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Deregulation of fibroblast growth factor receptors (FGFRs) signaling, as a result of FGFR
amplification, chromosomal translocation, or mutations, is involved in both initiation and
progression of a wide range of human cancers. Clinical data demonstrating the
dependence of cancer cells on FGFRs signaling clearly indicate these receptors as the
molecular targets of anti-cancer therapies. Despite the increasing number of tyrosine
kinase inhibitors (TKIs) being investigated in clinical trials, acquired resistance to these
drugs poses a serious therapeutic problem. In this study, we focused on a novel pan-
FGFR inhibitor—CPL304110, currently being investigated in phase I clinical trials in adults
with advanced solid malignancies. We analyzed the sensitivity of 17 cell lines derived from
cancers with aberrant FGFR signaling, i.e. non-small cell lung cancer, gastric and bladder
cancer to CPL304110. In order to explore the mechanism of acquired resistance to this
FGFR inhibitor, we developed from sensitive cell lines their variants resistant to
CPL304110. Herein, for the first time we revealed that the process of acquired
resistance to the novel FGFR inhibitor was associated with increased expression of
MET in lung, gastric, and bladder cancer cells. Overexpression of MET in NCI-H1703,
SNU-16, RT-112 cells as well as treatment with HGF resulted in the impaired response to
inhibition of FGFR activity. Moreover, we demonstrated that cells with acquired resistance
to FGFR inhibitor as well as cells overexpressing MET displayed enhanced migratory
abilities what was accompanied with increased levels of Pyk2 expression. Importantly,
inhibition of both MET and Pyk2 activity restored sensitivity to FGFR inhibition in these
cells. Our results demonstrate that the HGF/MET-Pyk2 signaling axis confers resistance
to the novel FGFR inhibitor, and this mechanism is common for lung, gastric, and bladder
cancer cells. Our study suggests that targeting of MET/Pyk2 could be an approach to
overcome resistance to FGFR inhibition.

Keywords: FGFR, MET, Pyk2, acquired resistance, cancer
April 2021 | Volume 11 | Article 6334101

https://www.frontiersin.org/articles/10.3389/fonc.2021.633410/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.633410/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.633410/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:kkitowska@gumed.edu.pl
mailto:rsadej@gumed.edu.pl
https://doi.org/10.3389/fonc.2021.633410
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.633410
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.633410&domain=pdf&date_stamp=2021-04-07


