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ABSTRACT

TROP2 is a transmembrane glycoprotein that is overexpressed in various cancers. 
Emerging evidence suggests that TROP2-targeting therapies are efficacious and safe 
in patients with multiple prior treatments. TROP2 is a promising target for lung cancer 
treatment; however, little is known regarding the association of TROP2 expression 
with clinicopathological/molecular features, including prognosis, in lung cancer. We 
examined consecutive cases of adenocarcinoma, squamous cell carcinoma (SqCC), and 
high-grade neuroendocrine tumor (HGNET) for the membranous expression of TROP2 
using immunohistochemistry. High TROP2 expression was observed in 64% (172/270) 
of adenocarcinomas, 75% (150/201) of SqCCs, and 18% (21/115) of HGNETs. 
Intriguingly, the association of TROP2 expression with mortality was dependent on the 
lung cancer subtype. High TROP2 expression was associated with higher lung cancer-
specific mortality in adenocarcinomas [univariable hazard ratio (HR) = 1.60, 95% 
confidence interval (CI) = 1.07–2.44, P = 0.022)], but not in SqCCs (univariable HR = 
0.79, 95% CI = 0.35–1.94, P = 0.79). In HGNETs, high TROP2 expression was associated 
with lower lung cancer-specific mortality in both univariable and multivariable analyses 
(multivariable HR = 0.13, 95% CI = 0.020–0.44, P = 0.0003). Our results suggest a 
differential role for TROP2 in different lung cancer subtypes.

INTRODUCTION

TROP2 (also known as TACSTD2) is a 
transmembrane glycoprotein that has high expression 
in many cancers and is associated with patient survival 
[1–11]. Emerging evidence suggests that TROP2 is a 
promising molecular target for the treatment of various 
malignancies [11]. Several ongoing clinical trials for 
TROP2-targeting therapies are showing signs of efficacy 
[11]. TROP2 has been used as a target of antibody-drug 
conjugate (ADC) therapy [11]. Sacituzumab govitecan 

(IMMU-132) is an anti-TROP2 ADC [11–18] that contains 
SN-38, the active metabolite of irinotecan. Without 
severe side effects, IMMU-132 has been effective against 
triple-negative breast cancer [19], metastatic small cell 
lung carcinoma (SCLC) [14], and metastatic non-SCLC 
(NSCLC) resistant to anti-PD-1/PD-L1 therapy [15].

Lung carcinoma represents a group of histologically 
and molecularly heterogeneous diseases [20–28]. The 
major subtypes include adenocarcinoma, squamous 
cell carcinoma (SqCC), and high-grade neuroendocrine 
tumor (HGNET), which consists of SCLC and large 
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cell neuroendocrine carcinoma (LCNEC). Even within 
the same subtype, tumors display heterogeneous 
characteristics. For example, alterations in cancer driver 
genes differ between lung adenocarcinomas (e.g., EGFR, 
KRAS, ALK, RET, and ROS1) [27]. Little is known about 
the role of TROP2 in lung cancer [1–3, 11, 14, 15]. 
Because TROP2 is a promising molecular target for the 
treatment of lung cancer, we examined the association 
of TROP2 expression with clinicopathological and 
molecular features as well as with prognosis of various 
lung cancer subtypes, including 270 consecutive cases 
of adenocarcinoma, 201 cases of SqCC, and 115 cases of 
HGNET (74 cases of SCLC and 41 cases of LCNEC).

RESULTS

TROP2 expression in lung cancer

We defined high TROP2 expression as intensity 
1 with ≥50% expression or intensity 2 with ≥10% 
expression in tumor membranous staining, as mentioned in 
Materials and Methods section and presented in Figure 1.  
High TROP2 expression was observed in 172 (64%) 
adenocarcinomas, 150 (75%) SqCCs, and 21 (18%) 
HGNETs using immunohistochemistry. Table 1 shows the 
clinicopathological and molecular characteristics of each 
lung cancer subtype according to the TROP2 expression 
level (no/low vs. high). In adenocarcinoma, high TROP2 
expression was associated with the male gender (P = 
0.0018), larger tumor size (>30 mm) (P = 0.016), higher 
pathological-stage (p-stage) (II–IV) (P = 0.012), and less 
tumor differentiation (moderate to poor) (P = 0.045). In 
SqCC, high TROP2 expression was associated with a 
higher rate of well tumor differentiation (P = 0.040). In 
HGNET, high TROP2 expression was associated with 
the LCNEC subtype (P = 0.0013). Of the 115 cases of 
HGNETs, only 22 cases of SCLC underwent neoadjuvant 

