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Antitumor property of Crotoxin (CTX), the major toxin from Crotalus durissus terrificus
snake venom, has been demonstrated in experimental animal models and clinical trials.
However, the direct action of this toxin on the significant events involved in
neovascularization, which are essential for tumor growth and survival, has not been
confirmed. This study investigated the effects of CTX on the key parameters of
neovascularization in two- and three-dimensional culture models. Murine endothelial
cell lines derived from thymus hemangioma (t.End.1) were treated at different
concentrations of CTX (6.25–200 nM). Endothelial cell proliferation, cell adhesion, and
actin cytoskeletal dynamics on laminin (10 µg/ml), type I collagen (10 µg/ml), and
fibronectin (3 µg/ml) were evaluated along with the endothelial cell migration and
formation of capillary-like tubes in 3D Matrigel. CTX concentration of 50 nM inhibited
tube formation on 3D Matrigel and impaired cell adhesion, proliferation, and migration
under both culture medium and tumor-conditioned medium. These actions were not
accountable for the loss of cell viability. Inhibition of cell adhesion to different extracellular
matrix components was related to the reduction of αv and α2 integrin distribution and
cytoskeletal actin polymerization (F-actin), accompanied by inhibition of focal adhesion
kinase (FAK), Rac1 (GTPase) signaling proteins, and actin-related protein 2/3 (Arp 2/3)
complex. This study proved that CTX inhibits the major events involved in angiogenesis,
particularly against tumor stimuli, highlighting the importance of the anti-angiogenic action
of CTX in inhibition of tumor progression.
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INTRODUCTION

Angiogenesis is a complex process involving the formation of new blood vessels from preexisting
endothelium and is regulated under both physiological and pathological conditions, by a range of
anti-angiogenic and proangiogenic factors (Folkman andHaudenschild, 1980; Folkman 1995; Fierro,
2005). The overexpression of angiogenic factors and down-regulation of angiogenic inhibitors,
known as the “angiogenic switch,” is particularly essential for tumor progression (Folkman, 2002;
Dass et al., 2007). Besides growth factors, tumor angiogenesis is also regulated by cell-cell and cell-
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extracellular matrix interactions mediated by adhesion receptors
like cadherins and integrins (Eliceiri and Cheresh, 1998).
Intracellular signaling, based on a microenvironment-induced
modulation, coordinates the different cellular functions,
including proliferation, differentiation, and migration (McCarty,
2020). Integrins are transmembrane receptors for several
extracellular matrix (ECM) components such as laminin,
collagen, and fibronectin connecting the ECM to the
cytoskeleton; integrins also mediate this signaling (Barczyk
et al., 2010; Schlie-Wolter et al., 2013; McCarty, 2020). The
endothelial cell-ECM interaction mediated by integrins
promotes intracellular signal transduction, cytoskeleton
reorganization, and alterations in cell behavior, such as
stimulation of endothelial cell proliferation, migration, and
invasion (Varinska et al., 2017; Viallard and Larrivee, 2017).
The literature reports that endothelial cells proliferate
50–200 times faster in a tumor microenvironment and express
specific molecules, which may become a pharmacological target,
without affecting the integrity of healthy vessels. A single vessel can
support about 100 tumor cells. Thus, destroying this structure may
eradicate a considerable number of tumor cells (Dass et al., 2007).

Additionally, endothelial cells in the tumor microenvironment
are genetically stable and are less likely to accumulate mutations
that allow drug resistance (Boehm et al., 1997). Thus, targeting
tumor neovascularization is an attractive strategy for cancer
therapy (Hood et al., 2002). Several animal venoms have been
identified as an alternative strategy for anticancer therapies
(Varinska et al., 2017). Venoms are a complex mixture of
bioactive chemical substances, mainly proteins, and peptides
rich in disulfide, with several pharmacological actions, making
it an efficient anticancer agent. Also, venoms exhibit specificity
and possess the ability to modify their molecular targets, making
them good therapeutic candidates (Chatterjee, 2018). Snake
venoms are a natural source of molecules that modulate cell-
ECM interaction orchestrated by integrins; two large Viper
venom molecules considered integrin antagonists include
disintegrins and C-type lectin proteins (Marcinkiewicz, 2013).
However, phospholipases A2 (PLA2-EC: 3.1.1.4) derived from
snake venoms possess antitumor activity owing to their inhibitory
action against several tumor cells (Rudrammaji and Gowda, 1998;
Kang et al., 2000; Rodrigues et al., 2009). The cell-cell interactions
(Kang et al., 2000), along with cell adhesion and migration
functions (Zouari-Kessentini et al., 2009), are not necessarily
dependent on their catalytic activity (Stabeli et al., 2006).

Crotoxin (CTX) is the most abundant toxin (nearly 60% of the
total venom) in Crotalus durissus terrificus (Laurenti, 1768)
venom (CdtV). It is a heterodimeric β-neurotoxin, formed by
the non-covalent association of two different subunits: an acid
denominated as CA (Crotoxin A) or crotapotin and a base named
CB (Crotoxin B) or phospholipase A2. Several studies have shown
that CTX has immunomodulatory, anti-inflammatory,
antimicrobial, analgesic, and antitumor effects (Sampaio et al.,
2010; Sartim et al., 2018). Antitumor activity of CTX has been
demonstrated particularly on tumor cells, in both in vitro and in
vivo experimental trials, as well as in clinical trials (Rodrigues
et al., 2009; Sampaio et al., 2010). CTX has shown significant
regression of various tumors, particularly solid tumors, in clinical

trials, besides pain relief and improvement in overall clinical
status (Costa et al., 1998; Cura et al., 2002). This inhibitory
activity has also been evidenced in experimental models aimed
at characterizing the mechanisms involved in the antitumor
effects of CTX. In vitro studies have highlighted that CTX
incubation in different tumor cell lines induces significant
inhibition on the proliferation of murine and human tumor
cells, including decreased expression of receptors for growth
factors, cytotoxic activity, mitochondrial membrane potential,
necrosis, and autophagy (Newman et al., 1993; Rudd et al., 1994;
Donato et al., 1996; Kang et al., 2000; Papo and Shai, 2003;
Yamazaki et al., 2005). On the other hand, in vivo experimental
models have indicated that the prolonged inhibitory action of CTX
promotes the reduction of solid tumors (Faiad, 2012; Brigatte et al.,
2016) and ascites tumor (Nunes et al., 2010; Neves et al., 2019). The
significance of CTX immunomodulatory activity on macrophages
in the tumor microenvironment has been demonstrated as the
most marked inhibitory effect on solid tumor development and
progression (de Araujo Pimenta et al., 2019). The inhibitory effect
of CTX on neovascularization induced by the tumor could
significantly contribute to the antitumor action described for
this toxin. The present study is the first to demonstrate the
direct action of CTX on endothelial cell functions with
specificities of the tumor microenvironment, confirming the
notable contribution of the anti-angiogenic action to the
antitumor effect of this toxin.

