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A resistant and hypervirulent dermatophyte from India has been described as 

a taxonomic novelty, Trichophyton indotineae, a species of the Trichophyton 

mentagrophytes complex. Rapid detection and correct identification of 

closely similar dermatophytes with different predilections are essential for 

efficient clinical management. We evaluated the efficacy of rapid diagnostic 

methods clinical and environmental strains in the T. mentagrophytes complex. 

The methods included Real-time-PCR, DermaGenius, LAMP, and MALDI-ToF 

MS, using rDNA ITS sequences as taxonomic standard. The results show that 

only MALDI-ToF MS can distinguish 96.97% T. indotineae from other closely 

related species. The complex comprises numerous clones which may differ 

in anonymous markers but with similar evolutionary behavior. Therefore, 

we recommend to distinguish species only when they show an appreciable 

degree of adaptation and thus are clinically significant. The distinction of 

remaining clonal diversity is an epidemiological query and can be solved by 

haplotype numbering.
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Introduction

Dermatophytoses are among the most common fungal 
infections, affecting 20–25% of the world’s population (Havlickova 
et al., 2008; Ameen, 2010). The species spectrum of dermatophyte 
infections has changed dramatically over time with socioeconomic 
developments (Zhan et  al., 2018). Most pathogenic agents of 
humans originated from domesticated animals such as cattle, 
horse or camels (Deng et al., 2008; Morrell and Stratman, 2011; 
Hameed et al., 2017). Infections by zoophilic dermatophytes cause 
highly inflammatory lesions due to immunopathogenesis (Drouot 
et  al., 2009; Celestrino et  al., 2021; Sardana et  al., 2021). The 
spectrum of infections of urban populations has changed in favor 
of species with human-to-human transmission and milder clinical 
pictures, in addition to those by pet-associated species causing 
self-limiting outbreaks. It has previously been suggested that long-
term alterations of human-animal relationships such as 
domestication leads to novel lines of evolution in dermatophytes 
(Tang et al., 2021). This is inherent to dermatophyte natural life 
cycles, which comprise elaborate sexual reproduction in the 
environment and asymptomatic carriage of spores in mammalian 
fur. Domestication interrupts the sexual part of this life cycle 
resulting in clusters of clonal offshoots (Gräser et al., 2006). The 
human host is exceptional in lacking a fur, and thus the fungus 
becomes invasive upon skin contact. This has led to repeated 
adaptations from zoophilic species with T. equinum originally 
associated with horse as an example (Kandemir et  al., 2020). 
Several clones in the T. mentagrophytes complex, an originally 
zoophilic species of small mammals (de Hoog et al., 2017; Kupsch 
et al., 2019), are now commonly found on humans (Chowdhary 
et al., 2019; Nenoff et al., 2019a; Das et al., 2020). Clones with 
mutations in the ribosomal internal transcribed spacers have been 
assigned numbers (Singh et al., 2019). T. interdigitale, causing 
chronic, prevalently pedal infections, has been hypothesized to 
be one of these clones.

Since almost a decade, dermatology in India has experienced 
a novel driver of dermatophyte evolution due to the overuse of 
over-the-counter antifungal drugs by the general public (Ebert 
et  al., 2020). An emerging novel species has been named 
T. indotineae (Kano et  al., 2020). This clone shows frequent 
resistance to terbinafine (>1 μg/ml), which is the most commonly 
used antifungal to treat dermatophyte infections in India (Kong 
et al., 2021). In addition, the clone is significantly more virulent 
than T. interdigitale in the same species complex, causing severe 
outbreaks (Singh et al., 2019), and is already spreading globally 
through physical contact and travel (Kano et al., 2020; Jabet et al., 
2022; Posso-De Los Rios et al., 2022). Recognition of this clone is 
therefore clinically significant for proper patient management and 
public health.