chemotherapy, and high TROP2 expression was not 
associated with the status of neoadjuvant chemotherapy in 
SCLC (P = 0.67). In HGNET, the Ki-67 index (< 60% vs. 
≥ 60%) was not associated with TROP2 expression (no/
low vs. high expression) (P = 0.61).

TROP2 expression and lung cancer mortality

Out of the 270 patients with adenocarcinoma, there 
were 149 deaths, including 109 lung cancer-specific 
deaths, during a median follow-up period of 13.0 years 
(IQR: 9.1–15.5 years) for the censored cases. High TROP2 
expression was associated with shorter lung cancer-specific 
(log-rank, P = 0.025; Figure 2A) and overall survival (log-
rank, P = 0.023; Figure 2B). A univariable Cox regression 
analysis revealed that high TROP2 expression was 
associated with shorter lung cancer-specific (univariable 
hazard ratio [HR] = 1.60, 95% confidence interval [CI] = 
1.07–2.44, P = 0.022) and overall survival (univariable HR 
= 1.49, 95% CI = 1.06–2.13, P = 0.021). In a multivariable 
analysis, however, the association was not significant for 
both lung cancer-specific (P = 0.26) and overall survival 
(P = 0.21) (Table 2). Next, we analyzed the association of 
other covariates with patient mortality using univariable 
and multivariable Cox regression analyses. The results 
showed that p-stage (P < 0.0001), tumor differentiation 
grade (P = 0.0013), and age (P = 0.043) were confounding 
factors for TROP2 expression in lung cancer-specific 
survival (Supplementary Table 1).

Out of the 201 patients with SqCC, there were 59 
deaths, including 25 lung cancer-specific deaths, during 
a median follow-up period of 5.0 years (3.1–6.3 years) 
for the censored cases. High TROP2 expression was 
not associated with lung cancer-specific (log-rank, P = 
0.58; Figure 2C) or overall survival (log-rank, P = 0.36; 
Figure 2D). A Cox regression analysis revealed that high 
TROP2 expression was not associated with lung cancer-

Figure 1: Immunohistochemical evaluation of membranous TROP2 expression in tumor cells from patients with lung 
adenocarcinoma. (A) TROP2 intensity 0 (negative), (B) TROP2 intensity 1 (weak to moderate), and (C) TROP2 intensity 
2 (strong). Figure 1A shows a TROP2 immunohistochemical image of well- to moderately-differentiated adenocarcinoma, 
whereas Figure 1B and 1C show those of poorly-differentiated adenocarcinoma. Scale bar = 200 µm.
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Table 1: Clinicopathological and molecular characteristics of lung cancer according to TROP2 expression in tumor 
cells

Variables Adenocarcinoma SqCC HGNET
N of 

samples 
(%)

TROP2 expression N of 
samples 

(%)

TROP2 expression N of 
samples 

(%)

TROP2 expression

No/low
(n=98)
(36%)

High
(n=172)
(64%)

P-
values

No/low
(n=51)
(25%)

High
(n=150)
(75%)

P-
values

No/low
(n=94)
(82%)

High
(n=21)
(18%)

P-
values

Age (years) 0.24 0.39 0.78
  < 60 96

(36%)
33

(34%)
63

(37%)
21

(10%)
7

(14%)
14

(9.3%)
28

(24%)
24

(26%)
4

(19%)

  ≥ 60 174
(64%)

65
(66%)

109
(60%)

180
(90%)

44
(86%)

136
(91%)

87
(76%)

70
(74%)

17
(81%)

Gender 0.0018 0.84 0.76
  Male 144

(53%)
40

(41%)
104

(60%)
175

(87%)
44

(86%)
131

(87%)
93

(81%)
75

(80%)
18

(86%)
  Female 126

(47%)
58

(59%)
68

(40%)
26

(13%)
7

(14%)
19

(13%)
22

(19%)
19

(20%)
3

(14%)
Smoking 
status

0.17 0.45 1.00

  Never 
smoker

112
(41%)

