

peroxidase method using diaminobenzidine as chromogen (760–

500, Ultraview DAB, Ventana). For double labelling studies,

bound Gremlin-1 antibodies were visualized with DAB as

described above and expression of muscle actin or CD34 was

demonstrated by alkaline phosphastase linked secondary antibod-

ies using fast red as chromogen (760–501, Ultraview Universal

Detection Kit, Ventana).
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Immunoblotting
Protein extracts were prepared with RIPA lysis buffer solution

(Sigma-Aldrich, St. Louis, MO) supplemented with 16 protease

inhibitor cocktail (Roche) and 1 mM sodium orthovanadate.

Protein lysates were boiled for 5 Min in SDS-sample buffer before

being applied into a 4–20% SDS-PAGE (Thermo Fisher

Scientific, Rockford, IL). After electrotransfer to nitrocellulose

membranes (Schleicher & Schuell, Dassel, Germany) and blocking

in TBS-T buffer containing 5% non-fat milk for 1 h, blots were

incubated with Gremlin-1 primary antibody (Santa Cruz, Santa

Cruz, CA) overnight. The subsequent incubation with the

peroxidase-conjugated secondary antibody was followed by

detection using ECL Western blotting detection reagents (GE

Healthcare) and the FusionSL 4 3500 WL detection system (Vilber

Lourmat, Sud Torcy, France). Membranes were incubated with

Restore Western Blot Stripping Buffer (Thermo Fisher Scientific)

followed by incubation with an a-Tubulin antibody (Sigma-

Aldrich) as reference protein. Quantification of protein amount

was determined using Bio-1D software (Vilber Lourmat).

Collection of human plasma samples and anti-human
Gremlin-1 ELISA analysis

For analysis of Gremlin-1 plasma levels, peripheral blood

samples of LDS patients and healthy donors were collected and

centrifuged for 10 min at 2,000 g in order to separate the plasma

from the blood cells. Gremlin-1 protein levels were measured using

the enzyme-linked immunosorbent assay (ELISA) Kit for Gremlin-

1 (Uscn Life Science Inc., Missouri City, TX) following the

instructor’s manual. Absorbance of color change was quantified

with the Sunrise ELISA plate reader and Magellan software

(Tecan, Maennedorf, Switzerland).

Statistical analysis
All statistical analyses were performed with SPSS 16 (SPSS Inc,

Chicago, IL). OEC frequency was analysed using the Mann-

Whitney-U test. Differences in Gremlin-1 plasma levels between

LDS patients and healthy controls or between gender were

accessed by Welch’s t-test. Correlation of Gremlin-1 plasma levels

with age was analysed by Pearson’s correlation. P-value#0.05 was

considered as statistically significant. For the microarray data, a

permutation procedure was performed to obtain adjusted p-values.

Differentially expressed genes were identified by filtering out genes

with a permutation p-value below 0.05 and a minimum absolute

signal-log-ratio of 0.8 in each of the three sample pairs.

Results

LDS patients and novel mutations in TGFBR2 and TGFBR1
By evaluation of clinical presentation and mutation analysis of

TGFBR1 and TGFBR2, 23 patients were diagnosed with Loeys-

Dietz syndrome at the University Medical Centre Hamburg-

Eppendorf. These 23 patients belong to thirteen families. Sixteen

patients carry a heterozygous mutation in the TGFBR2 gene and

seven patients harbour a TGFBR1 mutation. We identified four

novel mutations in TGFBR2 and two in TGFBR1 whereas the

other mutations have already been described before (table 1) [1–

3]. Two of the novel TGFBR2 mutations are located within the

kinase domain, both of them representing missense mutations

(p.N384K and p.A414T). Analysis with bioinformatic tools

Mutation Taster, PMut, Polyphen and PolyPhen2 predicted both

mutations TGFBR2 p.N384K and p.A414T to be ‘‘disease

causing’’ (data not shown). Furthermore, a silent mutation located

in the region between the transmembrane and kinase domain of

TGFBR2 was found (p.A232A). In addition, one patient carried a

nucleotide substitution within intron 1 of the TGFBR2 gene (c.94+
7G.C). In order to determine if these nucleotide changes might

lead to alternative splicing sites, data analysis was performed for

the silent mutation and the intronic variant within intron 1 using

bioinformatic tools. Nucleotide change c.94+7G.C in TGFBR2
was predicted to cause an alternative splicing site in one of the

analyses whereas no RNA splicing variants were predicted for

TGFBR2 p.A232A (data not shown).