Classically, laboratory diagnosis of dermatophytosis is based 
on microscopy of strains grown in vitro (Kobylak et al., 2015). 
Routine fluorescence-microscopy of KOH-digested clinical 
specimens demonstrating fungal elements is rapid, but unable to 
differentiate between dermatophytes and non-dermatophyte 

filamentous fungi (Haghani et al., 2013). Sequencing of rDNA 
internal transcribed spacer (ITS) in few-days-old cultures is 
currently the gold standard for dermatophyte identification, 
despite relatively limited polymorphism (Makimura et al., 1999; 
Deng et al., 2015). For limited sets of the most common species, a 
commercial non-culture, molecular assay, DermaGenius 2.0 
multiplex real-time PCR kit (Pathonostics, Maastricht, The 
Netherlands) are available. This tool provides rapid detection of 
superficial fungal infections of nail, hair, and skin samples and 
readily differentiates species of Trichophyton, Microsporum and 
Epidermophyton in addition to Candida albicans (Ndiaye et al., 
2022). The kit lacks a probe for T. indotineae, a resistant and 
hypervirulent dermatophytes species (Singh et  al., 2021). The 
DermaGenius® Resistance Multiplex real-time PCR, is another kit 
used for detection of terbinafine-resistant T. indotineae strains, but 
does not recognize susceptible T. indotineae strains (Singh et al., 
2021). Other economical molecular methods are available that 
have not yet been applied to dermatophytes. Loop-mediated 
isothermal amplification (LAMP) is a rapid assay enabling DNA 
amplification at constant temperature (Watanabe et al., 2019). 
Matrix-assisted laser desorption ionization-time of flight mass 
spectrometry (MALDI-ToF MS) is another routine diagnostic 
technique for the identification of microorganisms in clinical 
microbiology laboratories, such as T. rubrum (Wattal et al., 2017; 
Shaw et al., 2021). Several studies have used MALDI-ToF MS to 
identify dermatophytes of the T. mentagrophytes complex (Packeu 
et al., 2013; Calderaro et al., 2014; Shaw et al., 2021). However, 
recognition of T. indotineae has not been enabled; the reference 
spectra has not been linked to the species in the database 
(Calderaro et  al., 2014). In this study we  determined the 
performance of AUToF MS 1000 in differentiating the various 
subspecies by using the profiles of MALDI-ToF MS for hierarchical 
cluster analysis (HCA) and single-peak analysis.

The expansion of the T. mentagrophytes complex with 
T. indotineae as a clonal species is of recent date (Tang et al., 2021). 
T. mentagrophytes, T. interdigitale and T. indotineae are very 
similar, differing by only a few SNPs in ITS region (Singh et al., 
2019; Kano et al., 2020). In order to rapidly and accurately identify 
the classical species T. mentagrophytes and T. interdigitale and the 
novelty T. indotineae, current diagnostic assays have to be updated. 
The present study evaluates several the methods and discusses the 
taxonomic approach in anthropophilic species complexes.

Materials and methods

Strains and identification

Reference strains were obtained from the Belgian Coordinated 
Collections of Microorganisms, Scientific Institute of Public Health 
(BCCM/IHEM, Brussels, Belgium), the Centraalbureau voor 
Schimmelcultures (CBS, housed at Westerdijk Fungal Biodiversity 
Institute, Utrecht, Netherlands). Metadata of all 88 strains used in 
the study are shown in Supplementary Table S1. Strains were 
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cultured on Sabouraud’s Glucose Agar (SGA; Oxoid, Hampshire, 
UK) for 1–2 weeks at 28°C. DNA extraction and ITS rDNA 
sequencing according to Arentshorst et al. (2012); Tang et al. (2021). 
Sequences were blasted in GenBank and 100% identity was taken 
as species identification. Determination of genotypes were based on 
ITS sequencing according to Nenoff et al., 2019b and including 
IHEM 4268 (type of T. mentagrophytes) and CBS 428.63 (type of 
T. interdigitale) in the comparison. Clone VIII is now known to 
be identical to the type strain CBS 146623 of T. indotineae (Tang 
et al., 2021). Forty-nine clinical samples were collected to study 
DermaGenius (Table 1). Besides, a total of nineteen strains (one to 
three strains from each genotype) were selected to study 
DermaGenius, Real-time PCR, and LAMP (Table 2). 81 strains were 
selected to be studied with MALDI-ToF MS.