46
(47%)

66
(38%)

2
(1.0%)

1
(2.0%)

1
(0.7%)

3
(2.6%)

3
(3.2%)

0
(0%)

  Ever 
smoker

158
(59%)

52
(53%)

52
(53%)

198
(99%)

50
(98%)

148
(99%)

112
(97%)

91
(97%)

21
(100%)

Smoking 
Index (SI)

0.36 1.00 1.00

  SI < 400 150
(56%)

58
(59%)

92
(53%)

13
(6.5%)

3
(5.9%)

10
(6.7%)

18
(16%)

15
(16%)

3
(14%)

  SI ≥ 400 120
(44%)

40
(41%)

80
(47%)

187
(94%)

48
(94%)

139
(93%)

97
(84%)

79
(84%)

18
(86%)

Tumor size 0.016 0.79 0.20
  ≤ 30 mm 150

(56%)
64

(65%)
86

(50%)
82

(41%)
20

(39%)
62

(41%)
69

(60%)
59

(63%)
10

(48%)
  > 30 mm 119

(44%)
34

(35%)
85

(50%)
119

(59%)
31

(61%)
88

(59%)
46

(40%)
35

(37%)
11

(52%)
p-stage 0.012 0.67 0.39
  I 152

(56%)
65

(66%)
87

(51%)
117 

(58%)
31

(61%)
86

(57%)
53

(47%)
45

(48%)
8

(38%)
  II–IV 118

(44%)
33

(34%)
85

(49%)
84

(42%)
20

(39%)
64

(43%)
61

(54%)
48

(52%)
13

(62%)
Tumor 
differentiation

0.045 0.040

  Well 113
(42%)

49
(50%)

64
(37%)

17
(8.6%)

1
(2.0%)

16
(11%)

  Moderate 
to poor

156
(58%)

49
(50%)

107
(63%)

180
(91%)

49
(98%)

131
(91%)

(Continued )
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Variables Adenocarcinoma SqCC HGNET
N of 

samples 
(%)

TROP2 expression N of 
samples 

(%)

TROP2 expression N of 
samples 

(%)

TROP2 expression

No/low
(n=98)
(36%)

High
(n=172)
(64%)

P-
values

No/low
(n=51)
(25%)

High
(n=150)
(75%)

P-
values

No/low
(n=94)
(82%)

High
(n=21)
(18%)

P-
values

SCLC or 
LCNEC

0.0013

  SCLC 74 
(64%)

67
(71%)

7
(33%)

  LCNEC 41
(36%)

27
(29%)

14
(67%)

EGFR status 0.26
  Wild type 98

(51%)
32

(46%)
66

(54%)
  Mutant 94

(49%)
38

(54%)
56

(46%)
KRAS status 0.89
  Wild type 168

(88%)
61

(88%)
107

(88%)
  Mutant 23

(12%)
8

(12%)
15

(12%)
ALK 
rearrangement

0.75

  Negative 260
(96%)

95
(97%)

165
(96%)

  Positive 10
(3.7%)

3
(3.1%)

7
(4.1)

Neoadjuvant 
chemotherapy

0.072

  No 270
(100%)

98
(100%)

172
(100%)

201
(100%)

51
(100%)

150
(100%)

93
(81%)

73
(78%)

20
(95%)

  Yes 0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

22
(19%)

21
(22%)

1
(4.8%)

Adjuvant 
chemotherapy

NA NA 0.16

  No NA NA NA NA NA NA 50
(43%)

38
(40%)

12
(57%)

  Yes NA NA NA NA NA NA 65
(57%)

56
(60%)

9
(43%)

Ki-67 index 0.61
  < 60% 55

(48%)
46

(49%)
9

(43%)
  ≥ 60% 60

(52%)
48

(51%)
12

(57%)

The percentages indicate the proportion of cases with a specific clinical, pathological, or molecular feature within each 
category.
Abbreviations: HGNET, high-grade neuroendocrine tumor; LCNEC, large cell neuroendocrine carcinoma; p-stage, 
pathological stage; SCLC, small cell lung carcinoma; SI, smoking index = (number of cigarettes per day) × (duration in 
years); SqCC, squamous cell carcinoma.
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specific (univariable analysis, P = 0.59 and multivariable 
analysis, P = 0.56) or overall survival (univariable 
analysis, P = 0.35 and multivariable analysis, P = 0.35) 
(Table 2).