One of the novel TGFBR1 mutations occurred at amino acid

position 241 in exon 4 leading to substitution of serine with proline

(p.S241P) which was predicted to be ‘‘disease causing’’ using

bioinformatic tools (data not shown). The second novel TGFBR1
mutation represented a duplication of 15 base pairs within intron 1

(c.97+25_+39dup15). The altered sequence was subjected to splice

site analysis but no indications of alternative splice sites could be

found (data not shown). All nucleotide changes detected within our

cohort of LDS patients are summarized in table 1.

Generation of outgrowth endothelial cells from LDS
patients

Peripheral blood from only nine patients with Loeys-Dietz

syndrome was available for generation of outgrowth endothelial

cells. Six patients had a mutation in the TGF-b type II receptor

TGFBR2 and 3 patients carried a mutated type I receptor

TGFBR1. Patient’s characteristics are shown in table 2. The mean

number of mononuclear cells obtained from the patients was

3.6610761.86107. After a cultivation period of 30 days, seven

OEC clones could be isolated from four patients resulting in a

frequency of 1.94 clones per 108 mononuclear cells. This

compares to OECs isolated from healthy donors occurring with

a frequency of 0.75 clones per 108 mononuclear cells (n = 500;

p = 0.257 by Mann-Whitney-U test). To confirm their endothelial

character, OEC clones were analysed by flow cytometry between

passages 3–6. Expression of endothelial-specific markers such as

CD31 or CD144 and non-expression of haematopoietic markers

CD45 and CD14 was comparable in LDS-OECs and OECs

isolated from healthy donors (table S1 in file S1).

Gene profiling of outgrowth endothelial cells from LDS
patients

Due to insufficient in vitro proliferation capacity, not all OEC

clones were available for microarray analysis. OEC clones from

patients LDS1, LDS5 and LDS11 were used for gene profiling.

LDS1 and LDS5 both carried the p.R537C mutation in the

TGFBR2 gene whereas LDS11 harboured the TGFBR1 mutation

p.R487Q. Detailed patient characteristics are provided in table 3.

OEC clones from sex- and age-matched healthy donors served as

reference. Furthermore, all OEC clones were harvested at passage

4-5 when nearly reaching confluence to reduce culture-induced

variability.

Expression ratios were considered as altered if the signal log

ratio was above 0.8 (increased expression) and below 20.8

(decreased expression). In addition, only genes with consistently

altered expression in all three analysed OEC clones were used for

further analysis resulting in 163 genes with increased and 210

genes with decreased expression. In order to identify affected

signalling cascades, the set of involved genes was analysed using

the Ingenuity Pathways Analysis algorithm (IPA Build 308606M,

Ingenuity Systems, www.ingenuity.com). Data analysis ranked the

topics ‘‘Cardiovascular Disease’’ and ‘‘Haematological System and

Cardiovascular System Development and Function’’ within the

top five of affected biological functions and networks reflecting the

actual type of genetic disorder (data not shown).

Gremlin-1 Overexpression in Loeys-Dietz Syndrome
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In all three LDS-OEC clones, gene expression of BMP

antagonist Gremlin-1 (GREM1, also known as Drm) showed the

most prominent up-regulation. Verification of expression using

quantitative RT-PCR analysis and normalization to reference

gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) re-

vealed a 1,136-, 164- and 22,145-fold higher expression in LDS-

OECs compared to healthy controls (table 4).

In addition to GREM1, several other genes belonging to the

TGF-b superfamily displayed altered expression levels in LDS-

OECs, especially those affecting bone morphogenic protein

signalling. Expression of BMP type I receptor BMPR1A was

increased in all three LDS-OEC clones, whereas BMPR1A
ligands BMP2 and BMP4 showed decreased mRNA expression.

Furthermore, expression of the latent TGF-b binding protein 1

(LTBP1) was increased in LDS-OECs (table 4). In support of our

findings, gene expression data were analysed calculating a

permutation-derived adjusted p-value. This analysis revealed that

all genes we have chosen for our analysis, namely GREM1,
BMP2, BMP4, BMPR1A and LTBP1, yielded a permutation p-

value of 0.0 (table S3 in file S2).