Dermagenius® 2.0

Forty-nine clinical samples (skin scrapings and hair) from 
symptomatic patients in India were collected by R. Thakur (Table 1). 
Each specimen was divided into three parts: the first one for SGA 
culture, the second for culture on Taplin agar (Oxoid, Munich, 
Germany), and the third for direct non-culture diagnostics with 
DermaGenius. Materials were cultured on agar for 1–2 weeks at 
28°C (Tang et al., 2021). For DNA extraction, hair and skin scrapings 
were added to sterile 1.5 mL tubes and extracted with glass beads 
(Sigma G9143, St. Louis, USA) using the PathoNostics Extraction 
Kit according to the manufacturer’s instructions. Quality of DNA 
was tested based on methods described by Arentshorst et al. (2012).

Besides, nineteen strains were selected out of 88 strains to 
perform DermaGenius testing (Table 2). The DermaGenius® 2.0 
complete multiplex real-time PCR (PathoNostics, Maastricht, The 
Netherlands) was performed according to manufacturer’s 
instructions. Five μL of DNA extract was added to the PCR mix 
and a LightCycler 480 II (Roche, Mannheim, Germany) was used 
for amplification and melting curve analysis. Positive and negative 
controls were included in each PCR run. Data analysis was 
performed using the 2nd-derivative and Tm-calling function of 
the LightCycler 480 II software (v1.5.1.62 SP2).

Real-time PCR

Nineteen strains were selected to represent the described 
genotypes and species based on the ITS gene region; this marker 
was used to design the primers and probes shown in 
Supplementary Table S2.1 DNA of reference strains representing 
all genotypes of the T. mentagrophytes complex was purified, and 
amplified by real-time PCR using a T. indotineae-specific probe. 
Real-time PCR reactions were carried out in 20 μL volumes 
containing 0.5 μL of 10 μM forward primer, 0.5 μL of 10 μM 

1 https://benchling.com/

reverse primer, 0.5 μL probe, 0.5 μL of 40 to 100 ng/μL DNA, and 
10 μL LightCycler® 480 Probe Master. The instrument used was a 
LightCycler® 480 II (Kobylak et al., 2015). Reaction conditions 
were as follows: 95°C for 10 min, followed by 50 cycles at 95°C for 
15 s, 68°C or 60°C for 1 min, with an extension cycle of 40°C for 
15 s. The curves indicate positive and the straight lines indicate 
negative samples (Supplementary Figure S3). Water was used as 
negative control. CBS 146623 was used as positive control.

Lamp

WarmStart colorimetric Loop-mediated isothermal 
amplification (LAMP) was applied to detect T. interdigitale, 
T. mentagrophytes and T. indotineae, with T. benhamiae and 
T. rubrum as negative controls, through isothermal amplification 
of the ITS gene. The same nineteen strains as for Real-time PCR 
were used to represent genotypes (Table 1). The ITS type-specific 
LAMP primer sets were designed by using the software NEB 
LAMP Primer Design Tool,2 consisting of two outer (F3, B3), two 
inner (FIP, BIP) primers, and two loop primers (LF, LB). Used 
primers are shown in Supplementary Table S2. Reactions were 
performed according to WarmStart Colorimetric LAMP  2× 
Master Mix (New England Biolabs, Ipswich, UK) protocol (Dao 
Thi et al., 2020; Daskou et al., 2021). Samples were incubated for 
15 min and 30 min at 65°C in a heating block. Color change was 
visible by visual observation directly upon removal from the 
incubation temperature. As additional verification, amplification 
products were analyzed by 2% agarose gel electrophoresis and 
visualized under an UV transilluminator. Water was used as 
negative control. CBS 146623 was used as positive control. Red 
and yellow indicate negative and positive results, respectively.