MATERIALS AND METHODS

Isolation of Crotoxin
Purification and phospholipase activity of the CTX was
performed as described in previous studies (Fraenkel-Conrat
and Singer, 1956; Laemmli, 1970; Lobo de Araujo and
Radvanyi, 1987; Faure and Bon, 1988; Sampaio et al., 2003;
Sampaio et al., 2006a; Sampaio et al., 2006b; Brigatte et al.,
2016; de Araujo Pimenta et al., 2019). Briefly, crude venom
solution (CdtV) was subjected to anion-exchange
chromatography, using a Mono-Q HR 5/5 column in an FPLC
system (Pharmacia, Uppsala, Sweden). The fractions (1 ml/min)
were eluted using a linear gradient of NaCl (0–1 mol/L in
50 mmol/L Tris-HCl, pH 7.0). Three peaks (p1, p2 and p3)
were obtained: p2 corresponded to the pure CTX fraction
(about 60% of the crude venom); peaks 1 and 3 included the
other CdtV toxins. Before pooling, the fractions containing CTX
were tested for homogeneity by non-reducing sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (12.5%) and the
phospholipase A2 activity was assessed by a colorimetric assay
using a synthetic chromogenic substrate.

Cell Culture
Murine endothelial cells derived from thymus hemangioma
(t.End.1) were obtained by courtesy of Dr. Ana Maria Moura
(Laboratory of Immunopathology, Butantan Institute, Brazil).
The cell line t.End.1 was derived from a thymic hemangioma
expressing the polyoma middle T antigen, which is highly
tumorigenic and bears functional characteristics similar to
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those found in angiogenic endothelial cells (Aurrand-Lions et al.,
2004; Bussolino et al., 1991; Williams et al., 1988). Cells were
cultivated in 75 cm2

flasks in the presence of RPMI 1640 (Gibco,
Grand Island, NY, United States) media supplemented with 10%
fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin,
100 U/mL streptomycin (all Gibco) having a pH 7.4, incubated at
37°C enriched with 5% CO2. In all experiments, t.End.1 cells were
used between the second and fourth cell passage.

Human breast adenocarcinoma cell line MCF-7 (ATCC®
HTB22) were seeded at a density of 1 × 106 in 75 cm2

flasks
in the presence of RPMI 1640 (Gibco, Grand Island, NY,
United States) media supplemented with 10% FBS, 2 mM
L-glutamine, 100 U/mL penicillin, 100 U/mL streptomycin (all
Gibco), at a pH 7.4, incubated at 37°C, enriched with 5% CO2 for
growth and semiconfluence. Cells were rinsed twice in
phosphate-buffered saline (PBS) and incubated in RPMI 1640
medium containing 2% FBS. Three days later, MCF-7
conditioned medium (MCF-7-CM) was collected, centrifuged
for 10 min at 1200 rpm, filtered through a 0.22 µm pore size
filter and stored at –20°C until use. In all experiments, MCF-7
cells were used in the second or third cell passage.

Cell Proliferation and Viability
t.End.1 cells (5 × 104/ml/well) were seeded into a six-well plate in
the presence of RPMI 1640 medium and 10% FBS and left
overnight at 37°C. Unattached cells were removed after
washing with PBS, attached cells were treated with CTX at
concentrations of 6.25, 12.5, 25, 50, 100, and 200 nM
(corresponding to 0.15, 0.3, 0.6, 1.2, 2.4, and 4.8 µg/ml,
respectively), for 24 or 1 h followed by 24 h incubation in
fresh culture medium. The cells were then removed from the
plate using 0.25% trypsin-EDTA. Cell viability was measured by
the dye exclusion method using Trypan Blue. A Neubauer
chamber was utilized to determine cell proliferation by cell
counting.

Cell Adhesion Assay
96-well plates were coated with fibronectin (3 µg/ml), type I
collagen (10 µg/ml), and laminin (10 µg/ml; Invitrogen,
Carlsbad, CA, United States) and left overnight at 4°C. Wells
were then washed thrice with PBS and blocked with 1% bovine
serum albumin (BSA) in PBS for 2 h at 37°C. For all matrix
components evaluated, a negative control (adhesion cells in BSA
coating alone) was used to assess adherence to non-specific
substrates. t.End.1 cells previously treated with CTX (50 nM)
for 1 h in a single cell suspension (1 × 106/ml) were added to the
wells and allowed to adhere to the substrate for 1 h at 37°C with
5% CO2. After incubation, unattached cells were eliminated by
rinsing the well with PBS, while the attached cells were incubated
with 5 mg/mlMTT for 3 h at 37°C. Formazan crystals obtained by
MTT reduction were dissolved by the addition of 100 µl PBS
containing 10% SDS and 0.01 M HCl (18 h, 37°C, 5% CO2). The
absorbance was read at 595 nm in an ELISA plate reader
(Multiskan EX, LabSystem). The number of cells was
estimated using the absorbance of a standard curve of known

number of fresh live cells added to the plates just before staining
(Costa et al., 2013).

Cell Scratch Wound Healing Assay
A confluent monolayer of t.End.1 (1 × 106) was formed on the
coverslips in 24-well plates previously coated with type I collagen
(10 µg/ml), and a wound was made using a sterile cell lifter. Next,
t.End.1 cells were incubated for 1 h in the presence of CTX
(6.25–100 nM). The cells were then washed with PBS and
further incubated in the presence of RPMI media containing
1% FBS. After 6, 12 and 24 h of incubation, migrated endothelial
cells were stained with Rosenfeld and photographed and
quantified with ImageJ software by measuring the area of the
cell that moved beyond the reference line. For counting the
migrating cells in the field induced by the probe, the images
were inserted into the rules on the left and right edges of the field,
based on the image obtained in the T0 coverslip. After insertion of
dashed lines, the count of migrating cells in the field was
performed (de Araujo Pimenta et al., 2019).

Chemotaxis in the Transwell Model
Transwell inserts (6.5 mm diameter) with an 8 µm pore (Costar,
Cambridge, MA, United States) were used to assess the in vitro
directional migration of t.End.1 cells in response to a gradient of
soluble chemoattractants. The membranes were hydrated with
serum-free culture media for 45 min at 37°C, containing 5% CO2.
Next, t.End.1 cells (1 × 105) previously treated with CTX (50 nM)
for 1 h were added to the upper side of the inserts in 200 µl serum-
free media. The lower chamber was filled with 600 µl of RPMI
media supplemented with 2% FBS or MCF-7-CM, which holds
high secretory activity for various substances, including chemokines
(Garrido et al., 1995; Shih et al., 2012). After 5 h of cell migration at
37°C with 5% CO2, non-migrated cells were removed from the
upper side of the membrane by cotton swabs. Cells migrated to the
lower side were fixed with methanol for 15 min and stained with
0.5% crystal violet for 15 min. After several washing steps with PBS
to remove excess amounts of crystal violet dye, cell migration was
quantified, and cells were counted from photographs taken under
phase contrast microscope in five random fields per insert.