Increased Gremlin-1 protein expression in LDS-OECs
Western blot analysis of LDS-OECs and sex- and age-matched

control OECs confirmed a higher Gremlin-1 protein expression in

LDS-OECs by 2.2-, 3.8- and 1.8-fold in LDS1, LDS5 and LDS11

respectively, compared to control OECs (figure 1).

Gremlin-1 expression in aortic tissue of LDS patients
Aortic tissue specimen of LDS patients which had experienced

aortic root replacement (n = 3; 26TGFBR1 p.R487Q and

16TGFBR2 p.R537C, the latter was corresponding to LDS1)

and healthy donors (n = 3) were analysed for protein expression of

Gremlin-1 in immunohistochemistry. Endothelial cells throughout

the vessel wall layers stained positively for Gremlin-1 including

ECs of the intimal layer as well as ECs of the vessels within the

media and adventitia (figure 2). Furthermore, medial and vessel-

surrounding smooth muscle cells were positive for Gremlin-1

(figure 2). Immunohistochemically, no gross differences of staining

intensity or pattern between LDS patients and healthy controls

could be observed probably because expression levels are difficult

to quantify by immunohistochemistry (figure 2).

Table 1. Heterozygous TGFBR2 and TGFBR1 mutations identified in LDS patients.

Gene Location Nucleotide change
Amino acid
change Type

Affected
individuals Mutation referenced in

TGFBR2 Intron 1 c.94+7G.C Not known Nucleotide
substitution

1 Novel mutation

TGFBR2 Exon 4 c.696C.T p.A232A Silent mutation 1 Novel mutation

TGFBR2 Exon 4 c.1152T.G p.N384K Missense 3 Novel mutation

TGFBR2 Exon 4 c.1159G.A p.V387M Missense 1 Stheneur et al., Matyas et al. [3,34]

TGFBR2 Exon 4 c.1167C.T p.N389N Silent mutation 4 Stheneur et al. [3]

TGFBR2 Exon 4 c.1240G.A p.A414T Missense 1 Novel mutation

TGFBR2 Exon 7 c.1583G.A p.R528H Missense 1 Loeys et al., Stheneur et al. [1,3]

TGFBR2 Exon 7 c.1609C.T p.R537C Missense 4* Loeys et al., Stheneur et al. [2,3]

TGFBR1 Intron 1 c.97+25_+39dup15 Not known Duplication 1 Novel mutation

TGFBR1 Exon 4 c.721T.C p.S241P Missense 1 Novel mutation

TGFBR1 Exon 9 c.1433A.G p.N478S Missense 1 Loeys et al. [2]

TGFBR1 Exon 9 c.1460G.A p.R487Q Missense 4 Loeys et al., Matyas et al. [2,34]

*representing two unrelated families.
doi:10.1371/journal.pone.0104742.t001

Table 2. LDS patients analysed for OEC generation.

Patient Sex Age Mutation LDS-OEC*

LDS1/LDS9 Female 54 TGFBR2 p.R537C 2

LDS2 Male 24 TGFBR2 p.R537C 0

LDS3 Male 50 TGFBR2 p.A414T 0

LDS4/LDS10/LDS13 Male 26 TGFBR1 duplication 3

LDS5 Male 27 TGFBR2 p.R537C 1

LDS6 Male 55 TGFBR2 p.N389N 0

LDS7 Male 64 TGFBR1 p.R487Q 0

LDS8 Male 26 TGFBR2 p.R537C 0

LDS11/LDS12 Female 28 TGFBR1 p.R487Q 1

* number of generated OEC clones.
doi:10.1371/journal.pone.0104742.t002
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Table 3. Patient characteristics of LDS1, LDS5 and LDS11.