Kitowska et al. MET-Mediated Resistance to FGFR Inhibition
INTRODUCTION

The fibroblast growth factor receptor family comprises four
(FGFR1-4) receptor tyrosine kinases (RTKs) involved in the
regulation of many downstream effectors including mitogen-
activated protein kinase (MAPK), phosphoinositide 3-kinase
(PI3K)/Akt, or STATs, that are crucial for cell proliferation,
survival, differentiation, and motility (1, 2). Taking into account
the significance of these processes in tumorigenesis, aberrant FGFR
signaling has been shown to play an essential role in cancer cell
survival, proliferation, as well as tumor neoangiogenesis (3).
Amplification of FGFR genes, chromosomal translocation, and
gain-of-function mutations could result either in constitutive
ligand-independent FGFR activation or enhanced ligand-
dependent signaling, whereby, both processes have been
demonstrated to be involved in initiation and progression of a
wide range of human cancers (4–6). FGFR1 amplification has been
identified in 10–20% of patients with non-small cell lung cancer
whereas 4–10% of primary gastric cancers and approximately 75%
of bladder cancers harbor FGFR2 amplification and FGFR3
mutations, respectively (7–10). These clinical data demonstrate
the dependence of cancer cells on FGFR signaling and suggest an
urgent requirement of molecular therapies targeting FGFR activity.
Several tyrosine kinase inhibitors (TKIs) of FGFRs are currently
being investigated in anticancer clinical trials (NCT03344536,
NCT02465060, NCT02052778, NCT02393248). However, most
small-molecule inhibitors display either limited selectivity for
FGFR or significant activity against other RTKs, such as vascular
endothelial growth factor (VEGFR) or platelet-derived growth
factor (PDGFR) (11–13). Therefore, the discovery of FGFR
inhibitors has become a rapidly growing research area (14).
According to the mechanism of inhibitor activity, selective FGFR
inhibitors either belong to the group of molecules that reversibly
occupy the ATP-binding pocket or the group that irreversibly bind
covalently to a specific cysteine residue within the receptor kinase
domain. As a result of selective FGFR inhibitors’ action
phosphorylation of FGFRs and their direct downstream targets,
i.e. Fibroblast Growth Factor Receptor Substrate 2-a (FRS2-a) and
phospholipase C-g-1 (PLC-g-1), is reduced. Despite outstanding
progress in the field of targeted therapies and the increasing number
of selective inhibitors in clinical trials, adverse effects and
development of resistance to applied drugs continue to be serious
clinical issues. Only several preclinical and clinical studies
investigated the mechanism of acquired resistance to FGFR
inhibitors. Secretome screening studies revealed that in multiple
cancer cell lines initially dependent on FGFR signaling, activation of
the respective alternative kinase could rescue growth upon FGFR
inhibitor treatment (15). In vitro studies on lung cancer cells showed
that decrease in phosphorylation level of extracellular signal-
regulated kinase (ERK) 1/2 and Akt mediated by FGFR inhibition
with AZD4547 or BAY1163877 was hampered by MET activation
(16). Research performed in bladder cancer cell lines revealed a
rapid induction of HER2 and HER3 in cells treated with the FGFR
inhibitor, BGJ398, thus suggesting that a switch from FGFR- to
HER2/3-dependency can compensate FGFR inhibition (17). Protein
kinase C (PKC)-mediated phosphorylation of GSK-3b which led to
activation of downstream pro-survival proteins was identified as a
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mechanism of resistance to AZD4547 in gastric cancer cell lines
(18). These data indicate the complexity of acquired resistance to
FGFR inhibition and pose a significant challenge to identify
common pathways responsible for resistance in various cancers.

In this study, we focused on a novel pan-FGFR inhibitor,
CPL304110 (Celon Pharma, Poland), which currently has been
investigated in phase I clinical trial in adults with advanced solid
malignancies (NCT04149691) (19). We analyzed sensitivity to
CPL304110 in a panel of cell lines derived from cancers displaying
aberrant FGFR signaling, i.e. non-small cell lung cancer, gastric
and bladder cancers (20–26). We developed cell line variants
resistant to CPL304110 in order to explore a mechanism of
acquired resistance. We found that the process was associated
with increased expression of MET in lung, bladder, and gastric
cancer cells. In addition, ectopic overexpression of MET resulted
in impaired cell response to FGFR inhibition. Both, CPL304110-
resistant and MET-overexpressing cells were also found to have
increased level of Pyk2. Inhibition of MET and Pyk2 restored
sensitivity of resistant cells to FGFR inhibition. These results
suggest that the MET/Pyk2 axis induces acquired resistance to
FGFR inhibition in cancer cells.
MATERIALS AND METHODS