Capillary-Like Structure Formation Assay
on 3D-Matrigel
According to the method described by Arnaoutova and Kleinman
(2010), 50 µl of Matrigel (9.3 mg/ml; BD Biosciences, New
Bedford, MA, United States) was added to a 96-well culture
plate and allowed to polymerize for 45 min at 37°C. Subsequently,
t.End.1 cells previously treated with CTX (50 nM) were plated on
top of the Matrigel at a density of 1.5 × 104/well in the RPMI
medium comprising 2% FBS and incubated for 6 h at 37°C. Tube
formation was observed through an inverted phase-contrast
microscope (Nikon Eclipse TS100) and photographed with a
DS-Fi2 camera, using the Nis-Element D software. Quantification
was carried out by counting all branches in five random fields
from each well.
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Cell Migration Assays by Time-Lapse Video
Microscopy
TTP® 24-well plates were coated with type I collagen (10 µg/
100 µl) for 30 min at 37°C. The plates were then washed thrice
using PBS, and 1 × 103 cells/well were plated and incubated in
RPMI media for 24 h. Next, cells were incubated in the absence
(control) or presence of CTX (50 nM) for 1 h. Subsequently, the
cells were washed and incubated only in the presence of a fresh
culture medium. The plates were incubated and coupled to the IN
Cell Analyzer GE 2200 equipment in a ×10 air objective lens; for
at least 18 h, eight fields/well (six wells for every treatment) were
recorded every 5 min to evaluate t.End.1 cell speed, relative
distance, and directionality. Image acquisition was performed
using Analyzer 2200, version 1.6.3. The ImageJ plugin manual
tracking was employed to track cell nuclei. Hence, the velocity of
the cells was analyzed; the net distances per hour were calculated
and summed up to determine the total cell path length (Hauff
et al., 2015; de Araujo Pimenta et al., 2019). Since the trajectory of
individual cells was monitored, directionality was evaluated by
calculating the D/T ratio (0–1), which is the ratio between the
smallest distance between the initial and final position of the cell
(D) by the total distance traveled (T). The effectiveness of
migration is improved when directionality is high.

Confocal Microscopy Analysis of Integrins
Distribution and Actin Cytoskeleton
Arrangement
Coverslips, previously coated with fibronectin (3 µg/ml), type I
collagen (10 µg/ml), and laminin (10 µg/ml) were plated by CTX
treated t.End.1 cells (5 × 104/well) and incubated overnight at
37°C with 5% CO2 in the presence of MCF-7-CM or RPMI media
supplemented with 10% FBS. Subsequently, the cells were fixed in
4% paraformaldehyde and 5% sucrose in PBS buffer for 10 min,
rehydrated with PBS (3 × 10 min) and then permeabilized with
0.2% Triton X-100 for 10 min. Unspecific binding sites were
blocked with 2% BSA diluted in PBS for 1 h at room temperature
(RT). After that, t.End.1 cells were incubated with primary rabbit
antibodies against αv integrin for fibronectin coating and α2
integrin for type I collagen coating (both antibodies from
Millipore, Billerica, MA, United States) for 1 h at RT. After
washing, secondary antibodies (Goat anti-rabbit Alexa 488, 1:
800; Invitrogen, Carlsbad, CA, United States) and rhodamine
phalloidin (1:800; Molecular Probes, Burlington, CA,
United States) were applied for 1 h at RT. Negative controls
consisted of the absence of primary antibodies. The coverslips
were washed twice in PBS, mounted with Vectashield® (Vector
Labs, Burlingame, CA, United States) and observed using a Zeiss
confocal inverted microscope (Zeiss LSM-510) (Butantan
Institute, São Paulo, Brazil).

SDS/PAGE and Western Blot Analysis
The t.End.1 cells previously treated with 50 nM of CTX for 1 h
were harvest and lysed in Radioimmunoprecipitation assay
(RIPA) buffer (R0278; Thermo Scientific) containing 1:300
protease and phosphatase inhibitor cocktail (P8340, P5726,

P0044; Sigma-Aldrich) and incubated on ice for 30 min. Cell
lysates were homogenized and then centrifuged at 16,000 × g at
4°C for 20 min. The supernatant was collected and protein
concentration was measured using BCA Protein Assay. Protein
extracts (30 µg) were denatured in Laemmli buffer, incubated at
95°C for 4 min and then, were separated into 4–20%
polyacrylamide gels (Bio-Rad). After electrophoresis, samples
were transferred to a nitrocellulose membrane (Bio-Rad). The
membranes were blocked in Tris Buffered Saline with 0.1%
Tween® 20 (TBST) containing 5% BSA for 2 h at RT and then
incubated with anti-FAK antibody (1:1000; BD Biosciences), anti-
Arp2/3 (1:1000; Abcam), anti-F-actin (1:500; Abcam), anti-Rac1
(1:1000; Abcam), anti-MMP-2 (1:2000; Millipore) and anti-
MMP-9 (1:2000; Millipore) overnight at 4°C The membranes
were then incubated in the peroxidase-conjugated secondary
antibody (1:5000; anti-rabbit or anti-mouse) for 2 h at RT.
Enhanced Chemoluminescence kit (Thermo Scientific) was
used for detection. The signals were detected using an image
acquisition system (Uvitec mod Alliance 9.7; Uvitec, Cambridge,
United Kingdom). Band intensities were measured using ImageJ
(NIH) software. Targeted bands were normalized to the GAPDH
antibody (1:5000; Abcam).

Measurement of VEGF, MMP-2 and
Pro-MMP-9
Endothelial cells were treated with 50 nM CTX and then
incubated in RPMI or MCF-7 tumor-conditioned media for
24 h. The supernatant was collected, and the concentration of
the VEGF, MMP-2 and pro-MMP-9 thus secreted, was measured
using an enzyme-linked immunosorbent assay (ELISA, Abcam
Elisa Kit).

Statistical Analysis
GraphPad InStat software version 3.01 (GraphPad Software Inc.,
San Diego, CA, United States) was used (Glantz, 1997) for the
statistical analyses. Multiple comparisons analyses (for all pairs of
groups) were performed using one-way analysis of variance
(ANOVA) followed by Tukey’s post test. Results from other
assays were analyzed using ANOVA and then Bonferroni’s
test for multiple comparisons against a single control. An
unpaired Student’s t-test or Mann Whitney test was
performed to compare two groups. A p-value <0.05 was
considered statistically significant. The results have been
demonstrated as mean value ± standard errors of means.