LDS patient LDS1 LDS5 LDS11

Sex Female Male Female

Age 54 years 27 years 28 years

Mutation TGFBR2 p.R537C TGFBR2 p.R537C TGFBR1 p.R487Q

Family history for sudden
cardiac death

Yes No Yes

Aortic root diameter
(D95th)A

4.4 cm (+0.7 cm) 3.0 cm (20.8 cm) 4.0 cm (+0.5 cm)

Further aneurysms Yes No No

Arterial tortuosity Yes No No

Mitral valve prolapse Yes No Yes

Dural ectasia Yes No Yes

Cranio-facial features Bifid uvula, hypertelorism Bifid uvula Bifid uvula, hypertelorism

Skeletal features Pectus carinatum Protusio acetabuli, pes planus,
hypermobile joints

Scoliosis, pectus excavatum, protusio
acetabuli, pes planus, hypermobile joints

Skin features No No No

* D95th identifies the difference of diameters obtained in study patients at baseline minus diameter (cm) at 95th percentile as assessed according to Biaggi et al. [35].
doi:10.1371/journal.pone.0104742.t003

Table 4. Members of the TGF-b superfamily with altered mRNA expression levels in LDS-OECs compared to healthy controls.

GREM1

Signal log ratio* Fold Change{ Relative expression`

LDS1/BC248 6.3 80 1136

LDS5/BC14 9.3 617 164

LDS11/BC401 12.5 5873 22145

BMPR1A

Signal log ratio* Fold Change{ Relative expression`

LDS1/BC248 5.2 35 2919

LDS5/BC14 1.5 2.7 15

LDS11/BC401 6.4 82 704

LTBP1

Signal log ratio* Fold Change{ Relative expression`

LDS1/BC248 0.9 1.8 1.9

LDS5/BC14 2.0 3.9 1.9

LDS11/BC401 2.5 5.6 4.8

BMP2

Signal log ratio* Fold Change{ Relative expression`

LDS1/BC248 21.8 23.4 0.7

LDS5/BC14 22.6 26.0 0.2

LDS11/BC401 21.0 21.9 0.4

BMP4

Signal log ratio* Fold Change{ Relative expression`

LDS1/BC248 21.9 23.6 0.6

LDS5/BC14 21.8 23.5 0.1

LDS11/BC401 29.2 2605 ,0,1

* signal log ratio of LDS-OEC compared to healthy control, determined in microarray analysis; { expression fold change of LDS-OEC compared to healthy control,
converted from microarray data; ` relative gene expression in LDS-OEC compared to healthy control, determined in quantitative PCR analysis and normalized to GAPDH
expression.
doi:10.1371/journal.pone.0104742.t004
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Elevated Gremlin-1 plasma levels in LDS patients
Since Gremlin-1 was the gene with the most prominent increase

in LDS-OECs, we wondered if an elevated Gremlin-1 protein

expression could also be detected systemically. Therefore, we

analysed plasma samples from LDS patients and healthy controls

(n = 9 and n = 15, respectively) using a commercial human

Gremlin-1 ELISA. The mean Gremlin-1 plasma level of LDS

patients was 2.5-fold increased with 8586228 ng/ml, compared to

those of healthy donors with 3496107 ng/ml (Welch’s t-test p,

0.001; figure 3). The differences of Gremlin-1 levels were

independent of donor’s age (Pearson-Rho = 0.125, p = 0.560) or

sex (t-test p = 0.514).

Discussion

Twenty-three LDS patients belonging to 13 different families

who are cared for at the University Medical Centre Hamburg-

Eppendorf were molecularly characterised. In addition to muta-

tions previously reported in LDS patients [2,3], we identified six

novel mutations. Although the great majority of mutations in

Loeys-Dietz syndrome are missense mutations located within the

kinase domain of TGFBR2 or TGFBR1, only three of our six

novel mutations fit within this category: p.N384K and p.A414T in

TGFBR2 and p.S241P in TGFBR1 which were all predicted to be

probably disease causing in bioinformatic analysis.

Mutation p.A232A in TGFBR2 represented a synonymous

mutation not leading to an amino acid change. This mutation

could not be detected in any of the 400 control chromosomes

therefore probably not representing a single nucleotide polymor-

phism. Furthermore, we identified two novel mutations which

were located in non-coding DNA regions: a nucleotide substitution

within intron 1 of the TGFBR2 gene (c.94+7G.C) and a

duplication of 15 base pairs within intron 1 of the TGFBR1 gene

(c.97+25_+39dup15). Nevertheless, mutations not affecting the

protein sequence may account for disease manifestations in LDS

as they do in cystic fibrosis, infantile spinal muscular atrophy or

Crohn’s disease [14].

