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Abstract

Purpose: Supplementing investigator-specified variables with large numbers of

empirically identified features that collectively serve as ‘proxies’ for unspecified or

unmeasured factors can often improve confounding control in studies utilizing admin-

istrative healthcare databases. Consequently, there has been a recent focus on the

development of data-driven methods for high-dimensional proxy confounder adjust-

ment in pharmacoepidemiologic research. In this paper, we survey current

approaches and recent advancements for high-dimensional proxy confounder adjust-

ment in healthcare database studies.

Methods: We discuss considerations underpinning three areas for high-dimensional

proxy confounder adjustment: (1) feature generation—transforming raw data into

covariates (or features) to be used for proxy adjustment; (2) covariate prioritization,
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selection, and adjustment; and (3) diagnostic assessment. We discuss challenges and

avenues of future development within each area.

Results: There is a large literature on methods for high-dimensional confounder prior-

itization/selection, but relatively little has been written on best practices for feature

generation and diagnostic assessment. Consequently, these areas have particular limi-

tations and challenges.

Conclusions: There is a growing body of evidence showing that machine-learning

algorithms for high-dimensional proxy-confounder adjustment can supplement inves-

tigator-specified variables to improve confounding control compared to adjustment

based on investigator-specified variables alone. However, more research is needed

on best practices for feature generation and diagnostic assessment when applying

methods for high-dimensional proxy confounder adjustment in pharmacoepidemiolo-

gic studies.
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Key Points

• To improve confounding control in healthcare database studies, data-driven algorithms can

be used to leverage the large volume of information in healthcare databases to generate and

identify features that indirectly capture information on unmeasured or unspecified confound-

ing factors (proxy confounders).

• Three areas to consider for data-driven high-dimensional proxy confounder adjustment

include: (1) feature generation—transforming raw data into covariates (or features) to be used

for proxy adjustment; (2) covariate prioritization, selection and adjustment; and (3) diagnostic

assessment.

• There is a large literature on methods for high-dimensional confounder prioritization/selec-

tion, but relatively little has been written on best practices for feature generation and diag-

nostic assessment. Consequently, these areas have particular limitations and challenges

when applying machine learning algorithms for high-dimensional proxy confounder

adjustment.

Plain Language Summary

A fundamental obstacle in studies that utilize administrative healthcare databases is unmeasured

confounding bias stemming from nonrandomized treatment choices and poorly measured

comorbidities. Failing to adjust for important confounding factors can make it difficult to differ-

entiate between outcomes that are due to drug effects or a result of the underlying conditions

for which the drug was prescribed. Traditional approaches for confounding adjustment rely on

the investigator to specify all factors that may confound a causal treatment-outcome associa-

tion. However, adjustment based on investigator-specified covariates alone is often inadequate

because some important confounding factors are often unknown. Furthermore, because rou-

tine-care databases are not collected for research purposes, many important confounding fac-

tors are not directly measured in these data sources. To reduce bias caused by unspecified or

unmeasured confounders, many studies have proposed using data-driven algorithms to identify

and control for large numbers of variables that are indirectly associated with unmeasured (or

unspecified) confounders ('proxy' confounders). Here, discuss various aspects of high-dimen-

sional proxy confounder adjustment and give an overview of the current literature. We give par-

ticular focus on methods that have been impactful in pharmacoepidemiology research.
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1 | INTRODUCTION

Routinely-collected healthcare data are increasingly being used to gen-

erate real-world evidence (RWE) to inform decision making in clinical

practice, drug development, and health policy.1 However, unmeasured

confounding from non-randomized treatment allocation and poorly

measured information on comorbidities, disease progression, and dis-

ease severity remains a fundamental obstacle to effectively utilizing

these data sources for RWE generation.2 Statistical methods should

therefore be used to extract the maximum possible information on con-

founding from the data to minimize the effects of unmeasured con-

founding so that accurate comparative estimates of treatments'

effectiveness and safety can be obtained. Approaches to mitigate con-

founding bias would ideally be based on causal diagrams and expert

knowledge for confounder selection.3 However, adjustment based on

researcher-specified variables alone is not always adequate because

some confounders are either unknown to researchers or not directly

measured in these data sources.