Cell Lines, Antibodies, and Reagents
DMS114, NCI-H1581, NCI-H1703, NCI-H2170, NCI-H520,
SNU-1, SNU-5, SNU-16, SW780, and AGS cell lines were
obtained from ATCC. 639V, T24, KATO-III, UM-UC-3, UM-
UC-14, UM-UC-16, and RT-112 cell lines were obtained from
ECACC. SW780 and 639V cells were routinely maintained in
DMEM; NCI-H1581 cells in DMEM/F12; UM-UC-3, UM-UC-
14, UM-UC-16, and RT-112 cells in EMEM; SNU-5 cells in
IMDM; DMS114 cells in Waymouth’s MB752/1. NCI-H1703,
NCI-H2170, NCI-H520, SNU-1, SNU-16, AGS, T24, and
KATO-III cells were maintained in RPMI 1640 medium. All
culture media contained 10% FBS and penicillin/streptomycin
(100 U/ml/100 mg/ml). Cells were grown at 37°C in a humidified
atmosphere of 5% CO2, passaged for a maximum of 3–4 months
post resuscitation, and regularly tested for mycoplasma
contamination. All culture media and corresponding
supplements were purchased from Sigma-Aldrich or Biowest.
The following antibodies were obtained from Santa Cruz
Biotechnology: anti-EGFR (sc-373746), anti-FAK (sc-271116),
anti-FGFR1 (sc-57132), anti-FGFR3 (sc-13121), anti-FGFR4 (sc-
136988), anti- FRS2-a (sc-17841), anti-Paxillin (sc-365379). The
antibody against b-actin (A5316) was obtained from Sigma-
Aldrich. All the remaining antibodies were from Cell Signaling
Technology: anti-Akt-Tyr473 (#9271) anti-Akt (#92720), anti-
EGFR-Tyr1068 (#3777), anti-Erk1/2-Thr202/Tyr204 (#4377),
anti-Erk1/2 (#9102), anti-FAK-Tyr397 (#3283), anti-FGFR-
Tyr653/654 (#3471), anti-FGFR2 (#23328), anti-FRS2-a-
Tyr196 (#3864), anti-FRS2-a-Tyr436 (#3861), anti-HER2
(#4290), anti-HER2-Tyr1448 (#2247), anti-HER3 (#4754), anti-
HER3-Tyr1289 (#4791), anti-MET (#4560), anti-MET-Tyr1235/
1236 (#3077), anti-PLC-g-1-Tyr783 (#2821), anti-PLC-g-1
(#2822), anti-Pyk2-Tyr402 (#3291), anti-Pyk2 (#3292), anti-
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Paxillin-Tyr118 (#69363), and anti-Src-Tyr416 (#2101), anti-Src
(#2105).Hepatocyte growth factorwas purchased fromPeproTech.
Inhibitors: CPL304110 (WO/2014/141015) was provided by Celon
Pharma, Poland; capmatinib was purchased from Selleckchem and
PF431396 was purchased from Sigma-Aldrich.

Cell Proliferation Assay
Cell viability was estimated using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay.
Cells were seeded in 96-well plates in triplicates and on the
following day treated with DMSO or increasing concentrations
of CPL304110 for 48 and 96 h. MTT stock solution was added to
each well so that the final concentration of MTT in the medium
was 0.5 mg/ml. After 2 h of incubation at 37°C, the medium was
discarded and MTT formazan was dissolved in DMSO. The
absorbance was measured at 590 nm using a microplate reader.

Culturing Cells in Three-Dimensional
Matrigel®
Cell growth in three-dimensional Matrigel® (BD Bioscience
Matrigel Matrix Growth Factor Reduced) was carried out as
previously described (27, 28). Cells were cultured in regular
medium or medium containing indicated inhibitor/growth factor.
Media were changed every third day. After 14 days of culture cell
growth was evaluated by measuring colonies size (at least 100) using
ZEISS PrimoVert microscope and ImageJ software.

Generation of CPL304110-Resistant
Cell Lines
To develop resistance to the FGFR inhibitor CPL304110, NCI-
H1703, SNU-16, RT-112 cell lines were gradually exposed to
increasing concentrations of CPL304110 with starting dose of the
inhibitor at 5 nM. Cells were maintained in medium with the
inhibitor which was replaced every 72 h. When the growth
kinetics of treated cells were similar to wild-type counterpart
cell lines, the concentration of CPL304110 was increased until a
final concentration of 5 mM was achieved. After 4–6 months of
such culture, resistant cells were established and termed
accordingly NCI-H1703R, SNU-16R, and RT-112R.

Stable Overexpression of MET
NCI-H1703/MET↑, SNU-16/MET↑, and RT-112/MET↑ cell
lines were generated with a retroviral system based on pBABE-
puro TRP-Met vector (Addgene, #10902) (29). To generate cells
with stable expression, the plasmids were transfected into
HEK293T packaging cells with TurboFect™ (Invitrogen). After
24 h, medium containing virus particles was collected and used
to infect host cells in the presence of 5 mg/ml polybrene. Selection
with 5 mg/ml puromycine (Sigma-Aldrich) was conducted to
obtain resistant cells with stable overexpression of MET. This
was confirmed by western blotting.