RESULTS

CTX Inhibits Proliferation and Adhesion of
t.End.1 Cells to Different Extracellular
Matrix Ligands
Initially, the proliferative capacity of t.End.1 cells were evaluated
24 h after incubation in the presence of CTX at different
concentrations. A significant inhibition of endothelial cell
growth was observed at concentrations of 12.5 nM (29%),
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25 nM (38%), 50 nM (62%), 100 nM (44%), and 200 nM (24%),
compared to the control group, consisting of t.End-1 cells
incubated only in the presence of RPMI 1640 medium, under
the same experimental conditions. Only the 6.25 nM
concentration did not affect the number of cells (Figure 1A).
To evaluate whether short incubation in the presence of CTX
would have the same inhibitory effect as observed in long
incubation, t.End.1 cells were pretreated with CTX for 1 h at
the same concentrations and subsequently washed and incubated
only in the presence of fresh culture medium for 24 h. The results
demonstrated that CTX significantly inhibited the proliferative
capacity of t.End.1 cells at concentrations of 25 nM (39%), 50 nM
(61%), 100 nM (51%), and 200 nM (27%) compared to the
control group, consisting of t.End-1cells incubated only in the
presence of RPMI 1640 medium, under the same experimental
conditions. CTX concentrations of 6.25 and 12.5 nM showed
inhibition of 17 and 18%, respectively, but were not considered
statistically significant in comparison to the control group,

incubated only in the presence of RPMI culture medium
(Figure 1B). Cell viability test (1% Trypan blue exclusion) was
performed after the assays, both on cells incubated with culture
medium (control) and CTX. The viability of all cells was more
than 98% (data not shown). Based on these results, for the
accomplishment of other assays t.End.1 cells were treated with
CTX beforehand for 1 h.

To investigate the action of CTX on t.End.1 cell adhesion on
different natural ligands, main concentrations of the toxin that
induced inhibition on the proliferation of t.End.1 cells were
utilized. CTX at concentrations of 25, 50, and 100 nM inhibited
(47, 64, and 72%, respectively) cell adhesion to type I collagen
(10 µg/ml) significantly as compared to the control group
(Figure 1C). On the other hand, endothelial cell adhesion on
fibronectin coating (3 µg/ml) was significantly affected at CTX
concentrations of 50 nM (33%) and 100 nM (28%), in
comparison to the control group (Figure 1D). Unlike other
matrix components, t.End.1 cells showed a lesser adhesion to

FIGURE 1 | Effect of CTX on t.End.1 cell proliferation and adhesion to extracellular matrix ligands. t.End.1 cells (5 × 104 cells/well) were incubated in the presence of
different CTX concentrations (6.25, 12.5, 25, 50, 100 and 200 nM) for 24 h (A) or were previously incubated with the different concentrations for only 1 h and then
washed and incubated for another 24 h only in fresh culture medium (B). Cell proliferation was assessed after 24 h by cell counting. The data are presented from three
distinct experiments run in octoplicate and are expressed as mean ± s.e.m. *p < 0.05 compared to control group, **p < 0.05 compared to other CTX
concentrations. For adhesion assay, t.End.1 cells pretreated for 1 h with CTX (25, 50 and 100 nM) were washed and added (100 µl) to Maxsorp plates (Nunc

®
)

containing 96 wells, previously sensitized with the different ligands of matrix: type I collagen (10 µg/ml) (C); fibronectin (3 µg/ml) (D) and laminin (10 µg/ml) (E). After 1 h,
adhered cells were evaluated by MTT assay. The values obtained were fed into GraphPad INSTAT program V2.01 for conversion of optical density (OD) in the number of
adhered cells. The data are presented from three distinct experiments run in sextuplicate and are expressed as mean ± s.e.m. *p < 0.05, compared to control group and
**p < 0.01, significantly different from mean values for groups to their respective CTX-treated cells.
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laminin (10 µg/ml) coating (Figure 1E). Furthermore, the inhibitory
effect of CTX was observed only at a concentration of 50 nM (55%),
relative to the control. Negative control (BSA coating) demonstrated
that cell adhesion was ECM protein-dependent (Figures 1C–E).

CTX Decreases Migration in Wound Healing
Model
Wound healing assay was used to evaluate the directional
endothelial cell movement onto an empty field created by an
interruption in the cell monolayer. After that, t.End.1 cells were
treated with different concentrations of CTX (6.25–100 nM) for
1 h. Subsequently, cells were incubated in culture medium for 6,
12, and 24 h. The significant inhibitory action of CTX on t.End.1
cell migration was observed at concentrations of 50 and 100 nM
(59 and 33%, respectively) after 6 h, as compared to the control
cells (Figure 2A). As compared to other concentrations (6.25 nM:
55%, 25 nM: 54%, 50 nM: 46%, and 100 nM: 39%), CTX
significantly inhibited cell migration at a concentration of
50 nM within 6 h (Figure 2A). In the 12 h period, the
inhibitory action of CTX at concentrations of 50 and 100 nM
was again significant, in comparison to the control cells (35 and
21%, respectively) and with the other concentrations (6.25 nM: 49
and 38%, respectively and 12.5 nM: 49 and 39%, respectively)
(Figure 2A). Following 24 h of incubation, cell migration was
significantly inhibited when pretreated at concentrations of 50
and 100 nM (47%), in comparison to the control cells, and the
concentration of 6.25 nM (Figure 2A). Figure 2B depicts the
results obtained over the 24 h culture period, after 1 h
pretreatment with 50 nM CTX. The time 0 h corresponds to
the period in which the monolayer was interrupted. After 24 h,
inhibited migration of t.End.1 cells into the empty field was
observed following pretreatment with CTX.

CTX Prevents Capillary Structure Formation
by t.End.1 Cells Grown in 3D-Matrigel and
Compromises the t.End.1-Migratory
Behavior on Type I Collagen in a 2D Assay
Analyzed by Time-Lapse Method
The effect of CTX on the formation of endothelial cell
capillary structures was evaluated in 3D-Matrigel (Figure 3).
Control cells showed capillary structure formation after the
second hour of incubation (data not shown). After 6 h, the
t.End.1 cellular network thus formed presented fine, elongated
structures, and cell-cell contact was established (Figures 3A,B,
Panel Control). On the other hand, t.End.1 cells pretreated
with CTX (50 nM) for 1 h demonstrated a 66% reduction in
the ability to form capillary-like structures compared to control
cells at the same incubation period. This result suggests that
CTX promoted loss of cell-cell contact, possibly accompanied
by cytoskeleton retraction, contributing to the reduction of
capillary-like structures (Figures 3A,B, panel CTX).