To improve confounding control in healthcare database studies,

data-driven algorithms can be used to leverage the large volume of

information in these data sources to generate and identify features

that indirectly capture information on unmeasured or unspecified con-

founding factors (proxy confounders).4 Proxy confounder adjustment

is based on the concept that unmeasured confounding can be miti-

gated by adjusting for large numbers of variables that collectively

serve as proxies for unobserved factors.5 For example, donepezil use

(captured in any claims database) could be used as a proxy for cogni-

tive impairment since cognitive impairment and early Alzheimer's dis-

ease and related disorders (ADRD) are often unmeasured in

administrative data (Figure 1). For more on the concept of proxy con-

founder adjustment see VanderWeele3 and Schneeweiss.4

While researcher-specified confounders are identified using

expert background knowledge, empirical or proxy confounders are

identified using empirical associations and coding patterns observed

in the data. There is a growing body of evidence showing that comple-

menting researcher-specified variables with empirically-identified

proxy confounders improves confounding control compared to

adjustment based on researcher-specified confounders alone.4,6–9

Consequently, there has been a recent focus on the development of

data-driven methods to empirically identify high-dimensional sets of

proxy variables for adjustment in healthcare database studies.6,10–18

In this paper, we discuss the considerations underpinning three

areas for data-driven high-dimensional proxy confounder adjustment:

(1) feature generation—transforming raw data into covariates

(or features) to be used for proxy adjustment; (2) covariate prioritiza-

tion, selection and adjustment; and (3) diagnostic assessment

(Figure 2). We review current approaches and recent advancements

within each area, including the most widely used approach to proxy

confounder adjustment in healthcare database studies (the high-

dimensional propensity score or hdPS). We discuss limitations of the

hdPS and survey recent advancements that incorporate the principles

F IGURE 2 Different phases for high-dimensional proxy confounder adjustment.

F IGURE 1 Illustration and examples for ‘proxy confounder’
adjustment.

934 WYSS ET AL.



of proxy adjustment with machine learning (ML) extensions to

improve performance. We further discuss challenges and directions

for future development within each area. We give particular focus to

diagnostic assessment for causal inference as this has received the

least attention when performing high-dimensional proxy confounder

adjustment in the pharmacoepidemiology literature.

2 | GENERATING FEATURES FOR PROXY
CONFOUNDER ADJUSTMENT

The first challenge for proxy confounder adjustment is determining

how to best leverage the full information content in healthcare data-

bases to generate features (or proxy variables) that best capture con-

founder information. Several approaches for feature generation of

proxy confounders have been applied in the pharmacoepidemiologic

literature. These have ranged from very simple approaches that gen-

erate binary indicators representing whether or not a given code

occurs during a pre-defined exposure assessment period,19 to

approaches that first process information from healthcare databases

into a common data model format with common terminologies and

coding schemes representing health concepts.20–22 Feature engineer-

ing can then be applied to the common data model to enable a con-

sistent process across different databases. Examples include the

Observational Medical Outcomes Partnership (OMOP) Common

Data Model, maintained by the open-science Observational Health

Data Sciences and Informatics (OHDSI) network and also used in the

European Health Data and Evidence Network (EHDEN) project, and

the National Patient-Centered Clinical Research Network

(PCORnet).23–25 Generating features consistent with a common data

model format can be advantageous for capturing relevant health con-

cepts, but these approaches require more data pre-processing to

extract and transform the original codes into variables representing

health concepts.

Instead of generating features based on health concepts, an alter-

native approach is to generate features based on empirical associa-

tions and longitudinal coding patterns observed in the data. Such

approaches can be more flexible since they can be independent of the

coding system and do not rely on a common data model.6 The hdPS

has become the most widely used tool to generate features based on

observed coding patterns in healthcare claims databases.6 The hdPS

generates features by transforming raw medical codes into binary

indicator variables based on the frequency of occurrence of each code

during a defined pre-exposure period.