Western Blotting Analysis
For western blot analysis, cells were harvested at 60–70%
confluency and lysed with Laemmli buffer (2× concentrated)
with 2 mM PMSF, 10 mg/ml aprotinin, 10 mg/ml leupeptin, 5
mM EGTA, 1 mM EDTA, 2 mMNa4P2O7, 5 mMNaF, and 5 mM
Frontiers in Oncology | www.frontiersin.org 3
Na3VO4. Samples with equal amounts of protein were loaded per
well, resolved in SDS–PAGE and then transferred onto
nitrocellulose membrane. The membranes were blocked for 1 h
in 5% skimmed milk and probed with specific primary antibodies
at 4°C. Appropriate secondary Alexa Fluor®-conjugated
antibodies (680 or 790 nm) (Jackson ImmunoResearch, #111-
625-144, #715-655-150) and Odyssey® CLx imaging system (LI-
COR® Biosciences) were used to detect protein bands.

Quantitative PCR
RNA was isolated with PureLink RNA MiniKit (Thermofisher)
according to the manufacturer’s protocol. Reverse transcription
with random hexamer primers was performed with Transcriptor
cDNA First Strand Synthesis Kit (Roche). For analysis of MET
expression TaqMan probes Hs01565584_m1 and TaqMan
Universal PCR Master Mix (Thermofisher) were used. Reactions
were done induplicates. Eachplate contained an inter-run calibrator,
a set ofnon-template controls andcontrols forgDNAcontamination.
Gene expression was calculated using a modified DDC approach.

Transwell® Migration Assay
Cell migration was assessed as previously described (30). Briefly,
indicated cell lines were seeded onto 6-cm plates. Next day, cells
were either pre-treated with CPL304110 (1 mM) or PF431396 (100
nM) for 2h. Subsequently, cellsweredetachedwithenzyme-free cell
dissociation buffer (Millipore) and 2.5 × 104 cells were resuspended
in serum-free medium ± indicated inhibitor. The polycarbonate
membranes (8mmpores, BDBioscience) of insertswere coatedwith
high concentration Matrigel® (BD Bioscience) diluted in serum-
free medium (1:1). Cells were placed in the inner compartment of
the Boyden chamber inserts and allowed to migrate towards
complete medium (10% FBS) ± indicated inhibitor. After 24 h of
incubation, the non-migratory cells were removed using cotton
swab. Membranes were mounted on to glass coverslips, migratory
cells were stained with DAPI and counted from 20 random fields
under AxioVert 200 fluorescent microscope.

Statistical Analysis
Data are expressed as mean ± SD from at least three independent
experiments. Comparative data were analyzed with the unpaired
Student’s t-test using the Statistica™ software (v.10; StatSoft®,
Inc., Tulsa, OK, USA). Two-sided p ≤ 0.05 was considered to
indicate a statistically significant difference.
RESULTS