 MALDI-ToF MS

The data include T. mentagrophytes (n = 23), T. interdigitale 
(n = 19), T. indotineae (n = 33), T. benhamiae (n = 3), 
T. quinckeanum (n = 3). MALDI-ToF MS was performed by the 
formic acid extraction method according to the manufacturer’s 
instruction (AUToF MS1000, Autobio, Zheng Zhou, China) with 
minor modifications. All chemical reagents used were of LC–MS 
grade. Briefly, dermatophytes isolates were cultured on SGA for 
7 days at 28°C. After growth, the sample was collected in a 1.5 mL 
centrifuge tube containing 0.5 mL 75% ethanol. After mixing, the 
sample was centrifuged at 12,000 × g for 3 min, and the supernatant 
was discarded. After drying of the residue at 37°C, 40 μL of lysis 
solution 1 (containing formic acid) was added. Subsequently, 1 μL 
of supernatant was transferred on a target plate (Autobio, Zheng 
Zhou, China) after mixing, and dried naturally in a bio-safety 
cabinet. Afterward, 1 μL of matrix solution was added on the 

2 https://lamp.neb.com
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TABLE 1 Direct culture ITS sequencing and DermaGenius 2.0 PCR results obtained from 49 skin/hair specimens from India.

Sample Location ITS (GenBank name) ITS (Nenoff nomenclature) ITS (Rui Kano 
nomenclature)

DermaGenius® 2.0

i1 Tinea cruris No growth No growth No growth T. interdigitale

i2 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i3 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i4 Tinea cruris No growth No growth No growth T. interdigitale

i5 Tinea manuum T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i6 Tinea cruris No growth No growth No growth Negative

i7 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i8 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i9 Tinea cruris No growth No growth No growth T. interdigitale

i10 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i11 Tinea pedis T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i12 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i13 Tinea manuum No growth No growth No growth T. interdigitale

i14 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i15 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i16 Tinea faciei T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i17 Tinea cruris No growth No growth No growth Negative

i18 Tinea manuum No growth No growth No growth T. interdigitale

i19 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i20 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i21 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i22 Tinea cruris No growth No growth No growth T. interdigitale

i23 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i24 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i25 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i26 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i27 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i28 Tinea cruris No growth No growth No growth T. interdigitale

i29 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i30 Tinea cruris Contamination Contamination Contamination Negative

i31 Tinea manuum No growth No growth No growth Negative

i32 Tinea cruris Contamination Contamination Contamination T. interdigitale

i33 Tinea cruris No growth No growth No growth Negative

i34 Tinea cruris No growth No growth No growth T. interdigitale

i35 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i36 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i37 Tinea manuum T. rubrum T. rubrum T. rubrum T. rubrum

i38 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i39 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i40 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i41 Tinea faciei Contamination Contamination Contamination T. interdigitale

i42 Tinea cruris Contamination Contamination Contamination T. interdigitale

i43 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae Negative

i44 Tinea faciei No growth No growth No growth T. interdigitale

i45 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae No detected

i46 Tinea cruris No growth No growth No growth Negative

i47 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale

i48 Tinea cruris T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae Negative

i49 Tinea faciei T. mentagrophytes T. mentagrophytes ITS genotype VIII T. indotineae T. interdigitale
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above dried supernatant, and dried again at room temperature. 
Each strain was prepared on eight MALDI target positions in 
parallel. For each strain, a mass spectrum was generated and 
integrated to a sum spectrum using AUToF MS1000. Finally, five 
spectra were selected from each species for better spectra handling 
and visualization. MALDI-tree was built up by software inside of 
AUTO MS1000 with hierarchical cluster analysis.

Results

Clinical samples

DermaGenius 2.0 found the majority of clinical samples from 
India to be positive for dermatophytes (n = 40/49, 81.63%). Of 
these, 39 were identified as T. interdigitale, and one as T. rubrum 
(Table 1; Supplementary Figure S1). Fungal cultures on SGA and 
Taplin agar yielded 31 (63.26%) samples positive for dermatophytes 
(Table  1). DermaGenius identified the India samples as 
T. interdigitale. Comparison of ITS sequences generated from the 
strains (Table 1; Supplementary Figure S1), 30 isolates matched 
with T. mentagrophytes ITS-genotype VIII according to Nenoff 
et al. (2019a) and with CBS 146623, the type strain of T. indotineae.