A detailed analysis of the endothelial cell dynamic behavior
during migration was analyzed by time-lapse microscopy, which
allows measurement of individual parameters such as cell
velocity, distance traveled (relative distance), and
directionality. A 2D assay was performed where t.End.1 cells
at low density were plated on dishes previously coated with a
mixture of type I collagen (10 μg/ml) and 1% fibronectin (3 μg/
ml). It was found that after 8 h of incubation, CTX reduced 25%
of t.End.1 migration velocity at basal stimulus compared to the
control group (22.95 ± 1.61 vs. 30.8 ± 3.7) (Figure 3C). Besides,
CTX also decreased relative distance (Figure 3D) and
directionality (Figure 3E) of t.End.1 cells (53 and 43%,
respectively). Figure 3F represents the results obtained in the
8 h culture period, after pretreatment with 50 nM CTX for 1 h,

FIGURE 2 | Effect of CTX on t.End.1 migration in the Wound healing model at different treatment periods. Wound healing assay performed in t.End.1 cells treated
with different CTX concentrations (6.25, 12.5, 25, 50, 100 and 200 nM) for 0, 6, 12 and 24 h at 37°C and 5%CO2. (A)Results are expressed as Number of Migrated Cells
and represent the mean ± s.e.m. The data are presented from three distinct experiments run in at least in triplicate each group. *p < 0.05 compared to the control group,
**p < 0.05 compared to other CTX concentrations. (B) Photomicrographs obtained at time 0 and 24 h at ×10 magnification. The images were collected under an
Olympus BX 51 microscope, using the Image-Pro Plus 5.1 software, in a ×10 objective.
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and control cells stimulated with RPMI 1640 medium
supplemented with 2% FBS.

The Supplementary Material (Supplementary Videos S1,S2)
projects the migratory capacity through time-lapse assay of the
t.End.1 cells in a 2D-matrix of type I collagen and fibronectin
mixture, cultured in the presence of the RPMI medium
supplemented with 2% FBS for 8 h (Supplementary Videos
S1,S2). The images depict that t.End.1 cells treated with CTX
(Supplementary Video S2) exhibited altered migratory behavior
and changed the cytoskeletal dynamics and the formation of
lamellipodium-like structures, compromising cytoskeleton
displacement and directionality via 2D coating.

CTX Impairs t.End.1 Migration Properties in
MCF-7-Conditioned Medium
Migration in Wound Healing Model
Under basal stimulus (RPMI supplemented with 2% FBS), t.End.1
cells previously treated with CTX (50 nM) and incubated for 24 h
demonstrated a significant reduction (52%) in endothelial cell
migration (Figures 4A,B, a,b [if subparts are of B]). However,
under tumor-derived factors stimulus by the use of tumor

conditioned medium at the same experimental conditions, a
59% increase in the migratory capacity of t.End.1 cells was
demonstrated compared to the basal stimulus group (Figures
4A,B, a,c [if subparts are of B]). Surprisingly, t.End.1 cells
pretreated with CTX and subjected to the migration assay
under tumor conditioned medium stimulus demonstrated a
marked inhibitory effect (81%) compared to that in the
control cells pretreated with RPMI supplemented with 2% FBS
alone (Figures 4A,B, c,d [if subparts are of B]).

Migration in Transwell Model
As illustrated in Figure 4C, the control group demonstrated an
increased cell migration (35%) under conditioned media with
MCF-7 stimulus, in comparison to the control group stimulated
with RPMI media having 2% FBS (Figures 4C,D, a,c [if subparts
are of D]). Furthermore, t.End.1 cells treated with CTX (50 nM)
for 1 h supported 41% inhibition of cell migration against the control
group stimulated with MCF-7 conditioned medium (Figures 4C,D,
c,d [if subparts are of D]). Regarding basal stimulus, although CTX
showed 21% inhibition of the number of migrated cells, this
difference was not statistically significant when compared to the
control group (Figures 4C,D, a,b [if subparts are of D]).

FIGURE 3 | Effect of CTX on the formation of tubule-like structures in 3D-matrigel and migratory behavior on type 2D-type I collagen evaluated in Time Lapse. CTX-
pretreated t.End.1 cells were added on polymerized Matrigel in 96-well plates and incubated for 6 h. The results are expressed in a number of tubular structures and
represent the count of five fields from triplicates of each group. The data are presented from three distinct experiments. *p < 0.0001, compared to the control group (A).
Photomicrograph of representative tube formation. Images obtained at the ×40 objective (B). For the 2D-assay, time lapse images obtained from CTX pretreated
t.End.1 cells migrating under collagen coating in In Cell Analyzer GE 2200 equipment in a ×10 objective for 18 h. The t.End.1 cell velocity (C), relative distance (D), and
directionality (E)were measured. These parameters were evaluated using Image J software. Data are mean ± s.e.m. *p < 0.05 by comparison with the control group (n �
29) and CTX (n � 33). The graphs were plotted from the data collected during three independent experiments.
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CTX Inhibits MMP-2 and VEGF Secretion
and MMP-2 and MMP-9 Expression
CTX significantly inhibited the concentration of VEGF in t.End.1
cells in the presence of basal media and tumor conditioned media
compared to the control (52 and 49%, respectively) (Figure 5A).
The MMP-2 and MMP-9, which are related to the degradation of
the basement membrane in the process of angiogenesis,
demonstrated that CTX inhibited MMP-2 secretion under
both the stimuli compared to its respective control (50 and
47%, respectively) (Figure 5B). Conversely, CTX did not have
any effect on pro-MMP-9 secretion (data not shown). Western
blotting analysis has shown the effect of CTX on MMP-9 and
MMP-2 protein levels. Similar results were found on MMP-2
where CTX also inhibited MMP-2 expression by 37 and 41%
under basal and tumor stimuli, respectively. Regarding MMP-9
protein expression, the anti-MMP-9 antibody detected both pro-
MMP-9 and active MMP-9 as breakdown products, there is no
detection of pro-MMP-9 expression level in the RPMI group and

there is a mild expression in the TCM group which can be
correlated to the finding of ELISA assay. However, the active
MMP-9 expression levels were detected and were inhibited by
CTX under both basal and tumoral stimuli (29 and 32%,
respectively). (Figures 5C,D).