Analysis of the Anti-Proliferative Effect of
the FGFR Inhibitor CPL304110 in Lung,
Gastric, and Bladder Cancer Cell Lines
Aberrant FGFR signaling promotes oncogenic growth in a broad
spectrum of solid tumors, indicative that the receptor could be an
attractive therapeutic target. Therefore, we examined the anti-
proliferative effect of CPL304110, a novel FGFR inhibitor, in a
panel of 17 human cell lines from lung, gastric, and bladder
cancers. NCI-H1581, NCI-H1703, SNU-16, KATO-III, UM-UC-
14, RT-112, and SW780 cells strongly responded to CPL304110
April 2021 | Volume 11 | Article 633410
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(with IC50 ≤1 µM), whereas growth of DMS114, NCI-H2170,
NCI-H520, SNU-1, SNU-5, AGS, UM-UC-3, UM-UC-16, 639V,
and T24 cells was not significantly affected (Figures 1A, S1A–C,
and Table S1). As amplification/overexpression of FGFR1,
FGFR2, and FGFR3 contributes to progression of lung, gastric,
and bladder cancers, respectively, we verified their level of
expression in all analyzed cell lines (4, 24, 31–35). This indicated
that CPL304110 exhibits higher potency in the cells expressing
elevated level of FGFRs (Figure S1D). As FGFR1 is overexpressed
in approx. 20% of non-small cell lung cancer (4), the NCI-H1703
non-small cell lung cancer cell line was used for further studies. As
a model of gastric and bladder cancers, we respectively used SNU-
16 and RT-112 cells, shown to be highly sensitive to FGFR
inhibition. The efficacy of CPL304110 in these cells was
compared to that of AZD4547, another well-studied FGFR
inhibitor. CPL304110 inhibited cell proliferation with a higher
potency in comparison to AZD4547, i.e. CPL304110 IC50: 1 mM;
0.04 mM and 0.15 mM vs AZD4547 IC50: 3.4 mM; 0.06 mM and 0.8
mM in NCI-H1703, SNU-16 and RT-112 cells, respectively
(Supplementary Data, Table S2). The impact of CPL304110 on
cell growth was additionally evaluated in 3D cultures in Matrigel®

(Figure 1B). Since NCI-H1703 cells do not form typical spheroids
in 3D Matrigel® and exhibit highly invasive growth, quantitative
Frontiers in Oncology | www.frontiersin.org 4
analysis of the inhibitory effect of CPL304110 was therefore not
possible. However, a negative effect of the drug on cell growth was
apparent in all tested cell lines. Moreover, we demonstrated a
negative effect of CPL304110 on phosphorylation of FGFR and its
direct downstream effectors FRS2-a, PLC-g-1 as well as Akt, Erk1/
2 in NCI-H1703, SNU-16, RT-112 cells (Figure S1E).

Development of Resistance to FGFR Inhibitor
In order to investigate the mechanisms of acquired resistance to
FGFR inhibition, CPL304110-resistant variants of NCI-H1703,
SNU-16, and RT-112 cells were developed. Cells were cultured
for up to 6 months in the presence of gradually increasing
concentrations of CPL304110 in order to develop acquired
resistance. Subsequently, sensitivity to CPL304110 was
compared with the corresponding parental cell lines. Analysis
of 3D growth revealed that NCI-H1703R, SNU-16R, and RT-
112R cells demonstrated significantly impaired response to
CPL304110 (Figures 2A, S2A). This was further confirmed by
analysis of cell proliferation (Figure S2B). In order to determine
the mechanism of resistance to FGFR inhibition, we confirmed
that the activity of FGFR and its downstream effectors, i.e.
Fibroblast Growth Factor Receptor Substrate 2-a (FRS2-a)
and phospholipase C-g-1 (PLC-g-1), was dramatically impaired
A B

FIGURE 1 | Anti-proliferative effect of CPL304110. (A) NCI-H1703, SNU-16, and RT-112 were exposed to the indicated concentrations of the FGFR inhibitor,
CPL304110, for 48 and 96 h followed by assessment of cell viability using the MTT assay. Data are expressed as mean ± SD, n = 3. (B) Cells were grown in 3D
Matrigel® for 14 days in the presence of CPL304110. Representative pictures were taken, colonies were measured and statistically analyzed with ImageJ. Scale bar
represents 100 mm. Data are expressed as mean ± SD, **p ≤ 0.01, ***p ≤ 0.001, n = 3.
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in NCI-H1703R, SNU-16R, and RT-112R cells when compared
to the corresponding parental cell lines (Figure 2B). Since
resistance to FGFR inhibition could be initiated by activation
of alternative RTKs signaling (15, 36), the expression and activity
of EGFR, HER2, HER3, and MET was analyzed in the resistant
cell lines (Figure 2C). Although there were minor discrepancies
in the expression or activity of various RTKs, upregulated MET
expression (at both mRNA and protein level) as well as activity
was observed in all analyzed resistant cell lines (Figures 2C,
S2C). As a result of this, MET was considered in further studies
as a potential inducer of resistance to CPL304110.
Frontiers in Oncology | www.frontiersin.org 5
MET Activation Mediates Resistance
to FGFR Inhibition