Nineteen strains from the culture collection representing each 
genotype using the ITS classification of Nenoff et al. (2019a) were 
tested by DermaGenius (Supplementary Figure S2). DermaGenius 
correctly recognized genotypes IV, VII, and IX as belonging to 
T. mentagrophytes, and all strains of T. interdigitale. However, 
genotype III and III* of T. mentagrophytes were recognized as 

T. interdigitale (Table  2). T. indotineae, not present in the 
DermaGenius database, was identified as T. interdigitale.

Real-time PCR

The assays were positive for all genotypes, while controls 
(T. rubrum and T. benhamiae) remained negative (Table  2; 
Supplementary Figure S3). The ITS variable positions used for 
primer and probe design did not allow distinction between 
genotypes, which was maximally 1 bp difference between entities.

Warmstart colorimetric RT-LAMP

WarmStart Colorimetric RT-LAMP assay was first executed to 
determine the incubation time range. The experiment result shows 
the optimal incubation time is 10 to 20 min. Moreover, an incubation 
period of 30 min leads to false-positive results with non-template-
containing samples as well as with non-T. mentagrophytes complex 
samples. When samples were incubated at 65°C for 15 min, those 
matching with T. indotineae, T. mentagrophytes III*, III, and IV, and 
T. interdigitale were positive (Table 2; Supplementary Figure S4). 
T. benhamiae, T. rubrum, T. mentagrophytes genotype VII, one strain 
of T. mentagrophytes genotype IX, and water were negative (Table 2; 
Supplementary Figure S4). The colorimetric assay evaluated by 
visual observation was confirmed on the gel (Supplementary  
Figure S4). However, the protocol did not allow to separate all 
genotypes unambiguously.

TABLE 2 Summary of the results related with genotypes detection based on different methods.

Number Name ITS ID Dermagenius ID RT-PCR WarmStart colorimetric RT-LAMP

1 CBS 428.63 T. interdigitale T. interdigitale Positive Positive

2 IHEM 22714 T. interdigitale T. interdigitale Positive Positive

3 XM10 T. interdigitale T. interdigitale Positive Positive

4 212,063/17 T. interdigitale II* T. interdigitale Positive Positive

5 IHEM 4268 T. mentagrophytes III* T. interdigitale Positive Positive

6 IHEM 22711 T. mentagrophytes III* T. interdigitale Positive Positive

7 CBS 124420 T. mentagrophytes III* T. interdigitale Positive Positive

8 IHEM 22709 T. mentagrophytes III T. interdigitale Positive Positive

9 IHEM 22720 T. mentagrophytes III T. interdigitale Positive Positive

10 IHEM 22739 T. mentagrophytes IV T. mentagrophytes Positive Positive

11 IHEM 10162 T. mentagrophytes IV T. mentagrophytes Positive Positive

12 218,904/16 T. mentagrophytes VII T. mentagrophytes Positive Negative

13 214,691/17 T. mentagrophytes IX T. mentagrophytes Positive Negative

14 XM41 T. mentagrophytes IX T. mentagrophytes Positive Positive

15 CBS 146623 T. indotineae T. interdigitale Positive Positive

16 i49 T. indotineae T. interdigitale Positive Positive

17 i5 T. indotineae T. interdigitale Positive Positive

18 CCF 6488 T. benhamiae T. benhamiae Negative Negative

19 i37 T. rubrum T. rubrum Negative Negative
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MALDI-ToF mass spectrometry