Out of the 115 patients with HGNET, there were 62 
deaths, including 40 lung cancer-specific deaths, during 
a median follow-up period of 5.8 years (3.1–8.2 years) 
for the censored cases. High TROP2 expression was 

Figure 2: Kaplan–Meier curves for lung cancer-specific (A, C, and E) and overall survival (B, D, and F) according to 
TROP2 expression levels in tumor cells (no/low vs. high). (A and B) adenocarcinoma, (C and D) squamous cell carcinoma (SqCC), 
and (E and F) high-grade neuroendocrine tumor (HGNET).
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associated with longer lung cancer-specific (log-rank, P 
= 0.024; Figure 2E) and overall survival (log-rank, P = 
0.073; Figure 2F). A univariable Cox regression analysis 
revealed that high TROP2 expression was associated 
with longer lung cancer-specific (univariable HR = 0.23, 
95% CI = 0.037–0.74, P = 0.0096) and overall survival 
(univariable HR = 0.50, 95% CI = 0.21–1.02, P = 0.057). 
A multivariable analysis also showed that high TROP2 
expression was associated with longer lung cancer-
specific (multivariable HR = 0.13, 95% CI = 0.020–0.44, 
P = 0.0003) and overall survival (multivariable HR = 
0.30, 95% CI = 0.12–0.65, P = 0.0015) (Table 2).

The association of other covariates with patient 
mortality for adenocarcinoma, SqCC, and HGNET using 
univariable and multivariable Cox regression analyses is 
also provided in Supplementary Table 1.

DISCUSSION

We examined the association of TROP2 expression 
in tumors with clinicopathological/molecular features 
and with prognosis of various lung cancer subtypes, 
including adenocarcinoma, SqCC, and HGNET (SCLC 
and LCNEC). The association of high TROP2 expression 
with prognosis varied based on the lung cancer subtype. In 
adenocarcinoma, high TROP2 expression was associated 
with higher patient mortality. In SqCC, high TROP2 
expression was not associated with mortality. In HGNET, 
high TROP2 expression was unexpectedly associated with 
lower patient mortality. This study suggests a differential 
role for TROP2 in different lung cancer subtypes.

Little is known about the association of TROP2 
expression with clinicopathological/molecular features 

Table 2: TROP2 expression and patient mortalitya in lung cancer

Lung cancer-specific mortality Overall mortality

Univariable analysis Multivariable analysisb Univariable analysis Multivariable analysisb

N of 
cases

N of 
events

HR
(95% CI)

P-values HR
(95% CI)

P-values N of 
events

HR
(95% CI)

P-values HR
(95% CI)

P-values

Adenocarcinoma 0.022 0.26 0.021 0.21

 � No/low TROP2 
expression

98 32 1 (referent) 1 (referent) 46 1 (referent) 1 (referent)

 � High TROP2 
expression

172 77 1.60
(1.07-2.44)

1.27
(0.84-1.96)

103 1.49
(1.06 -2.13)

1.25
(0.88-1.80)

SqCC 0.59 0.56 0.35 0.35

 � No/low TROP2 
expression

51 8 1 (referent) 1 (referent) 13 1 (referent) 1 (referent)

 � High TROP2 
expression

150 17 0.79
(0.35-1.94)

0.78
(0.35-1.91)

46 1.34
(0.74-2.58)

1.33
(0.74-2.57)

HGNET 0.0096 0.0003 0.057 0.0015

 � No/low TROP2 
expression

94 38 1 (referent) 1 (referent) 55 1 (referent) 1 (referent)

 � High TROP2 
expression

21 2 0.23
(0.037-0.74)

0.13
(0.020-0.44)

7 0.50
(0.21-1.02)