Since we observed that MET phosphorylation was increased in
the resistant cell lines, we investigated further whether
incubation of the parental cell lines, NCI-H1703, SNU-16, and
RT-112 with HGF could counteract CPL304110-dependent
inhibition of growth. We observed that although HGF did not
significantly promote 3D cell growth, it exerted a strong
protective effect against CPL304110 in all tested cell lines
(Figures 3A, S3A). In contrast, inhibition of MET activity with
A

B C

FIGURE 2 | Development of resistance to CPL304110. Resistance to FGFR inhibitor was induced by chronic exposure to CPL304110. (A) Response to
CPL304110 of parental and resistant cells was evaluated in 3D Matrigel®. Representative pictures were taken after 14 days of growth. Scale bar represents 100 µm.
Western blot analysis was performed with lysates from parental and resistant cells to assess (B) FGFR signaling and (C) other RTKs expression/activity level.
Experiments were conducted in triplicates.
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capmatinib (highly sensitive MET inhibitor, FDA approved for
NSCLC treatment) restored sensitivity of NCI-H1703R, SNU-
16R, and RT-112R cells to CPL304110 (Figures 3B, S3B).
Moreover, stable MET overexpression in NCI-H1703, SNU-16,
and RT-112 cells (Figure 4A) resulted in strongly impaired
sensitivity of these cells to FGFR inhibitor (Figures 4B, C).
Strikingly, when the combination of CPL304110 and capmatinib
was applied in both 3D growth and classical 2D proliferation
assays, growth for NCI-H1703/MET↑, SNU-16/MET↑, and RT-
112/MET↑ cells was dramatically affected.

Pyk2 Mediates Migratory Abilities of Cells
Resistant to FGFR Inhibitor
The observed results herein indicated MET involvement in
resistance of lung, bladder, and gastric cancer cells to
CPL304110. MET activity regulates not only proliferation but
also cancer cell motility, invasion, and eventual metastasis (37, 38).
Therefore, it was investigated whether MET-dependent resistance
to CPL304110 is associated with changes in the migratory abilities
of cells. This was verified in transwell migratory assay, which
revealed enhanced migration in NCI-H1703R and NCI-H1703/
MET↑ cells (2.34-fold and 2.31-fold increase, respectively), as well
as in RT-112R and RT-112/MET↑ cells (1.83-fold and 1.67-fold
increase, respectively) (Figure 5A). Next, we investigated the
activity of proteins involved in the regulation of focal adhesions
(i.e. Pyk2, FAK, and Src), previously reported to beMET-regulated
(39). We explored this in parental and FGFR inhibitor-resistant
NCI-H1703, SNU-16, and RT-112 cells. We found that neither
FAK nor Src displayed changes in their activity following acquired
Frontiers in Oncology | www.frontiersin.org 6
resistance to CPL304110 (Figure 5B), however, upregulated
phosphorylation of Pyk2, a non-receptor tyrosine kinase that
acts as an integrator of survival, adhesion, and migration, was
found in NCI-H1703R, SNU-16R, and RT-112R and in cells with
ectopic MET expression (Figure S4A) (40). Moreover, MET
inhibition led to decrease in Pyk2 phosphorylation in these cells
(Figure S4B). Next, it was investigated whether inhibition of Pyk2
could deteriorate migratory potential of CPL304110-resistant and
MET-overexpressing cells, as we could observe that Pyk2
inhibition resulted in decrease of FAK and paxillin
phosphorylation in CPL304110 resistant cells (Figure S4C).
Application of PF431396-Pyk2 inhibitor resulted in significantly
decreased migration of NCI-H1703R (165.94 vs 57.49%), RT-112R
(179.86 vs 88.26%), NCI-H1703/MET↑ (133.55 vs 32.62%), and
RT-112/MET↑ (171.98 vs 102.70%) (Figure 5C).