By taking into account the frequency of occurrence of various

codes during the covariate assessment period, the hdPS tries to

capture information on the intensity of the medical event or drug

dispensing. In theory, algorithms could consider more complex lon-

gitudinal coding patterns to try and capture additional confounder

information. For example, recent work has proposed using neural

networks to model a patient's full course of care to consider tem-

poral sequences of a specific course of treatment.26 The use of

neural networks for extracting confounder information by

modeling complex coding patterns is promising but examples are

limited.27,28

2.1 | Challenges in generating features for proxy
adjustment from electronic health records

An important limitation of current high-dimensional proxy confounder

adjustment approaches is that they can only use structured electronic

healthcare information. However, much of the essential confounder

information, such as patient-reported symptoms, severity, stage and

prognosis of the disease, and functional status, is frequently recorded

in free-text notes or reports in electronic health records (EHRs) that

are substantially underutilized for confounding adjustment.29,30 Little

is known about the impact of incorporating these data for confound-

ing adjustment since unstructured data are not readily analyzable.

Natural language processing (NLP) is a subfield of machine learning

that can be used to generate variables from unstructured free text.31

NLP methods are increasingly used to identify health outcomes from

EHRs, but the application of NLP algorithms for purposes of identify-

ing high-dimensional sets of confounding factors is limited.32 More

research is needed on the use of NLP algorithms for generating high-

dimensional sets of proxy confounders and the value of unstructured

EHR data in proxy adjustment.

An additional challenge to utilizing EHR data for high-dimensional

confounding control is missing data. While both healthcare claims and

EHR data are susceptible to missing information, EHR data is particu-

larly vulnerable due to a lack of continuity and completeness of health

records caused by patients seeking care at different delivery sys-

tems.33,34 Various approaches for handling missing data have been

proposed, including several alternative multiple imputation tech-

niques. Multiple imputation can account for informative missingness

under certain untestable assumptions. However, there are many dif-

ferent approaches to handling missing data and no single approach is

universally best.35 Failing to appropriately account for missingness

and measurement error when using EHR data can result in analyses

that increase rather than reduce bias in estimated treatment

effects.36–38

3 | COVARIATE PRIORITIZATION,
SELECTION, AND ADJUSTMENT

Once proxy variables have been generated through transformations

of the raw data, some degree of dimension reduction is needed to pri-

oritize and select variables for adjustment. Reducing the dimension of

covariates is necessary to avoid problems of nonoverlap when adjust-

ing for high-dimensional sets of covariates.39 Nonoverlap can result in

non-convergence due to separation when sufficiently many covariates

are included in case of logistic regression models.40 Positivity viola-

tions are also a concern for hdPS analyses, as covariate overlap is

more difficult to satisfy when controlling for high-dimensional sets of

variables.39 Even when the sample size may be large enough to
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effectively preclude problems related to convergence and positivity, it

is not practical to consider every possible adjustment set for high-

dimensional data. Machine learning can help researchers reduce the

dimension of covariates to avoid issues of nonoverlap and can more

flexibly model selected covariates when predicting the treatment and

outcome mechanisms.

3.1 | hdPS prioritization and its limitations

The hdPS has been the most widely used data-driven tool in the phar-

macoepidemiologic literature for high-dimensional confounder selec-

tion. The hdPS prioritizes or ranks each generated variable based on

its potential for bias by assessing the variable's prevalence and univar-

iate, or marginal, association with the treatment and outcome using

the Bross bias formula.6,41,42 From this ordered list, researchers then

specify the number of variables to include for adjustment along with

pre-specified variables. While the hdPS has been shown to often

improve confounding control when used to complement investigator-

specified confounders,6,8,9,43,44 there are cases where adjustment for

hdPS generated variables had no impact or even harmed the proper-

ties of estimators beyond adjustment for researcher-specified con-

founders alone.45,46 Limitations of the hdPS prioritization include:

(1) the method assesses a variable's potential confounding impact

through marginal, or univariate, associations with both treatment and

outcome (ideally one would want to consider conditional, or joint,

associations among variables); (2) the method requires researchers to

subjectively determine how many “proxy” variables to include for

adjustment. These limitations can lead to “over adjusting” for variables
that can harm the properties of estimators without reducing bias

(Figure 3).47–49 Under adjusting by failing to control for proxy vari-

ables that contain important confounder information can also be a

concern when implementing the hdPS.