Representative isolates of each species from the 
T. mentagrophytes clade were analyzed using MALDI-ToF 
MS. High-quality (peak rich) MALDI spectra samples were 
selected to build the MALDI-ToF MS tree. A clustering 
MALDI-ToF MS analysis results for 81 isolates are shown in 
Supplementary Table S1; Figure  1. All T. benhamiae and 
T. quinckeanum strains clustered in their clades and 96.97% 
(32/33) of T. indotineae strains clustered also together. Six 
T. interdigitale strains, in the upper single clade, were almost 
isolated from cases with onychomycosis. The remaining strains, 
mostly T. mentagrophytes, did not form regularly clusters. CBS 
146623, CBS 428.63, CBS 124421 were selected to represent the 
spectra of T. indotineae, T. interdigitale, and T. mentagrophytes, 
respectively. In the mass range between approximately 4,000 to 
5,000 m/z (as a representative example), the MALDI-ToF MS of 
CBS 146623, CBS 428.63, and CBS 124421 were very similar, and 
cannot be differentiated. However, several specific peaks could 
be found for analyzed taxa in the mass range of approximately 
between 2,000 to 4,000 and 6,000 to 8,000 m/z 
(Supplementary Figure S5). The most variable mass range of 
approximately 2,000 to 4,000 m/z is shown in 
Supplementary Figure S5. T. indotineae and T. mentagrophytes 
showed peaks at 2,206 m/z. T. interdigitale and T. indotineae 
showed peaks at 2,610 to 2,680 m/z. T. interdigitale and 
T. mentagrophytes showed high peaks at 3,810 to 3,830 and 7,800 
to 8,000 m/z, but T. indotineae showed very low peaks at these 
ranges (Figure 2).

Discussion

Dermatophytes infections have long been regarded as curable, 
relatively insignificant esthetic problems. The severe infections by, 
e.g., T. schoenleinii have practically disappeared by changes in life 
style and hygienic measures (Prasanna et al., 2016), and today a 
wide panel of effective antifungals is available without prescription. 
However, a new problem has emerged in South Asia and spread 
to other continents with outbreaks of dermatophyte skin diseases 
showing a remarkably virulence and resistance to the most 
commonly used antifungal, terbinafine (Singh et al., 2019; Kong 
et al., 2021). Several species of dermatophytes are involved in this 
new problem, including T. rubrum (Shankarnarayan et al., 2020) 
and particularly species of the T. mentagrophytes complex (Singh 
et  al., 2019). Inappropriate use of antifungal creams with 
corticosteroids has been hypothesized to be a main reason for this 
emergence (Verma et al., 2021).

T. indotineae, an emerging dermatophyte in India, is a 
multidrug-resistant taxonomic novelty, regarded as a clonal 
offshoot in T. mentagrophytes complex (Singh et al., 2019; Kong 
et al., 2021; Tang et al., 2021). The main objective of the present 
study was to evaluate the efficacy of diagnostic methods for 
rapid detection of this clinically relevant dermatophyte. The 

DermaGenius® 2.0 multiplex real-time PCR assay is a fast 
molecular diagnostic method that identifies several 
dermatophytes directly in nail, hair and skin samples within 3 h 
(Singh et al., 2021). Compared to traditional methods, such as 
culture, the DermaGenius kit proved to have a higher detection 
rate (DermaGenius vs. culture; Table 1). Several samples that 
did not show growth or yielded contaminants on Taplin agar / 
SGA were positive for dermatophytes with DermaGenius. 
However, T. indotineae has not yet been included in the kit. The 
T. mentagrophytes complex comprises three entities, which are 
in our dataset, in addition to the ancestral sexually interacting 
species T. mentagrophytes (comprising ITS genotypes III, III*, 
IV, VII and IX), two clonal offshoots which have been 
denominated T. interdigitale (also comprising ITS genotype II) 
and T. indotineae (ITS genotype VIII) (Nenoff et al., 2019b; 
Tang et al., 2021); the denominations are after Nenoff et al., 
2019a. Since T. indotineae is a new name for T. mentagrophytes 
genotype VIII, existing databases require updating. 
DermaGenius made a bipartition in identifying most genotypes 
(including the T. mentagrophytes type strain IHEM 4268), as 
T. interdigitale (type strain CBS 428.63), while IV, VII and IX 
were identified as T. mentagrophytes. The tripartition 
T. indotineae / T. interdigitale / T. mentagrophytes of Tang et al., 
2021 was primarily based on multilocus sequence data (TEF1 
and HMG) supplemented with phenotypic markers, matching 
with minute ITS differences. The DermaGenius probes are 
based on ITS, but their exact sequence is unknown. Using 
MEGA v7.0 to align the sequences, we found potential primer 
sites to separate T. mentagrophytes genotypes IV, VII, and IX 
from T. interdigitale, T. indotineae, and T. mentagrophytes 
genotypes III and III* (Supplementary Figure S6). Most 
doubtful group is III/III*, which variously is classified in 
T. interdigitale or T. mentagrophytes. Since the latter is the latest 
a valid species name for this entity, the other databases 
require updating.