In order to investigate whether endothelial cells contribute to

the pathophysiology of Loeys-Dietz syndrome, we isolated

outgrowth endothelial cells from nine LDS patients who volun-

teered to donate peripheral blood for research purposes. Due to

the low frequency of OEC clones and insufficient proliferation

capacity in vitro, the gene expression profile of only three LDS-

Figure 1. Elevated Gremlin-1 protein expression in LDS-OECs.
The Gremlin-1 protein expression in LDS-OECs was compared to OECs
isolated from sex- and age-matched healthy donors. Immunoblotting
followed by quantification revealed that the Gremlin-1 protein amount
was increased in all three LDS-OEC clones compared to their respective
control.
doi:10.1371/journal.pone.0104742.g001

Figure 2. Gremlin-1 expression on aortic tissue of LDS patients.
Paraffin-embedded aortic tissue specimen of LDS patients (n = 3) were
double stained with anti-Gremlin-1 (brown staining) and anti-CD34 (red
staining; C) or anti-smooth muscle actin (red staining; B, D–F).
Endothelial cells throughout the vessel wall showed expression for
Gremlin-1 including ECs of the intima (B) and of vessels within the
media (C) and the adventitia (D and in more detail in E). Gremlin-1
positive staining was also observed on smooth muscle cells of the
media (B, C) as well as on vessel surrounding smooth muscle cells in the
adventitial layer (D, E). In aortic tissue specimen of healthy controls
(n = 3), a similar staining pattern without gross differences of staining
intensity was observed as shown for a small vessel within the adventitia
(F). In A, an isotype control instead of primary antibody was used
revealing the specificity of the staining (EC = endothelial cell,
SMC = smooth muscle cell; magnification A–D, F: 4006; E: 10006; scale
bar represents 20 mm in A–D and F and 8 mm in E).
doi:10.1371/journal.pone.0104742.g002

Figure 3. Gremlin-1 plasma levels are significantly increased in
LDS patients. Gremlin-1 plasma levels of LDS patients (n = 9) were
analysed in an enzyme-linked immunosorbent assay. Compared to
healthy donors (n = 15), mean plasma levels of Gremlin-1 were 2.5-fold
increased in LDS patients (Welch’s t-test p,0.001). Box plots show the
median (central horizontal line), the 25th to the 75th percentile (box)
and the range (whiskers).
doi:10.1371/journal.pone.0104742.g003
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OEC clones could be compared to age- and sex-matched healthy

controls in microarray analysis. Although LDS11 carried a

mutation in the type I receptor TGFBR1 whereas LDS1 and

LDS5 harboured the mutation p.R537C in type II receptor

TGFBR2, more than 250 genes could be identified that displayed

significant alterations in gene expression in all three analysed LDS-

OEC clones. Genes with altered expression included several

members of the TGF-b superfamily. Strikingly, most of them

affected bone morphogenic protein signalling, namely BMPR1A,
BMP2, BMP4 and GREM1 which displayed the most prominent

up-regulation.

Recently, several studies revealed a direct link between TGF-b
and Gremlin-1 signalling. Interestingly, although the majority of

TGF-b receptor mutations in LDS patients results in non-

functional receptor kinase activity, increased phosphorylation

levels of the TGF-b downstream mediator proteins SMAD2 and

SMAD3 have been observed in the aortic tissue of LDS patients

[1,15]. In concordance with these observations, the expression of a

kinase-deficient TGFBR2 variant in a transgenic mouse model

resulted in TGF-b overactivity including increased SMAD2/3

phosphorylation and induced development of fibrosis [16]. Several

recently published studies could directly link TGF-b-induced

phosphorylation of SMAD2/3 to increased Gremlin-1 expression

[17–19]. Hence, elevated Gremlin-1 expression levels might

represent a direct consequence of the dysregulated TGF-b
signalling in LDS-OECs.

The drastic increase of Gremlin-1 was not only confirmed by

Western Blotting of LDS-OECs, we also observed significantly

elevated Gremlin-1 plasma levels in LDS patients compared to

healthy subjects, suggesting that up-regulation of Gremlin-1 was a

systemic phenomenon.

Although larger studies are needed to confirm increased plasma

levels of Gremlin-1 in LDS, our observation may have many

practical implications. Determination of Gremlin-1 concentration

in peripheral blood may serve as a quick screening assay in

patients with vascular abnormalities and direct more detailed

molecular analysis. Since the median life expectancy in a large

study of LDS was only 26 years and many patients with LDS are

unrecognized, such a screening assay would permit early disease

detection and timely surgical intervention [2]. Furthermore, a

future molecularly targeted therapy may be followed by serial

determination of Gremlin-1 plasma levels.