0.30
(0.12-0.65)

aCox proportional hazards regression models were used to calculate HR and 95% CI.
bFor adenocarcinoma, the multivariable model initially included age (< 60 years vs. ≥ 60 years), gender (male vs. female), smoking status (ever smoker vs. 
never smoker), tumor differentiation grade (well vs. moderate-poor), pathological stage (p-stage) (I vs. II–IV), EGFR status (wild type vs. mutant), KRAS 
status (wild type vs. mutant), and ALK rearrangement status (negative vs. positive). For SqCC, the multivariable model initially included age (< 60 years 
vs. ≥ 60 years), gender (male vs. female), smoking history (smoking index ≥ 400 vs. < 400), tumor differentiation grade (well vs. moderate-poor), and 
p-stage (I vs. II–IV). For HGNET, the multivariable model initially included age (< 60 years vs. ≥ 60 years), gender (male vs. female), smoking history 
(smoking index ≥ 400 vs. < 400), p-stage (I vs. II–IV), histology (SCLC vs. LCNEC), neoadjuvant chemotherapy (yes vs. no), and adjuvant chemotherapy 
(yes vs. no).
We created missing categories for any missing variables. A backward stepwise elimination with a threshold of P = 0.05 was performed to determine the 
variables for the final model.
Abbreviations: CI, confidence interval; HGNET, high-grade neuroendocrine tumor; HR, hazard ratio; p-stage, pathological stage; LCNEC, large cell 
neuroendocrine carcinoma; SCLC, small cell lung carcinoma; SqCC, squamous cell carcinoma.
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and prognosis in lung cancer subtypes. Kobayashi et al. 
reported that TROP2 overexpression was associated with 
higher overall mortality in 130 patients with small-sized 
(< 2cm) lung adenocarcinoma (P = 0.056) [1]. Li et al. 
showed an association of high TROP2 expression with 
poor prognosis (P = 0.046) in 68 cases of adenocarcinoma 
and demonstrated that TROP2 overexpression enhanced 
cell proliferation, migration, and invasion in the lung 
adenocarcinoma cell line A549 [3]. In contrast, Pak et al. 
reported that TROP2 overexpression resulted in a better 
overall survival in 100 patients with lung adenocarcinoma 
(P = 0.02) and showed a tendency toward better overall 
survival in 64 patients with SqCC (P = 0.49) [2]. To the 
best of our knowledge, our study is the first to examine 
the prognostic association of TROP2 expression in 
HGNET (SCLC and LCNEC). In addition, our study 
used the largest sample sizes of lung adenocarcinoma and 
SqCC to examine TROP2 expression. We demonstrated 
that high TROP2 expression was related to differential 
prognoses based on the lung cancer subtype. High TROP2 
expression was associated with higher mortality in lung 
adenocarcinoma, was not associated with mortality 
in SqCC, and was associated with lower mortality in 
HGNET. Similarly, PD-L1 positivity was associated 
with higher mortality in lung adenocarcinoma [29–31], 
whereas PD-L1 positivity was related to lower mortality 
in SCLC [32, 33]. Thus, PD-L1 and TROP2 appear to play 
different roles depending on the lung cancer subtype. Of 
interest, high TROP2 expression was significantly more 
frequent in LCNEC than in SCLC. Emerging evidence 
suggests that LCNEC is a biologically heterogeneous 
group, containing SCLC-phenotype/NSCLC-phenotype 
[34] and YAP1-negative group/YAP1-positive group[35]. 
There may be an association of high TROP2 expression 
in LCNEC with SCLC-phenotype/NSCLC-phenotype 
or YAP1 expression. Because the Ki-67 index was not 
substantially different according to the TROP2 expression 
level (no/low vs. high) in HGNET, the other mechanisms 
except for proliferation, including SCLC-phenotype/
NSCLC-phenotype or YAP1 expression, might explain 
the differential clinicopathological differences according 
to the TROP2 expression level in HGNET. The use of 
different downstream signaling pathways may explain 
the divergent associations of TROP2 expression with 
prognosis for adenocarcinoma and SqCC [36]. Further 
studies are required to elucidate the mechanisms 
accounting for differential clinicopathological associations 
according to tumor histological subtypes.