Pyk2 Mediates MET-Dependent
Resistance to FGFR Inhibition
To further elucidate the functional relevance of Pyk2 in
CPL304110-resistance, NCI-H1703/MET↑, SNU-16/MET↑, and
RT-112/MET↑ cells were treated with Pyk2 inhibitor (PF431396).
Although inhibition of Pyk2 had modest effect on growth of cells
overexpressing MET, it re-sensitized them to the FGFR inhibitor
(Figures 6A, S5A). Similar effects were observed in resistant cell
variants (Figure S5B). It is well known that Pyk2 links numerous
signaling pathways and that its activity is induced by heregulin
(HRG), epidermal growth factor (EGF), or transforming growth
factor-b (TGF-b) (41, 42). Thus, it was elucidated whether HGF/
MET!Pyk2 signaling confers resistance to CPL304110. We
A B

FIGURE 3 | MET activity protects from CPL304110-induced cell growth inhibition. (A) NCI-H1703, SNU-16, RT-112 cells were grown in 3D Matrigel® for 14 days in
the presence of CPL304110 (1 mM) and/or HGF (50 ng/ml). (B) Resistant variants of NCI-H1703, SNU-16, RT-112 cells were grown in 3D Matrigel® for 14 days in
the presence of CPL304110 (1 mM) and/or capmatinib - MET inhibitor (5 mM). Representative pictures were taken. Scale bar represents 100 mm, n = 3.
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observed that inhibition of Pyk2 abrogated protective effect ofHGF
for CPL304110-treated NCI-H1703, SNU-16, and RT-112 cells
(Figures 6B, S6). Collectively, these observations indicate that
HGF/MET signaling triggers a Pyk2-mediated mechanism of
resistance to FGFR inhibitor that appears to be common in lung,
gastric, and bladder cancer cells (Figure 6C).

DISCUSSION

Deregulated FGFR signaling as a result of FGFR gene amplification,
mutations, or fusions has been identified in various malignancies
including lung, gastric, and bladder cancers (43). This provided a
strong rationale for development of anti-FGFR therapeutic agents
classified as non-selective and selective FGFR inhibitors. Non-
selective FGFR TKIs, e.g. nintedanib, lenvatinib, dovitinib,
lucitanib, exert a series of toxic effects due to poor target selectivity
(13, 44–46). Second generation selective FGFR TKIs have been
developed to avoid off-target effects, however, only a few of them
entered clinical trials. Studies for AZD4547 and BGJ389 revealed that
patients with FGFR1 amplification (non-small cell lung cancer) or
Frontiers in Oncology | www.frontiersin.org 7
bearing FGFR3 mutations (bladder cancer) displayed a partial
response to the therapy (47, 48). Thus far, erdafitinib and
pemigatinib are the first FDA-approved FGFR selective inhibitors
for treating urothelial cancer with FGFR2 or FGFR3 alterations, and
cholangiocarcinoma with FGFR2 fusions and rearrangements,
respectively (49–51). Despite the increasing number of selective
FGFR inhibitors, poor clinical response and acquired resistance to
these drugs remain the main clinical issue (52, 53).

In the present study, we provide preclinical data for a novel
FGFR TKI, CPL304110, that has recently entered phase I of
clinical trials in adults with advanced solid malignancies. Our in
vitro data performed in a panel of 17 human cell lines derived
from lung, gastric, bladder cancers showed that CPL304110
inhibits growth of cells displaying elevated FGFR expression
with higher potency than AZD4547. Tudrej and colleagues also
confirmed higher efficacy of CPL304110 in comparison to
AZD4547 in ovarian cancer cells (54). In order to investigate the
mechanism of acquired resistance to CPL304110, we generated
resistant variants of lung, gastric, and bladder cancer cell lines. We
observed that the activity of FGFRs and their direct downstream
A