Gremlin-1 is a highly conserved 184 amino acid, secreted

glycoprotein protein belonging to the cysteine knot superfamily.

Gremlin-1 can bind and therefore antagonize bone morphogenic

proteins, namely BMP2, BMP4 and BMP7 [20,21]. During

embryogenesis, Gremlin-1 is indispensable since mice with a

homozygous deletion of the Gremlin-1 gene die shortly after birth

due to complete renal agenesis and lung septation defects [22].

Gremlin-1 plays a role in several vascular diseases such as diabetic

nephropathy or retinopathy [23,24].

Contribution of Gremlin-1 to the pathogenesis of Loeys-Dietz

syndrome may be explained by effects on vascular cells [25]. By

binding to BMP2 and BMP4, Gremlin-1 should antagonize the

proangiogenic BMP effects on endothelial cells therefore exhibit-

ing antiangiogenic properties. But to the contrary, recently

published data revealed that Gremlin-1 can mediate strong

angiogenic effects via direct binding to the vascular endothelial

growth factor receptor 2 (VEGFR2). Proangiogenic properties

such as in vitro induction of proliferation, migration and vascular

sprouting of endothelial cells were comparable to those achieved

upon stimulation with vascular endothelial growth factor A

(VEGF-A) [26,27]. Hence in endothelial cells, Gremlin’s proan-

giogenic effects via binding to VEGFR2 seem to predominate the

antagonizing effects on bone morphogenic proteins. Therefore we

suppose that Gremlin-1 mediates predominantly proangiogenic

properties in LDS-OECs. This presumption is supported by the

fact that expression of proangiogenic BMP2 and BMP4 is

consequentially down-regulated in LDS-OECs.

Since Gremlin-1 is a secreted factor, it might not serve as an

autocrine regulator of endothelial cells but may also mediate

paracrine effects on other cell types. This assumption is

strengthened by the fact that the Gremlin-1 plasma levels were

significantly increased in LDS patients compared to healthy

controls. The aortic media of LDS patients is characterized by a

disorganized wall and diffuse medial degeneration with marked

excess of collagen and loss of elastic fiber architecture [1,15].

Gremlin-1 might account for some of these characteristics since it

has been described to play a role in extracellular matrix

modulation [24,28]. In a diabetic nephropathy mouse model, a

first therapeutic approach with Gremlin-1 siRNA was conducted.

Inhibition of Gremlin-1 decelerated diabetic nephropathy through

decrease of proteinuria, renal collagen accumulation and renal cell

proliferation and apoptosis [29].

Maciel et al. investigated whether Gremlin-1 had an impact on

vascular smooth muscle cells. SMCs overexpressing Gremlin-1

showed markedly increased proliferation and migration capacities

compared to empty-vector transfected cells. In contrast, both

proliferation and migration were reduced after gene silencing with

shRNA against Gremlin-1 mRNA [30]. Our immunohistological

data support these findings since Gremlin-1 expression was mainly

observed in the endothelial layer of the intima or in small vessels in

the adventitia and in smooth muscle cells of the media.

Recently, Cahill et al. reported that Gremlin-1 plays a key role

in pulmonary arterial hypertension (PAH) [31]. The majority of

patients with the heritable form of PAH harbour a mutation in the

TGF-b type II receptor BMPR2 [32]. PAH shares some

phenotypic features with aortic aneurysm syndromes since it is

characterized by increased medial and adventitial thickness due to

enhanced vascular smooth muscle cell or endothelial cell

proliferation which can result in lumen loss [33].

Conclusions

In conclusion, outgrowth endothelial cells may serve as a model

to analyse alterations in gene expression in Loeys-Dietz syndrome.

Gene expression profiling performed on LDS-OECs demonstrated

pronounced up-regulation of bone morphogenic protein antago-

nist Gremlin-1 which may contribute to the vascular pathology of

Loeys-Dietz syndrome. Furthermore, elevated Gremlin-1 plasma

levels in LDS patients may serve as a new serological marker for

early detection and diagnosis of Loeys-Dietz syndrome and as a

potential follow up marker under a future targeted therapy.
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