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Subnatural-linewidth biphotons from
a Doppler-broadened hot atomic vapour cell
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Entangled photon pairs, termed as biphotons, have been the benchmark tool for experimental

quantum optics. The quantum-network protocols based on photon–atom interfaces have

stimulated a great demand for single photons with bandwidth comparable to or narrower than

the atomic natural linewidth. In the past decade, laser-cooled atoms have often been used for

producing such biphotons, but the apparatus is too large and complicated for engineering.

Here we report the generation of subnatural-linewidth (o6 MHz) biphotons from a

Doppler-broadened (530 MHz) hot atomic vapour cell. We use on-resonance spontaneous

four-wave mixing in a hot paraffin-coated 87Rb vapour cell at 63 �C to produce biphotons

with controllable bandwidth (1.9–3.2 MHz) and coherence time (47–94 ns). Our backward

phase-matching scheme with spatially separated optical pumping is the key to suppress

uncorrelated photons from resonance fluorescence. The result may lead towards miniature

narrowband biphoton sources.
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B
iphotons (entangled photon pairs) are the benchmark tools
in the field of quantum optics for probing fundamental
quantum properties of light quanta such as the wave-

particle duality and non-locality1. They have also played an
important role in developing advanced technologies in quantum
information processing2. The quantum-network protocols
based on efficient photon–atom interaction require photons
have bandwidth sufficiently narrower than the atomic
natural linewidth3,4. Here we are interested in generating
frequency-anticorrelated biphotons whose sum frequency is
fixed and the biphoton bandwidth refers to the spectrum of
individual photons. With a fast time-resolved detector,
narrowband biphotons can be used to generate pure heralded
single photons with the bandwidth equal to the biphoton
bandwidth5. In earlier days, spontaneous parametric down
conversion using nonlinear crystals6,7 and four-wave mixing in
optical fibres8 were standard methods for producing biphotons.
However, these biphotons have typically very wide bandwidth
(4THz) and short coherence time (ops), which make
them extremely difficult for implementing photonic quantum
information processing in an atomic-memory-based quantum
network9,10. To solve this problem, many researches have
focused on narrowing down the paired photon bandwidth by
putting the nonlinear crystal inside an optical cavity11–14.

Subnatural-linewidth biphotons with controllable waveforms
have been produced from spontaneous four-wave mixing (SFWM)
in cold atoms (10–100mK) assisted with electromagnetically induced
transparency (EIT)15–19 or cavity20. However, cold-atom systems
require expert knowledge in laser cooling and trapping. A cold-atom
apparatus is not only expensive, but also large and complicated in its
vacuum–optical–electronic–mechanical configuration. Moreover,
operating cold atoms for producing paired photons requires a
complex timing control with a low duty cycle21.

If a hot atomic vapour cell can be used as an alternative source to
produce narrowband biphotons, the system size and operation can
be markedly simplified and the cost will be significantly reduced.
However, the use of hot atomic vapour cell for producing
narrowband biphotons has not been as successful as those with
cold atoms. In an early demonstration in 2005, Lukin et al.22

generated nonclassical correlated light pulses from a room
temperature 87Rb atomic vapour cell with writing–reading pulse
operation, but these photons are not time-frequency entangled and
the photon number in each pulse is barely below the two-photon
threshold. In this work, we focus on paired photon generation with
time-frequency entanglement in continuous-wave operation mode.
There have been some attempts in generating biphotons from hot
atomic vapour cells, but with coherence time not exceeding 20 ns,
corresponding to a bandwidth of 450 MHz that is much wider
than the typical atomic natural linewidths23–25.