A potential area within ITS for primers design for the 
simultaneous distinction of all three species sensu stricto (Singh 
et al., 2019; Tang et al., 2021) just a single SNP of T. indotineae is 
different from T. mentagrophytes and T. interdigitale 
(Supplementary Table S2; Supplementary Figure S6). 
Unfortunately, the number of characteristic SNPs proved 
insufficient for RT-PCR; in addition, this site was invariable 
between outgroups T. rubrum and T. benhamiae. A more 
consistent distinction was observed in the HMG gene, which is the 
prevalent mating type of T. indotineae (Tang et al., 2021). However, 
the alpha-box mating type did not reveal a usable difference, and 
some strains only have one mating type gene (Singh et al., 2019). 
The ITS region in general did not exhibit difference to design 
probes and primers.

A similar problem was encountered with other molecular 
methods tested. In comparison to conventional PCR and real-
time PCR, WarmStart® Colorimetric LAMP assay is faster and 
simpler. Published data showed that the assay does not require 
expensive special equipment such as a thermal cycler, positive 
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samples being determined by a color change from pink to yellow 
within 30 min of incubation at 65°C. For recording simple mobile 
phone cameras can be used (Dao Thi et al., 2020; Reynés et al., 
2021). It utilizes four oligonucleotide primers to recognize six 
different regions of the target gene, while two additional primers, 
LF and LB, are also incorporated in order to accelerate the 
amplification reaction and enhance the specificity (Tumino et al., 
2020). In this study, colorimetric LAMP was positive with 
T. indotineae, T. mentagrophytes ITS genotype III*, III, IV and 
T. interdigitale, but is unable to detect all genotypes in the 
T. mentagrophytes species complex.

T. indotineae is a member of the T. mentagrophytes complex, 
an originally zoophilic species which loss ability for sexual 
reproduction due to domestication of host animals (Tang et al., 
2021). The species now mainly consists of a cluster of clonal 
offshoots, and has a skewed mating type distribution with a 
preponderance of MAT1-2 (HMG gene). Only two of these clones 
are as yet clinically significant: the classical species T. interdigitale, 
mostly causing human pedal infections, and the novel taxon 
T. indotineae. The latter species shows reasonable specificity 
(96.97%) with MALDI-ToF MS, but T. interdigitale, which possibly 
resides on the human host already for prolonged periods, is barely 

different from other clones, the most reliable approach being ITS 
sequencing. It may be questioned whether taxonomic distinction 
of every clone is meaningful for reasons other than epidemiology. 
For clinical practice, direct analysis of genes which confer 
resistance may be a good way forward (Burmester et al., 2022).