CTX Interferes in t.End.1 Filamentous Actin
Organization Under Different Stimuli by
Inhibiting Proteins Involved in the Signaling
Pathway of Different Integrins
The filamentous actin (F-actin) cytoskeleton of t.End.1 cells,
incubated overnight in RPMI medium with 2% FBS on both
fibronectin (Figure 6A, a [if subparts are of A]) and type I
collagen (Figure 6B, a [if subparts are of B]) showed a distinct cell
cortex, a few actomyosin stress fibers (structures responsible for
the production and transmission of mechanical stress) and, most
notably, multiple projections in different directions (filopodia
and lamellipodia). In the presence of MCF-7-CM control cells

FIGURE 4 | Effect of the CTX on migration assay induced by MCF-7-Conditioned medium. (A)Wound healing assay performed in CTX-pretreated t.End.1 cells in
the presence of RPMI medium containing 10% FBS (control) or in the presence of MCF-7-conditioned medium (chemotactic stimulation) for a period of 24 h. After this
time, cells were fixed by the Rosenfeld panchromic method. A total of five random fields per coverslip were counted under a brightfield microscope (Standard 25; Carl
Zeiss, Germany) using a ×10 objective. The results are expressed as Number of Migrated Cells and represent the mean ± s.e.m. The data are presented from three
distinct experiments run in quadruplicate of each group. *p < 0.001 compared to RPMI control group. **p < 0.001 compared to RPMI control group. #p < 0.001
compared to MCF-7-CM control group. The images represented in (B) in Panels (a–d) were obtained in a ×5 objective. Panel (a) represents control cells incubated in
RPMI 1640 medium with 10% FBS; Panel (b) represents cells treated with CTX and incubated in RPMI 1640 medium with 10% FBS; Panel (c) represents control cells
incubated in MCF-7-CM and Panel (d) represents CTX treated cells and incubated in MCF-7-CM. For the Transwell assay, in (C) the number of migrating cells was
determined by counting in five random fields per membrane using light microscopy. The results are expressed as Migrant Cells and represent the mean ± s.e.m. *p <
0.001 compared to RPMI control group. #p < 0.01 compared to MCF-7-CM control group. (D) The panels are representative of t.End.1 cell chemotaxis: (a) control in
response to RPMI 1640 medium with 2% FBS; (b) CTX in response to RPMI 1640 medium with 2% FBS; (c) control in response to MCF-7-CM; (d) CTX in response to
conditioned medium from MCF-7 tumor cells. The images were collected under an Olympus BX 51 microscope using the Image-Pro Plus 5.1 program, using a ×40
objective. The data are presented from three distinct experiments.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7133328

Kato et al. Crotoxin Inhibits Endothelial Cell Functions

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


showed a marked increase of stress fibers (SFs), becoming more
contractile; on fibronectin, cells were apparently more polarized,
showing a morphology that favors directional migration (Figures
6A,B, c [if subparts are of both A and B]). Treatment with CTX
led to F-actin disorganization, dissolution of stress fibers and
retraction of cellular projections, especially on fibronectin, under
both the experimental conditions (RPMI-1640 and MCF-7-CM)
(Figures 6A,B, b,d [if subparts are of B]).

The distribution of αv integrins on control and MCF-7-CM
treated cells plated on fibronectin showed their presence in focal
adhesions to the extracellular matrix, where stress fibers were
inserted (Figure 6A, a,c [if subparts are of A]). Treatment with
CTX on both experimental conditions (control and MCF-7-CM),
maybe due to its collapsing effect on the F-actin cytoskeleton, led
to an intracellular localization of this integrin subunit, with
concentration in the perinuclear region (Figure 6A, b,d [if
subparts are of A]).

Regarding the signaling proteins, CTX inhibited FAK (58%)
and Rac1 (49%) expression with no effects on the levels of Arp2/3
(a Rac1 effector protein) and G-actin expression at basal
condition. (Figures 6C,D). The Rac2 and Rac3 proteins have
similar molecular weight, both being 21 kDa. Therefore, the other
bands observed in the gel may be the product degradation of Rac
1 (Figure 6C). The effects of tumor-conditioned medium on
control cells were a quite pronounced reduction on the expression
of FAK and Arp 2/3 proteins, with no significant changes in Rac1
and actin filaments (Figures 6C,D). Cells pretreated with CTX
and incubated in MCF-7-CM compared to MCF-7-CM control,
showed higher inhibition of Arp2/3 (63%); the expression of
Rac1, not previously affected by the tumor conditioned medium,
was also reduced by CTX (43%) (Figures 6C,D). Science

Identifiers (LSIDs) for ZOOBANK registered names or
nomenclatural acts should be listed in the manuscript before
the keywords with the following format:

DISCUSSION

The study demonstrated that CTX interferes with the functions of
endothelial cells involved in tumor angiogenesis. The evaluation
of whether this toxin could alter angiogenic events like the
proliferation, adhesion, and migration activities of t.End.1 cells
revealed that the presence of CTX affected the proliferative
capacity of endothelial cells. The inhibitory effect was mainly
observed at intermediate concentrations (25, 50, and 100 nM).
These results have already been observed in other experimental
models, where themedian concentrations of the curve were found
to be the most potent (Faiad et al., 2008). However, the inhibitory
activity is probably not due to any cytotoxic effect of CTX on
endothelial cells.

Cell proliferation depends on the degree of adhesion between
the cell and its extracellular matrix ligand. It was noted that
t.End.1 cells showed good adhesion to type I collagen and
fibronectin, with values similar to those reported previously in
the literature (Schlie-Wolter et al., 2013), and unlike that
observed with these matrix components, the adhesiveness of
t.End.1 was lower to laminin. Cell adhesion depends on the
isoform of both integrin and laminin for specificity and
affinity (Nishiuchi et al., 2006). Cell migration is an essential
part of tumor progression. All CTX concentrations were assessed
for endothelial cell migration. As the study was conducted in a
wound healing model, it was possible to observe the inhibitory

FIGURE 5 | Effect of CTX on the VEGF and MMPs. CTX-pretreated t.End.1 cells were incubated for 24 h in the presence of the fresh medium. Then, the
supernatants were collected 99 for measurement of VEGF (A) and MMP-2 (B) concentrations by means of enzyme immunoassay (EIA) using a commercial kit. Data are
mean ± s.e.m. Data are the average of four samples of each group ± s.e.m and represent two distinct trials. *p < 0.01, compared to RPMI control group. **p < 0.05,
compared to RPMI control group, #p < 0.01, compared to MCF-7-CM.Western blotting analysis of protein expression levels of MMP-2 andMMP-9 (C). The values
were normalized by GAPDH expression and band intensities were quantified by densitometry of the homogenate Western blots (D) and represented the mean ± s.e.m.
for three samples per group and represent three independent assays. *p < 0.05 by comparison with the respective control groups. **p < 0.01 by comparison with the
respective control groups. ***p < 0.001 by comparison with the respective control groups.
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capacity of CTX concentrations, particularly the 50 nM
concentration, on cell migration induced in type I collagen
coating. The results obtained after cell proliferation and
migration tests in the wound healing model defined the use of
50 nM concentration for other experimental assays. Contributing
to this negative effect on cell migration, CTX reduced cellular
adhesion to collagen type I, fibronectin and laminin. Lowered
expression of important integrins and cytoskeletal changes were
related to reduced migration, with consequences to the ability of
endothelial cells to form new vessels.