B

C

FIGURE 4 | MET overexpression impairs sensitivity to FGFR inhibitor. (A) NCI-H1703, SNU-16, RT-112 cells with overexpression of MET were established as
described in the materials and methods section. (B) NCI-H1703, SNU-16, RT-112 cells, and their variants with MET stable overexpression were grown in 3D
Matrigel® for 14 days in the presence of CPL304110 (1 mM) and/or HGF (50 ng/ml). Representative pictures were taken. Scale bar represents 100 mm, n = 3.
(C) Cell proliferation of either parental or MET-overexpressing cells was assessed using the MTT assay after exposure to CPL304110 (1 mM) and/or capmatinib
(5 mM) for 96 h. Data are expressed as mean ± SD, ***p ≤ 0.001, n = 3.
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effectors, i.e. FRS2-a and PLC-g-1 was abolished in resistant cells
and that this was accompanied by upregulation of MET
expression. Increased activity of MET has been previously
reported to mediate resistance to EGFR inhibitors (e.g.
osimertinib) in non-small cell lung cancer via EGFR-
independent phosphorylation of HER3 and PI3K/Akt activation,
providing a bypass pathway in the presence of an EGFR inhibitor
(55). In our studies, the stable overexpression of MET in
CPL304110 sensitive cells abolished a negative effect of the drug
for cell growth, whereas inhibition of MET activity in resistant
cells restored sensitivity to CPL304110. These results are in
concordance with previously published data, demonstrating that
resistance to FGFR inhibitors in FGFR1-amplified lung cancer
cells can be acquired through MET activation (16, 56). Consistent
with our results, HGF-mediated activation of MET has
previously been shown to protect RT-112 cells from the effect of
FGFR inhibition with BGJ398 (15). Interestingly, Grygielewicz and
colleagues showed that the mechanism of resistance to AZD4547,
BGJ389, and PD173074 in SNU-16 cells was accompanied with
epithelial-mesenchymal transition and impaired activation/
expression of RTKs, such as MET, HER2, HER3, or EGFR (35).
Activation of HGF/MET signaling was previously proved to
promote proliferation, survival, angiogenesis, wound healing,
tissue regeneration, scattering, motility, invasion, and branching
morphogenesis (57). Herein, we have demonstrated that elevated
Frontiers in Oncology | www.frontiersin.org 8
expression of MET in CPL304110-resistant cells promotes their
migration and Pyk2, member of the focal adhesion kinase family,
is involved in this process. These results are in concordance with
previously published data, showing HGF/MET-mediated
migration in small cell lung cancer cell lines with simultaneous
Pyk2 phosphorylation on Tyr402 in response to HGF (58).
Moreover, Verma and colleagues demonstrated that MET-
mediated activation of Pyk2 contributes to metastasis of breast
cancer (42, 59). Interestingly, Pyk2 is also considered as an
independent prognostic factor for non-small cell lung cancer
patients, as high expression and phosphorylation levels of Pyk2
were correlated with poor overall survival (60). Moreover, Pyk2-
mediated induction of proliferation in both normal and tumor
cells has been widely studied (61, 62) and involves ERK1/2, PI3K-
Akt, Wnt/b-catenin activity (63–67).

In conclusion, our study indicates that MET-mediated
activation of Pyk2 could confer resistance to CPL304110, a
novel FGFR inhibitor and that the mechanism appears to be
common in lung, gastric, and bladder cancer cell lines, thus
suggesting that targeting of MET!Pyk2 axis could be a
therapeutic strategy to overcome resistance to FGFR inhibitors.
Further clinical activity evaluation of these pathways would
be required to identify patients who are likely to develop
resistance to the drug and would therefore benefit from
combined therapy.
A

C

B

FIGURE 5 | CPL304110-resistant cells exhibit promigratory abilities. (A) Parental, CPL304110-resistant, and MET-overexpressing cell variants migrated towards full
medium. Data are expressed as mean ± SD, **p ≤ 0.01, n = 3. (B) Western blot analysis was performed with lysates from parental and resistant cells to assess
phosphorylation levels of Pyk2, Src, and FAK. Experiments were conducted in triplicates. (C) The Pyk2 inhibitor PF431396 (100 nM) reduces the migratory abilities of
resistant and MET-overexpressing cell variants. Data are expressed as mean ± SD, **p ≤ 0.01, n = 3.
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