We also determined the prevalence of high TROP2 
expression and its association with clinicopathological/
molecular features in different lung cancer subtypes. A 
high proportion of patients with adenocarcinoma (64%) 
and SqCC (75%) showed high TROP2 expression, 
suggesting that therapies targeting TROP2 may be 
effective. However, a low proportion of high TROP2 
expression was observed in HGNET tumors (18%), 

suggesting that the probability of good clinical response 
of HGNET to this type of therapy may be low, although 
that of TROP2-expressing HGNET may be high. In 
adenocarcinoma, high TROP2 expression was associated 
with the male gender, larger tumor size, advanced stage, 
and less tumor differentiation but not with genetic 
alterations in EGFR, KRAS, or ALK. In HGNET, 34% 
(14/41) of LCNEC and 9.5% (7/74) of SCLC tumors 
showed high TROP2 expression. This information must be 
useful for the development of therapies targeting TROP2.

A growing body of evidence suggests that TROP2 
is a promising molecular target for the treatment of 
various malignancies [11]. IMMU-132 is an anti-TROP2 
ADC that has been shown to be effective against various 
cancers without severe side effects in various cancers 
[11–18], including metastatic SCLC [14] and NSCLC 
resistant to anti-PD-1/PD-L1 therapy [15]. Because little 
data are available on TROP2 expression in lung cancer, 
our data are valuable for establishing the utility of TROP2-
targeting therapies.

Our study had limitations that need to be 
stated. First, there is no standardized method for the 
immunohistochemical assessment of TROP2 expression 
in tumors, which may influence the reproducibility of the 
results. We evaluated membranous TROP2 expression 
in cancer cells because this assessment is required to 
predict the efficacy of molecular-targeted therapies for 
lung cancer. However, some studies evaluated both 
membranous and cytoplasmic TROP2 expression, which 
could yield conflicting results as to the association of 
TROP2 expression with clinicopathological/prognostic 
features. In our study, two pathologists conducted a blinded 
and independent assessment of TROP2 expression with 
a good interobserver agreement. Second, we used tissue 
microarrays to evaluate TROP2 expression in tumors. 
Intratumoral heterogeneity is a characteristic of lung 
cancer; thus, tumors with heterogeneous TROP2 expression 
can affect the results. We speculate that this potential 
misclassification of tumors based on TROP2 expression 
would be randomly dispersed; therefore, null results would 
have been yielded. Nonetheless, we have shown statistically 
significant results. In addition, an experienced pulmonary 
pathologist (KI) chose each core site with a relatively 
large diameter (2 mm) based on the most histologically 
representative region of the tumor to minimize the chance 
of this potential misclassification affecting the results. 
Third, the difference of follow-up periods among the three 
subtypes might be a potential confounder of our results. 
Nonetheless, we monitored survivors for the median 
(interquartile range) of 13.0 years (9.1–15.5 years) in 
adenocarcinoma, 5.0 years (3.1–6.3 years) in SqCC, and 
5.8 years (3.1–8.2 years) in HGNET. Therefore, less time 
between surgery and death in SqCC and HGNET did not 
appear to affect our results substantially. Fourth, the total 
number of patients, especially those with HGNET (N 
= 115), was not sufficient, and the statistical power was 



Oncotarget28732www.impactjournals.com/oncotarget

therefore limited. Fifth, our database was retrospectively 
created. Finally, we only enrolled Japanese patients at a 
single cancer hospital. Therefore, additional studies in other 
patient populations are needed.

In conclusion, we demonstrated that the prognostic 
association of high TROP2 expression differed according 
to lung cancer subtypes. Although high TROP2 
expression was associated with higher mortality in lung 
adenocarcinoma, it was associated with lower mortality 
in HGNET, and was not associated with mortality in 
SqCC. We also determined the prevalence of high TROP2 
expression and its association with clinicopathological/
molecular features in these lung cancer subtypes. This 
information is beneficial for determining the utility of 
TROP2-targeting therapy. Additional large-scale studies 
are required to confirm our findings.

MATERIALS AND METHODS

Study population

We examined 270 consecutive cases of lung 
adenocarcinoma, 201 cases of SqCC, and 115 cases of 
HGNET (74 SCLC cases and 41 LCNEC cases) to assess 
the TROP2 expression in tumors and survival. Lung 
adenocarcinoma, SqCC, and HGNET were surgically 
resected between April 1995 and January 2002, between 
April 2005 and February 2014, and between July 1990 
and November 2014, respectively, at The Cancer Institute 
Hospital, Japanese Foundation for Cancer Research 
(JFCR) in Tokyo, Japan. Patients were observed until 
death or December 1, 2015. For the assessment of 
smoking history, we used a smoking index (SI) calculated 
by multiplying the “number of cigarettes per day” by 
“duration in years.” This study was approved by the 
institutional review board of JFCR, and informed consent 
was obtained from all patients included in this study.