The capillary-like structure formation is an essential step in
the angiogenesis process. Matrigel, a reconstituted basement
membrane, was used to study in vitro angiogenesis as it allows
rapid formation of capillary-like structures in a 3D system, being
a simple and easily quantifiable technique (Arnaoutova et al.,
2009; Bazaa et al., 2010). The presence of CTX also affected the
formation of capillary-like structures. The toxin CTX altered
endothelial cell morphology by preventing its projection to
Matrigel. It can be suggested that Matrigel, derived from EHS
murine sarcoma, provides conditions like those in the tumor
microenvironment, allowing the rapid formation of tubular

structures, as observed in this study. The results of this assay
corroborate the data obtained in the adhesion and cell migration
assays, which proposes that CTX affects the significant processes
that depend directly on cytoskeleton reorganization.

The actin cytoskeleton is directly associated with the adhesive
and migratory behavior of endothelial cells anchored to integrins
that are adhesion molecules with bidirectional communication.
Integrins allow the interaction between cells and extracellular
matrix components (Weis and Cheresh, 2011), support the actin
cytoskeleton’s reorganization, and consequently, the cell
migration, thus thriving the angiogenic process. Pretreatment
with CTX reduced velocity and persistence in cells migrating on
collagen type I, resulting in smaller distances traveled,
corroborating the results observed using the wound healing
assay. CTX also disorganized the actin cytoskeleton, and cells
showed less stress fibers, shorter filopodia and smaller
lamellipodia – all cellular processes important for cell migration.

The inhibitory action of CTX on the tumor stimulus was
assessed by performing a migration assay using two in vitro
models: wound healing and transwell system for chemotaxis. In
the Wound healing test, migration is directional (stimulated by

FIGURE 6 | Effect of CTX on actin cytoskeleton, intracellular signaling and integrin expression in t.End.1 endothelial cells in the different microenvironments. In (A),
marking of αv subunit (green) and F-actin (red) of control cells incubated with RPMI 1640 medium (a) or MCF-7-CM (b). CTX-treated cells are labeled in (b,d). In (B),
marking of α2 subunit (green) and F-actin (red) of control cells incubated with RPMI 1640 medium (a) or MCF-7-CM (b). CTX-treated cells are labeled in (b,d). Orange
arrows represent the expression of αv and α2 in the cell (green); White arrows represent the cytoskeleton protrusions (red). For details of the experiments, please
see the Materials and Methods section. Scale bar: 25 μm. Western blotting was performed for the analysis shown in (C), integrin-mediated signaling: FAK, Arp2/3,
F-actin and Rac-1 expression levels. The values were normalized by GAPDH expression and band intensities were quantified by densitometry of the homogenate
western blots and represented the mean ± s.e.m. for three samples per group and represent three separate assays (D). *p < 0.05 by comparison with the respective
control groups. **p < 0.01 by comparison with the respective control groups. ***p < 0.001 by comparison with the respective control groups.
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the simulated wound), compared with the transwell model, which
is directional migration stimulated by chemotaxis. At basal
condition (in the presence of RPMI 1640 medium
supplemented with 2% FBS), CTX at concentrations of 50 and
100 nM significantly inhibited cell migration from the 6thh
onwards, 12thh, and the 24thh. Twenty-four hours is the
maximum period analyzed in the wound healing model in all
studies to date (Denker and Barber, 2002; Hotchkiss et al., 2002;
Durham and Herman, 2009). The concentration of 50 nM caused
the most remarkable inhibitory action among all. CTX entails its
most striking actions at median doses in different cells (Faiad
et al., 2008; Faiad et al., 2008; Lima et al., 2012; Costa et al., 2013).
Thus, 50 nM concentration was used for the mediated
supernatant wound healing assay obtained from tumor cells.
At this concentration, CTX significantly inhibited cell
migration induced by the MCF-7-CM. Similar results were
obtained in the chemotaxis assay, demonstrating that CTX,
at the concentration used, significantly inhibits the migration
of endothelial cells against tumor stimulus. However, when
basal conditions were used as a stimulus, no significant
inhibition was observed. Notably, the conditioned
medium used in the chemotactic factor migration assay was
derived from a highly invasive human breast tumor line
(MCF-7) owing to its ability to secrete various growth factors,
including chemokines (Uddin et al., 2018), which are pro-
inflammatory and modulate the angiogenic process
(Romagnani et al., 2004).

Once the inhibitory action of CTX on functional events, like
adhesion, proliferation, and migration of endothelial cells,
including the tumor microenvironment was estimated, the
mechanisms involved in this inhibitory activity were analyzed.
Angiogenic functions of the endothelial cell involve the
participation of integrins and their signaling pathways,
coordinating both, the functions linked to the cytoskeleton,
and the production and secretion of mediators (Bianconi
et al., 2016; Guerrero and McCarty, 2018).

Accordingly, the concentrations of MMPs (MMP-2 and
MMP-9) and VEGF were measured from the t.End.1
endothelial cell supernatants irrespective of whether they were
pretreated with CTX (50 nM). It was revealed that CTX
significantly reduced MMP-2 and VEGF secretion. An
association between the MMP-2 and αvβ3 integrin was
identified, suggesting the co-localization between these
proteins on the membrane surface of endothelial cells (van
Hinsbergh et al., 2006). Alternatively, this integrin captures
latent MMP-2 to initiate extracellular matrix degradation
(Brooks et al., 1996). Hence, it is proposed that the inhibitory
action of CTX on αv subunit expression and distribution may
contribute to the decreased secretion of this metalloproteinase by
endothelial cells. The same inhibitory potential of CTX onMMP-
2 secretion was observed against tumor stimulation. Although
different studies have revealed the significance of MMP2 and
MMP-9 in angiogenesis, mainly related to the tumor, the
inhibitory action of CTX on pro-MMP-9 secretion was not
observed in this study (data not shown). On the other hand,
the expression levels of MMP-2 and active MMP-9 detected by
western blotting demonstrated the significant inhibitory action of

CTX and thus, reinforcing the capacity of this toxin in inhibiting
crucial angiogenic-mediators.

As reported in the literature, αvβ3 integrin (RGD-recognizing
integrins) can bind to different matrix components, including
fibronectin and collagen I; this integrin is directly related to tumor
angiogenesis (Hood and Cheresh, 2002; Bazaa et al., 2010). The
integrin αvβ3 is expressed on the surface of endothelial cells
(Aurrand-Lions et al., 2004; Davis and Senger, 2005). The main
integrins responsible for the interaction between endothelial cell
and collagen are α1β1 (preferentially recognizing type IV
collagen) and α2β1 integrins, which mainly bind to type I
collagen (Arlinghaus et al., 2013; Guerrero and McCarty,
2018) and laminin. After adhesion, these integrins alter the
shape of these cells to promote cell migration (Languino et al.,
1989; Davis and Senger, 2005; Guerrero and McCarty, 2018).