In the course of evolution, Dermatophytes (family 
Arthrodermataceae in the order Onygenales) show a trend of 
adaptation to vertebrate hosts. Ancestral life cycles involve 
production of elaborate sexual fruiting bodies in the natural 
environmental and distribution of clones via the fur of 
terrestrial animals. These species, known as geophiles, have low 
infective abilities. Zoophilic species are prevalently associated 
with domesticated animals, have less soil contact and are carried 
longer in animal fur, as ‘clonal offshoots’(Gräser et al., 2006). A 
last and most recent adaptation is to the human host who is 
devoid of fur, and thus superficial infection of the skin takes 
place rather than asymptomatic colonization of fur. These 
species tend to adapt to particular body sites and lose sexual 
reproduction (Metin and Heitman, 2017; Kosanke et al., 2018). 
The evolution of the family Arthrodermataceae has been 
estimated to have taken about 37 million year (Kandemir et al., 
2021), but Tang et al., 2021 suggested that similar adaptations 

FIGURE 1

Distance dendrogram of MALDI-ToF MS analysis of T. mentagrophytes species complex. T. benhamiae is outgroup.
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may proceed rapidly after domestication. Indeed, we observe 
anthropophilic dermatophytes in several species such as: 
T. concentricum close to T. benhamiae (Čmoková et al., 2020), 
T. tonsurans close to T. equinum (Kandemir et al., 2020), and 
Microsporum ferrugineum close to M. canis (de Hoog et  al., 
2017; Kosanke et al., 2018). As a result, the human host carries 
a larger number of specifically adapted dermatophytes than any 
other mammal. In the T. rubrum complex, no sexual 
reproduction has been observed. It may be hypothesized that 
this complex is associated with humans for longer periods, 
which has led to complete loss of sexuality and divergently 
adapted clones, such as T. rubrum on glabrous skin and 
T. violaceum, T. soudanense on the scalp. The evolutionary trend 
over the entire family can thus be summarized as sexuality with 
clonal offshoots in terrestrial species (Figure 3A), gradual loss 
of sexuality with longer transmission periods of clonal offshoots 
in zoophilic species (Figure 3B), and complete loss of sexuality 
with specialization of some clones surviving on the human host 
(Figure  3C). Unisexual reproduction is considered a good 
strategy for short-term survival and population expansion. 
There is only limited genetic diversity that might be generated 
by aneuploidy or chromosomal translocations, which might 
improve the fitness of the progeny without disturbing a well-
adapted genotype and phenotype, while the occurrence of 
sexual reproduction may enhance its fitness by the introduced 
limited genetic diversity (Feretzaki and Heitman, 2013; Metin 

and Heitman, 2017; Kosanke et al., 2018). Sex is more suitable 
for long-term survival and adaptability to an ever-changing 
environment (Drenth et al., 2019).

In the present paper, we described the intermediate situation 
(Figure 3B), with decreased sexual reproduction and the presence 
of numerous clones. Various authors (Nenoff et  al., 2019a; 
Taghipour et al., 2019; Pashootan et al., 2022) distinguished 19 
genotypes within the T. mentagrophytes complex, based on ITS 
sequence diversity. The zoophilic species tend to comprise a 
plethora of genotypes, as is also observed, e.g., in the T. benhamiae 
group (Čmoková et al., 2020). With the identification of geophilic 
dermatophytes, which interact sexually, the genotypes are usually 
disregarded as just causing some intraspecific variability 
(Čmoková et al., 2020). In the strictly anthropophilic species of 
the T. rubrum complex, clones are distinguished because of their 
ecological adaptation and clinical significance (Su et al., 2019), 
rather than based on their molecular distance. We recommend to 
distinguish species of the intermediate group (Figure 3B) only 
when they show an appreciable degree of adaptation and thus are 
clinically significant. Clinical relevance is effectuated evolution 
and is thus also biologically relevant. We advocate to regard the 
molecular diversity of the T. mentagrophytes complex other than 
the clones T. indotineae and T. interdigitale as variation within a 
single species. The lineages within these entities may 
be epidemiological relevant and can be numbered as haplotypes, 
rather than attributing formal taxonomic species names.

A

C

B

D

FIGURE 2

MALDI-ToF MS in the T. mentagrophytes species complex; only variable regions are shown in (A–D).
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FIGURE 3

Sexuality with clonal offshoots in terrestrial species (A). Gradual loss of sexuality with longer transmission periods of clonal offshoots in zoophilic 
species (B). Complete loss of sexuality with specialization of some clones surviving on the human host (C).
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