Pathological evaluation

Pathological diagnoses were made by experienced 
expert pulmonary pathologists (KI and YI), essentially 
based on the 2015 WHO classification of lung tumors 
[37]. Tumor differentiation grades were defined according 
to the Japanese Lung Cancer Society criteria [38, 39]. All 
patients were pathologically staged according to the 7th 
edition of the AJCC-TNM staging system [40].

Immunohistochemistry for TROP2 and Ki-67

Membranous TROP2 expression of tumor cells 
was evaluated by an immunohistochemical analysis of 
tissue microarrays. Using the archived surgical specimens 
used for initial pathological diagnoses of primary lung 
cancers, we constructed tissue microarrays as previously 
described [41]. Briefly, we punched points of the donor 

paraffin blocks using a 2 mm-diameter coring needle and 
transferred the tissue to the array in the recipient block 
using a manual tissue arrayer (KIN-1; Azumaya, Tokyo, 
Japan). For each tumor, an experienced pulmonary 
pathologist (KI) selected one site exhibiting the most 
representative histology for that tumor [42].

Sections with a thickness of 4 μm were 
immunostained for TROP2 with an anti-TROP2 mouse 
monoclonal antibody (clone: 1E5-1E2, Daiichi Sankyo 
Co., Ltd., Tokyo, Japan; diluted 1:400) using the Leica 
Bond III automated system (Leica Biosystems Melbourne 
Pty Ltd., Australia). This monoclonal antibody recognizes 
an epitope in the extracellular domain (Mer1-Thr274) of 
human TROP2. The sections were incubated at pH 6 for 
10 min at 100°C. TROP2 expression on the membranes of 
tumor cells was interpreted by an experienced pulmonary 
pathologist (KI) in a blinded manner. The intensity of 
TROP2 membranous staining in tumor cells was defined 
as 0 (absent), 1 (weak to moderate), or 2 (strong) (Figure 
1). We calculated the percentage of tumor cells at each 
TROP2 intensity level. For the statistical analyses, we 
categorized the specimens into two groups based on the 
staining intensity and percentage of positive cells: no/
low TROP2 expression (Intensity 1 < 50% and Intensity 
2 < 10%) and high TROP2 expression (Intensity 1 ≥ 50% 
or Intensity 2 ≥ 10%). A random sample set of 127 cases 
of lung adenocarcinoma, all 201 cases of SqCC, and all 
115 cases of HGNET were blindly examined by a second 
pathologist (YY). There were high concordances between 
the two observers, as evidenced by a kappa of 0.66 (95% 
CI = 0.53–0.79; P < 0.0001) for adenocarcinoma, 0.60 
(95% CI = 0.47–0.73;P < 0.0001) for SqCC, and 0.63 
(95% CI = 0.45–0.81; P < 0.0001) for HGNET. In addition, 
to assess intratumoral heterogeneity of TROP2 expression, 
we immunostained TROP2 using whole sections from 
20, 15, and 12 cases of adenocarcinoma, SqCC, and 
HGNET (6 SCLCs and 6 LCNECs), respectively and did 
not observe substantial intratumoral heterogeneity in any 
cases in terms of tumor TROP2 expression.

For HGNET, we also conducted immunostaining 
for Ki-67 (MIB-1, Dako, Glostrup, Denmark; diluted 
1:200) using the Leica Bond III automated system (Leica 
Biosystems Melbourne Pty Ltd.). The tumor Ki-67 index 
was calculated by an experienced pulmonary pathologist 
(KI) in a blinded manner. For the statistical analysis, we 
categorized the specimens into two groups by the Ki-67 
index of 60%, which is a median of all HGNET cases (< 
60% vs. ≥ 60%). All 115 cases of HGNET were blindly 
examined by a second pathologist (YY) with a high 
concordance between the two observers, as evidenced by 
a kappa of 0.66 (95% CI = 0.53–0.79; P < 0.0001).