The choice of the number of proxy variables to include in an hdPS

model to adequately control for confounding without “over adjusting”
or “under adjusting” varies according to the properties and structure

of a given dataset and cannot be identified by only evaluating mar-

ginal associations between variables. Determining how many empiri-

cally identified “proxy” confounders to include for adjustment is

particularly challenging in studies with rare events — settings relevant

to RWE studies. In these settings, previous work has shown unstable

effect estimates where results are highly dependent on the number of

“proxy” confounders included for adjustment.9,43

3.2 | Machine learning extensions for covariate
prioritization and selection

To address the limitations outlined above, recent studies have devel-

oped extensions for proxy confounder adjustment that combine the

principles of proxy confounder adjustment with ML tools for predic-

tion modeling and variable selection. These tools have largely focused

on incorporating principles for proxy confounder adjustment with reg-

ularized regression and Targeted Learning tools, including Super

Learning and Collaborative Targeted variable selection. While other

ML tools for variable prioritization and selection are available

(e.g., principal components, random forests, feature importance selec-

tion with neural networks), here we focus on targeted learning tools

and regularized regression as these have been the most widely used

approaches in the pharmacoepidemiology literature.

3.2.1 | Regularized regression for high-dimensional
proxy confounder adjustment

Regularized regression models use penalized maximum likelihood esti-

mation to shrink imprecise model coefficients toward zero. LASSO is

the most commonly used regularized regression model for variable

selection in high-dimensional covariate datasets.44,50 Previous work20–

22,51 found that LASSO regression can be used to select a subset of

generated “proxy” confounders to supplement researcher-specified

confounders to form the adjustment set for confounding control. To

improve the performance of regularized regression for high-

dimensional confounder selection, several studies have developed vari-

ations of LASSO that consider covariate associations with both treat-

ment and outcome when penalizing the likelihood function. These

recent extensions include: (1) Outcome adaptive LASSO,17 (2) Group

LASSO,16 (3) Highly Adaptive LASSO,52 (4) Highly Adaptive Outcome

LASSO,11 and (5) Collaborative Controlled LASSO.53 Other versions of

regularized regression, including ridge regression and elastic net, have

also been shown to perform well for confounder selection and can be

preferable to the LASSO penalization in certain settings.51

3.2.2 | Combining the hdPS with super learning

Super Learning is an ensemble ML algorithm for prediction modeling

that forms a set of predicted values based on the optimal weighted

combination of a set of user-specified prediction models in terms of

minimizing cross validated predictive performance.54,55 The flexibility

of super learning can be utilized to identify a small number of optimally

performing prediction algorithms that generally perform best for a

F IGURE 3 Causal diagram illustrating one scenario where the use
of marginal empirical associations for confounder selection can result
in over-adjusting for instrumental variables. In this causal structure, X2

is marginally associated with both treatment and outcome, but is
independent of the outcome after conditioning on X1.
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given data structure. Previous work has combined Super Learning

with proxy confounder adjustment in high-dimensional covariate

spaces.18 Super Learning can simplify model selection for propensity

score estimation in high dimensions and has been shown to perform

well in a number of simulations.13,18

3.2.3 | High-dimensional proxy adjustment with
scalable versions of collaborative targeted maximum
likelihood estimation