The immunofluorescence assay verified that CTX-treated
endothelial cells altered the distribution of αv (fibronectin
coating) and α2 (type I collagen and laminin coating) integrin
subunits, in comparison to the control. Consequently, this
alteration may have triggered changes in the actin
cytoskeleton, promoting disruption in cell projection under
laminin coating, disorganization, and reduction of SFs under
collagen and fibronectin coating, respectively, compromising
cytoskeleton contraction. Besides, punctual actin accumulation
was observed in collagen and fibronectin coating. So, these actin
cytoskeleton modulations and protrusions, promoted by the
presence of CTX, may have been due to decreased migration-
related intracellular signaling (Ridley et al., 2003) and possibly,
decreased expression of integrin subunits. Consequently, low
adhesion between endothelial cells and the matrix component
prevented the generation of sufficient tensile force for efficient
migration (Hood and Cheresh, 2002). In conditions stimulating
the tumor, αv and α2 integrin subunits, in the presence of CTX,
resulted in inhibition of endothelial cell projection, presenting a
round shape and membrane ruffles with actin marked these
immature adhesions. The α2 subunit distribution in collagen
and laminin coating exhibited lower intensity accompanied by
more significant retraction of the cell body, without the regular
formation of protrusions; this characteristic corroborated the
data obtained in the wound healing assay with tumor
stimulation, which inhibited migration by 81%.

Binding of integrins to their ligands in the extracellular matrix
changes the endothelial cell cytoskeleton conformation, and
consequently, cell migration. This is modulated by intracellular
signaling pathways like focal adhesion kinase (FAK), leading to
activation of Rho GTPases proteins and phosphorylation of
myosin light chain, responsible for cell contractility (Bryan
and D’Amore, 2007; Bloom and Zaman, 2014). Inhibition of
Rac1 stimulates RhoA activity (implicated with SFs), thus
inhibiting the formation of lamellipodia and filopodia
(structures associated with the cytoskeleton projections on the
front and rear parts of the cell, respectively) (Bloom and Zaman,
2014; Burridge and Guilluy, 2016). The development of
lamellipodium protrusions is dependent on the rapid
polymerization of actin in filaments. The 2/3rd protein
complex related to actin (Arp2/3) is a crucial regulator of this
process, which is responsible for the nucleation of new actin
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filaments by providing the necessary force for membrane
protrusion to enlarge the existing filaments (Pollard and
Borisy, 2003; Pollard 2007; Burridge and Guilluy, 2016). Also,
marked inhibitory activity of CTX (50 nM) on Rac1 and FAK
expression and the Arp2/3 complex in endothelial cells was
observed, which explains the inhibitory action on the
cytoskeleton morphology and dynamics evidenced in
immunofluorescence, Western Blotting, and time-lapse assays
performed in this study.

CTX inhibited VEGF secretion in t.End.1 cells, irrespective of
whether t.End.1 cells were incubated in the presence of culture
medium or stimulated with tumor conditioned media. Decreased
CTX secretion of VEGF may be a consequence of FAK inhibition
as VEGF, a signaling molecule, is involved in the production of
this mediator (Wary et al., 2012). Just as decreased VEGF
secretion contributes to the inhibition of α2 subunit
expression, and αv in particular, besides the fact that this
mediator activates these integrins during angiogenic and
lymphangiogenic processes (Avraamides et al., 2008), it may,
therefore, generate negative feedback. Thus, the inhibitory action
of CTX on FAK expression is crucial for the diminution of
endothelial cell events associated with angiogenesis. These
results, along with those obtained in immunofluorescence
analyses, such as morphology, cytoskeleton polymerization,
and cell extension, are strongly correlated with FAK

inhibition, protein kinase capable of stimulating actin
polymerization, and filopodia formation involving regulation
of the proteins from the Rho GTPases family (Schlie-Wolter
et al., 2013; Hohmann and Dehghani 2019). This hypothesis is
based on data from previous studies that demonstrated that CTX
could inhibit the expression of Rho GTPases in both the
macrophages, inhibiting the translocation of RhoA and Rac1,
interfering with the cytoskeleton efficiency in capturing particles
to be phagocytized (Sampaio et al., 2006b). In tumor cells of the
WRC 256 strain, CTX inhibited RhoA and FAK kinase (Faiad
et al., 2008), thereby compromising the actin filament
polymerization of these cells involved in the proliferation and
adhesion of the tumor cell. As future perspectives, in vivo studies
using tumor models will be necessary to confirm the mechanisms
involved in CTX-induced inhibitory effect on endothelial cells
functions, specially on the emergence of new vessels.

CONCLUDING REMARKS

The present study showed that CTX inhibits cell adhesion on
different extracellular matrix components (Figure 7). This
inhibition was related to the reduction of αv and α2 integrin
distribution, and cytoskeletal actin polymerization (F-actin),
accompanied by inhibition of FAK, Rac1 (GTPase) signaling

FIGURE 7 | Scheme proposed for anti-angiogenic effect directly induced by CTX. CTX exerts its inhibitory effect by decreasing endothelial cell adhesion to their
matrix ligands and, consequently, interferes with FAK kinase phosphorylation, which may lead to the inhibition of Rho GTPases Rac1, since these effector proteins
activate the regulation of cell proliferation, migration, and invasion. Moreover, the inhibitory action on signaling molecules such as FAK may lead to a significant decrease
in the secretion of critical mediators for the development of angiogenesis, MMP-2, while reducing speed and persistence of migration in 3D matrices, and of the
VEGF, in turn decrease the stimulus on the same receivers. Furthermore, both of inhibited αv and α2 subunits of the integrins, and the decrease in VEGF binding to
VEGFR lead to the inhibition of the Arp2/3 complex, a key regulator in actin polymerization and stress fiber formation (Scheme based in Lamalice et al., 2015).
Supplementary Material should be uploaded separately on submission, if there are Supplementary Figures, please include the caption in the same file as the figure.
Supplementary Material templates can be found in the Frontiers Word Templates file.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 71333212

Kato et al. Crotoxin Inhibits Endothelial Cell Functions

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


proteins. This was because these effector proteins activate the
regulation of cell proliferation, migration, and invasion (Bryan
and D’Amore, 2007; Hohmann and Dehghani, 2019).
Furthermore, FAK inhibition induces a decrease in MMP-2 and
VEGF secretion and MMP-2 and MMP-9 expression, while
reducing the speed and persistence of migration in 3D matrices
(Kim et al., 2008) and also inhibits the Arp 2/3 complex, an essential
regulator for the polymerization of actin and the formation of
lamellipodia (Lamalice et al., 2007). This study is the first to
describe the direct inhibitory action of CTX on the critical events
involved in angiogenesis and, therefore, contributes significantly to
increasing knowledge on the mechanisms involved in the antitumor
action of this toxin.
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