For negative and positive controls, we used a cell 
array (provided by Daiichi Sankyo Co., Ltd., Tokyo, 
Japan). This cell array consisted of cell line Calu-6 
(ATCC, Manassas, VA, USA) showing very low (below 
the detection limit) TROP2 expression and N-87 (ATCC) 
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showing high TROP2 expression. Immunohistochemistry 
was performed using Calu-6 as a specific negative control 
and N-87 as a positive control. Sections processed with 
replacement of primary antibody by Dako REAL™ 
Antibody Diluent (Dako, Glostrup, Denmark) were also 
used as a non-specific negative control.

Detection of EGFR and KRAS mutations and 
ALK fusion

Tumor specimens were snap-frozen in liquid 
nitrogen typically within 20 min after surgical resection 
and stored at −80°C until use. DNA was extracted using 
a standard proteinase K digestion and phenol-chloroform 
extraction. For analysis of the EGFR mutation, we 
examined four exons (exons 18–21) that code for the 
tyrosine kinase domain of the EGFR gene. For exons 
18 (G719X), 20 (S768I and T790M), and 21 (L858R 
and L861Q), the TaqManTM SNP Genotyping Assay kit 
(Applied Biosystems, Foster City, CA, USA) was used 
according to the manufacturer’s instructions. For exon 19 
deletion and exon 20 insertion, a fragment analysis was 
conducted, as previously described [43]. For the analysis 
of KRAS mutation, we performed direct sequencing assays 
for codons 12, 13, and 61, as previously described [43].

For detection of ALK fusion, we performed 
immunohistochemistry using an anti-ALK mouse 
monoclonal antibody (clone: 5A4, Leica Biosystems 
Newcastle Ltd., UK; diluted 1:50) and the Leica Bond III 
automated system (Leica Biosystems Melbourne Pty Ltd). 
The sections were incubated at pH 9 for 30 min at 100°C. 
In the ALK-positive tumors, ALK fusions were confirmed 
by fluorescence in situ hybridization, as previously 
described [27].

Statistical analysis

All statistical analyses were conducted using the 
JMP statistical software package 12 (SAS Institute Inc., 
Cary, NC, USA) and Excel 2013 software (Microsoft, 
Redmond, WA, USA). All P-values were two-sided. The 
statistical significance level was set to P = 0.05.

To investigate the association of TROP2 expression 
with clinicopathological and molecular features in lung 
cancer, we used the chi-square or Fisher’s exact test as 
appropriate.

The Kaplan–Meier method and log-rank test were 
used for survival analyses. For the analysis of lung cancer-
specific mortality, deaths as a result of other causes were 
censored. We also used univariable and multivariable Cox 
proportional hazards regression models to calculate HR for 
mortality according to the TROP2 expression level. For 
adenocarcinoma, the multivariable model initially included 
age (< 60 years vs. ≥ 60 years), gender (male vs. female), 
smoking status (ever smoker vs. never smoker), tumor 
differentiation grade (well vs. moderate-poor), p-stage 
(I vs. II–IV), EGFR status (wild type vs. mutant), KRAS 

status (wild type vs. mutant), and ALK rearrangement 
status (negative vs. positive). For SqCC, the multivariable 
model initially included age (< 60 years vs. ≥ 60 years), 
gender (male vs. female), smoking history (smoking index 
≥ 400 vs. < 400), tumor differentiation grade (well vs. 
moderate-poor), and p-stage (I vs. II–IV). For HGNET, 
the multivariable model initially included age (< 60 years 
vs. ≥ 60 years), gender (male vs. female), smoking history 
(smoking index ≥ 400 vs. < 400), p-stage (I vs. II–IV), 
histology (SCLC vs. LCNEC), neoadjuvant chemotherapy 
(yes vs. no), and adjuvant chemotherapy (yes vs. no). 
We created missing categories for any missing variable, 
if applicable. A backward stepwise elimination was 
performed using a P = 0.05 threshold to select variables for 
the final model. The proportionality of hazards assumption 
in each subtype was confirmed using the graphs of the 
log(-log[survival probability]) vs. log of survival time to 
visually assess if the lines were approximately parallel.
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