Collaborative targeted maximum likelihood estimation (CTMLE) is

an extension of the doubly robust targeted maximum likelihood esti-

mation (TMLE) method.56,57 TMLE consists of fitting an initial out-

come model to predict the counterfactual outcomes for each

individual, then using the estimated propensity score to fluctuate

this initial estimate to optimize a bias/variance tradeoff for a speci-

fied causal parameter (i.e., the treatment effect). CTMLE extends

TMLE by using an iterative forward selection process to construct a

series of TMLE estimators, where each successive TMLE estimator

controls for one additional variable to consider how a variable

relates to both treatment and outcome after conditioning on a set

of previously selected variables.56,57 By taking into account a vari-

able's conditional association with both treatment and outcome,

CTMLE avoids “over-adjustment” to improve the properties of esti-

mators by reducing the likelihood of controlling for variables that

are conditionally independent of the outcome after adjusting for a

set of previously identified confounders. Recent work has devel-

oped adaptations of CTMLE that are computationally scalable to

large healthcare databases.14 These adaptations modify the stan-

dard version of CTMLE by including a pre-ordering of variables to

avoid the iterative process of searching through each variable in the

selection procedure. Simulations indicate that computational gains

are substantial and that combining scalable CTMLE with methods

for proxy adjustment work well relative to the standard instantia-

tions of CTMLE, hdPS, and TMLE.14,18

3.3 | Adjustment for proxy confounders

Once proxy confounders have been prioritized and selected, researchers

must determine a method for adjustment and causal estimation. Propen-

sity score methods (e.g., propensity score matching, inverse probability

weighting) using logistic regression for estimation of the propensity

score function have become the most common approach for adjustment

of selected proxy confounders in the medical literature.58,59 Some evi-

dence suggests that improvements can be gained in both predictive per-

formance and bias reduction when using more flexible ML models for

propensity score estimation.28,60–62 Another avenue for improving esti-

mations is to adapt ML algorithms to casual inference. Two important

examples are the adaptation of random forest to causal forest and X-

learner, a meta-algorithm that uses ML methods as an intermediate step

in an efficient estimation algorithm.63,64

3.3.1 | Machine learning with doubly robust
estimation for improved adjustment

Widely used doubly robust methods include TMLE, augmented inverse

probability weighting (AIPW), and double ML (e.g., R-learner).57,65–67

These approaches use a model for both the outcome and the propen-

sity score, requiring only one of the two to be correctly specified for

consistent estimation of average treatment effects. Theory and simula-

tions have shown that doubly robust approaches are asymptotically

efficient and more robust than conventional singly robust methods like

propensity score matching and inverse probability weighting.68

Recent work has further shown that the use of flexible nonpara-

metric ML models for the estimation of nuisance functions (i.e., the

propensity score or outcome model) comes at a cost of slow conver-

gence rates. This slow convergence is particularly problematic within

singly robust estimation methods and can yield effect estimates with

poor statistical properties with performance deteriorating as the

dimension of the data increases (the ‘curse of dimensionality’).69 This

work has further demonstrated that doubly robust methods allow for

slower converging nuisance models and, therefore, can mitigate or

even resolve such problems. Consequently, recent literature suggests

that ML-based methods for estimation of nuisance functions should

be applied within doubly robust frameworks rather than more com-

monly used singly robust methods. For more on machine learning in

causal inference see Kennedy,69 Naimi et al.,70,71 and Zivich et al.72

4 | DIAGNOSTIC VALIDITY ASSESSMENT
OF CAUSAL ESTIMATIONS

Evaluating the validity of causal analyses for high-dimensional proxy

adjustment remains challenging but is essential to improving robust-

ness and validity of estimated effects.73 While held-out sets and

cross-validation allow a direct comparison of ML predictions to

observed target variables, such a straightforward evaluation is infeasi-

ble in causal inference and the role of prediction diagnostics for pur-

poses of causal inference is less clear.47,74–76 Below, we survey a list

of standard ML diagnostics for model prediction and diagnostics for

causal inference with a focus on assessing the performance of models

for high-dimensional proxy adjustment in their ability to reduce bias in

estimated treatment effects. We highlight their underlying assump-

tions and limitations.

4.1 | Diagnostics for treatment and outcome
model prediction

A process to estimate ML model performance using out-of-sample

data, such as cross validation, are often recommended to assess

model robustness and generalizability and to examine the characteris-

tics of the inferred models to verify the importance of domain-

relevant variables. Below we focus on additional measures with

specific importance to causal model diagnostics.

WYSS ET AL. 937



4.1.1 | Dichotomous and categorical models

Calibration plots depict the average predicted versus observed (empiri-

cal) probability of the studied event in subsets of entities (typically,

deciles), to evaluate the accuracy of the predicted probabilities.77,78

Probability estimation accuracy is essential for causal inference, more

than it typically is for ML classification tasks, as downstream calcula-

tions, for example, inverse probability weighting, may rely on these

values as being “true” probabilities. Various metrics can be used to

quantitatively measure calibration quality, for example, Hosmer-

Lemeshow goodness of fit test,79 but these have several drawbacks80;

visual inspection of the calibration plots or characterization of its

slope and intercept is thus recommended.

C-statistic (or area under the receiver operating characteristic, ROC,

curve), a measure of classification accuracy, is commonly used in stan-

dard ML applications. For outcome models, it can be used to assess pre-

diction accuracy over the observed treatment assignment (and assuming,

but not verifying, that the causal assumptions hold). For propensity

models its utility is less straightforward: an extreme (close to 0 or 1)

value, corresponding to a highly discriminative model, may indicate a

potential violation of positivity; and, conversely, a value around 0.5, sug-

gesting the model cannot discriminate between treatment groups, is not

necessarily a sign for inaccurate model, but potentially good covariate

overlap. As a result, some researchers recommended to avoid using C-

statistic in propensity model diagnostics.75 We note that post-matching

C-statistic may be used to evaluate covariate balance; see below.

4.1.2 | Continuous models

The performance of continuous outcome models can be assessed in

each observed treatment group (and observed outcomes) and assum-

ing causal assumptions are met, using standard measures such as the

coefficient of determination (R2) or mean squared error.78 A poorly

performing model for a specific treatment group, for example, over or

underestimating outcomes, may subsequently lead to biased effect

estimation. As with binary outcome models, poor performance may

suggest an inadequate prediction model and guide its improvement.

4.2 | Diagnostics for causal inference

Previous work has shown that the use of prediction model diagnostics

alone to guide model selection and validity assessment can lead to

suboptimal performance for causal inference.47–49,75,81 We next sur-

vey diagnostic methods to more directly assess assumptions and

model validity for purposes of causal inference.

4.2.1 | Positivity

An important usage for propensity models for high-dimensional proxy

adjustment is to examine the positivity assumption. This assumption

states that every individual has a non-zero probability to be assigned

to any treatment conditional on a sufficient set of covariates. A com-

parison of propensity score distributions can help in identifying (and

potentially excluding) sub-populations where violations or near viola-

tions of the positivity assumption occur.82–84 While high-dimensional

proxy adjustment assumes that unconfounded treatment effects are

more plausible when controlling for large numbers of variables, covari-

ate overlap can be more difficult when adjusting for high-dimensional

sets of variables.39 Therefore, positivity should be tested at the initial

stages of analyses for high-dimensional proxy adjustment.

4.2.2 | Balancing

Propensity score modeling aims to facilitate matching, reweighting or

stratification to emulate a random assignment of individuals

to treatment groups. Therefore, several studies explored methods

to directly evaluate balancing of covariates among these

groups.77,78,85 In a simulation study, Franklin et al.85 compared several

metrics to assess covariate balance and observed that two had consis-

tently strong associations with bias in estimated treatment effects.

The first metric, post-matching C-statistic, re-trains a treatment model

on the propensity score matched (similarly, stratified or weighted)

sample and assesses its (preferably, lack of) ability to discriminate

between patients in different treatment groups using C-statistic. The

second recommended metric, general weighted difference, computes

a weighted sum of absolute difference in all individual covariates, all

covariate squares, and all pairwise interactions. Other papers have

also recommended assessing the standardized mean difference in cov-

ariates for PS matching and weighting.86,87

The application of balance diagnostics for high-dimensional pro-

pensity scores is more challenging as it is unclear on which set of vari-

ables balance should be assessed. A large literature has shown that

balancing variables that are independent of the outcome except

through treatment (instrumental variables) harms the properties of

estimators.47,49,81 In high-dimensional settings, however, identifying

instrumental variables is difficult and previous work has argued that

priority should be given to controlling for all confounders at the

expense of balancing instruments.20,21,48 This has led to some

researchers assessing balance on all variables in the database when

using propensity scores for high-dimensional proxy adjustment.20–22

More research is needed on the best use of balance diagnostics for

high-dimensional propensity score adjustment.

4.2.3 | Estimand diagnostics (simulation-based
approaches and negative controls)

Recent studies have suggested methods to assess the overall accuracy

of effect estimation using control and synthetic control stud-

ies.20,21,88–90 These frameworks have largely been based on the use

of simulation methods to generate synthetic datasets under con-

straints where certain relations among variables are known (e.g., the
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simulated treatment effect) while maintaining much of the complexity

and statistical properties of the observed data structure.

Parametric bootstrap (‘Plasmode’ simulation)

Simulation frameworks for model validation in causal inference have

largely been based on use of the parametric bootstrap. Such

approaches bootstrap subjects from the observed data structure, then

use modeled relationships from the original data to inject causal rela-

tions between a subset of variables while leaving all other associations

among variables unchanged. With treatment-outcome associations

known by design and patterns of confounding that mimic the

observed data structure, synthetic datasets have become increasingly

popular to provide a benchmark for comparing statistical methods for

causal inference.

Franklin et al.89 proposed using a parametric bootstrap approach,

termed ‘plasmode simulation’, to compare causal inference methods

in settings specific to healthcare database studies and high-

dimensional propensity scores. Schuler et al.90 and others88,91,92 have

proposed variations and extensions of plasmode simulation for model

validation in healthcare database studies. Schuemie et al.20,21 use a

plasmode simulation-based approach for generating positive control

outcomes to quantify bias due to measured confounders when cali-

brating effect estimates and confidence intervals. Peterson et al.93

apply a similar parametric bootstrap method as a diagnostic to assess

bias due to violations of positivity. Alaa and van der Schaar88 devel-

oped a validation method that uses the parametric bootstrap and

influence functions, which are a key technique in robust statistics.

While simulations can be useful for tailoring analytic choices for

causal inference, they also have limitations that deserve attention.

Schuler et al.90 explain that validation frameworks based on the para-

metric bootstrap are more limited since they are not ‘model free’;
they require partial simulation of the data structure. This creates two

fundamental challenges when generating synthetic datasets to evalu-

ate causal inference methods: (1) Advani et al.94 showed that if the

simulation framework does not closely approximate the true data gen-

erating distribution, then the use of synthetically generated data as a

diagnostic tool in causal inference can be misleading; (2) even when

the simulation framework closely approximates the true data generat-

ing process, Schuler et al.90 warn that the use of synthetic datasets

for model validation could still be biased towards favoring causal

inference methods that mimic the modeling choices made when gen-

erating the synthetic datasets. These challenges can restrict the use-

fulness of synthetic datasets for model validation in causal inference.

Still, studies have demonstrated that in specific cases, the use of syn-

thetic data to tailor analyses to the study at hand can often improve

confounding control relative to the consistent use of any single causal

inference method.88,90

Wasserstein Generative Adversarial Networks (WGANs) is an alter-

native approach to generating synthetic data for simulation-based

model validation in causal inference.95 GANs estimate the distribution

of a particular dataset using a ‘generator’ and a ‘discriminator’.96 The

generator is a flexible neural network to create synthetic data while

the discriminator is a competing neural network model that attempts

to distinguish between the synthetic and real data. The process is

repeated in an iterative fashion until the discriminator is no longer

able to distinguish between the synthetic and real data. This tech-

nique has become very powerful for supervised and unsupervised

ML.96 WGANS have recently been shown to be useful for generating

synthetic datasets that closely approximate the joint correlation struc-

ture of an actual dataset for purposes of model validation in causal

inference.95

Negative and positive controls

Another approach that has become increasingly popular for evaluating

models for confounder adjustment is the use of real negative

controls—exposure-outcome pairs that are not, as far as we know,

causally related.77,97 Such controls can be used to detect residual

biases, for example, confounding, in the estimation process. Replicat-

ing a known association through use of positive controls can also

increase confidence in primary estimates' validity. However, some

researchers have argued that identifying positive controls is difficult

since the magnitude of known effects is rarely known.20–22

4.2.4 | Sensitivity analyses

Quantitative bias analysis

Estimating an effect from observational data involves multiple, at

times somewhat arbitrary, modeling decisions and assumptions, for

example, with respect to the definition of confounders, exposures,

and outcomes or the statistical analysis.98 Sensitivity analysis re-

computes the estimated effect under various sets of such decisions99

or using multiple data sources to verify its robustness.83,100 Sensitivity

analyses can also quantify the change that an unmeasured confounder

would have on the studied estimand and thus assess its sensitivity to

violations of the assumption of no unmeasured confounding.99,101

This can be particularly useful when applying methods for high-

dimensional proxy adjustment as researchers can never be certain

how well a set of features captures information on unmeasured fac-

tors. The E-value in particular has become widely used for assessing

sensitivity of an estimand to unmeasured confounding in the medical

literature.102 The popularity of the E-value has largely been due to its

simplicity, making its implementation and communication straightfor-

ward. However, its simplicity has also been a point of criticism of the

method.103–107 Several more comprehensive bias analysis methods

have been developed to quantify the impact of various systematic

errors to increase confidence that the estimated effects are robust to

violations of various assumptions. Lash et al. provide a detailed discus-

sion on methods for quantitative bias analysis.108 An overview of a

subset of diagnostics for causal inference is shown in Table 1.

5 | DISCUSSION

In this paper, we have provided an overview of high-dimensional

proxy confounder adjustment in studies utilizing electronic healthcare
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databases. We have focused on three areas for proxy adjustment:

(1) feature generation, (2) covariate prioritization, selection, and

adjustment, and (3) validity assessment. We have discussed recent ML

extensions and paths for future research within each area. Much

attention has been given to the development of ML tools for con-

founder selection and adjustment for high-dimensional proxy adjust-

ment. These tools have great potential to improve confounding

control in healthcare database studies. However, less attention has

been given to advancing methods for feature generation and validity

assessment for proxy confounder adjustment. Future research is war-

ranted to investigate the optimal methods that extract the relevant

confounding information to generate features for proxy adjustment

while preserving scalability and data-adaptability to large healthcare

databases. Future research is also needed in the development of diag-

nostic methods to evaluate and compare the validity of alternative

approaches to high-dimensional proxy adjustment in healthcare data-

base studies.

Finally, although ML tools can be beneficial in identifying empiri-

cal associations among large numbers of covariates, empirical associa-

tions by themselves are not sufficient to determine causal

relations.109–111 We emphasize the importance of using substantive

knowledge to obtain an understanding of the data and the underlying

causal structure before applying ML procedures for confounding

control.109–111 ML procedures should not replace background knowl-

edge, but should be used to complement investigator input when con-

trolling for confounding.
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TABLE 1 Examples of diagnostic metrics for causal inference.

Condition being tested Possible diagnostic checks Limitations and comments

Positivity Overlap of estimated PS across treatment

groups

Impact of limited overlap can depend on the adjustment approach

Including more covariates for adjustment can decrease overlap.

Consequently, it can be difficult to determine the optimal

adjustment set in terms of maximizing confounding control vs

bias due to nonoverlap

Conditional Exchangeability

on Measured Covariates

Covariate balance across treatment groups

after PS adjustment

Primarily used for PS analyses. Less useful for causal inference

approaches that model that outcome directly, including doubly

robust methods.

Can be difficult to quantify the impact of residual imbalance on bias

in estimated treatment effects

Can be difficult to determine on which variables balance should be

assessed (e.g., do not want to balance instrumental variables).

Prediction diagnostics to assess correct

model specification

Can reward PS models that include instruments

More useful for causal inference approaches that model the

outcome, including doubly robust methods

Simulation-based approaches for generating

synthetic datasets to evaluate bias in

estimated treatment effects

A very general approach that is applicable to any causal inference

method

Requires advanced simulation techniques to closely approximate

the confounding structure of the study population

Violation of conditional

exchangeability due to

unmeasured confounding

Real negative and positive control exposures

and/or outcomes

Can be useful to identifying bias caused by unmeasured

confounders

Can be difficult to identify good negative and/or positive controls

Sensitivity to hidden biases

(e.g., unmeasured

confounding,

misclassification)

E-value Implementation and communication is simple and straightforward

Recent critiques have argued that the E-value can be misleading

due to its simplicity

Formal quantitative bias analysis Several approaches have been proposed to conduct in-depth

sensitivity analyses for hidden biases. These can provide more

detailed assessment of robustness of causal analyses, but are

subject to underlying assumptions and can be tedious to

implement
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