Here we demonstrate generating subnatural-linewidth
biphotons using on-resonance SFWM in a hot 87Rb vapour
cell assisted with EIT. Different from the off-resonance
double-Raman scheme26 and diamond energy-level scheme24,25,
where the photon bandwidth (B500 MHz) is determined by the
Doppler-broadening decoherence time (B2 ns) of the excited
atomic states, the EIT effect can significantly prolong the photon
coherence time and narrow down the bandwidth27. However,
when directly applying the EIT-assisted SFWM scheme to a hot
vapour cell, there is a serious noise problem: uncorrelated
photons generated from resonance Raman scattering of the
strong coupling laser field overwhelm the entangled photon pairs.
To overcome this problem, we coat the inner wall of the cell with
paraffin to increase the atomic ground-state coherence time and
apply an additional strong optical-pumping beam to suppress the
on-resonance scattering of the coupling field. The optical-
pumping beam is spatially separated from the SFWM volume

and does not interfere with the biphoton generation. This noise
reduction together with other optical filtering allows us observing
biphotons with a high contrast ratio.

Results
Biphoton generation with optical pumping. We produce
subnatural-linewidth biphotons from a paraffin-coated 87Rb
vapour cell at 63 �C, as illustrated in Fig. 1. The details of the
experimental set-up are described in the Methods section. In
presence of two counter-propagating pump (op) and coupling
(oc) laser beams, backward and phase-matched Stokes (os) and
anti-Stokes (oas) photon pairs are spontaneously generated.
After spatial and frequency filtering, these photons are detected
by two single-photon counting modules (SPCMs and SPCMas).
We find the major noise source of uncorrelated photons is the
on-resonance Raman scattering of the coupling field following the
transition |5S1/2, F¼ 2i-|5P1/2, F¼ 1i-|5S1/2, F¼ 1i. These
photons have the same central frequency and polarization as the
anti-Stokes photons, and cannot be filtered away by the
polarization and frequency filters. To clean up the residual atoms
in the level |5S1/2, F¼ 2i, we apply a strong optical-pumping
beam (oop) on the transition |5S1/2, F¼ 2i-|5P3/2, F¼ 1i.
In order not to interfere with the SFWM transitions, the
optical-pumping beam is aligned parallel to the Stokes–anti-
Stokes mode without spatial overlap. The atoms in the level
|5S1/2, F¼ 2i are optically pumped to the ground level
|5S1/2, F¼ 1i, and thus the Raman scattering on the anti-Stokes
channel is suppressed, owing to the long ground-state coherence
time because of the paraffin coating.

To confirm that the spatially separated optical-pumping beam
reduces the on-resonance Raman scattering of the coupling laser
beam, we perform a control experiment of biphoton generation
with and without optical pumping. The powers of the pump and
coupling laser beams are 6 and 27 mW, respectively. We observe
that, after switching on the optical-pumping beam (32 mW), the
photon detection rate on the anti-Stokes channel drops from
12,000 s� 1 to 3,600 s� 1, while the photon-pair rate is nearly
unaffected. The contrast ratio between the biphoton coincidence
(signal) and the accidental coincidence (noise) can be
characterized by the normalized two-photon correlation
functions gð2Þs;as tð Þ, which are plotted in Fig. 2. It clearly shows
that the peak value ð½gð2Þs;as�mÞ of the normalized two-photon
correlation or the biphoton–noise contrast ratio increases by a
factor of B3 when we switch on the optical-pumping beam due
to the reduction of the accidental coincidence counts.

Subnatural-linewidth biphotons. Figure 3 shows the biphoton
waveforms. We fix the pump laser power at 6 mW and vary the
coupling laser power, which is 27, 9 and 1 mW for Fig. 3a–c,
respectively. As expected, the two-photon correlation time
becomes longer as we reduce the coupling laser power for narrower
EIT window. Shown in Fig. 3a–c, the biphoton waveforms are
exponential decay. The 1/e correlation times are 47, 60 and 94 ns,
for Fig. 3a–c, respectively, all exceeding the natural lifetime 26.5 ns
of Rb 5P excited states. The blue theoretical curves are obtained
numerically by taking into account the Doppler effect
(Supplementary Note 1) and agree well with the experiment. This
agreement allows us to extract the biphoton temporal wave func-
tion and joint spectrum. The bandwidths of these biphotons are
3.2, 2.6 and 1.9 MHz, for Fig. 3a–c, respectively (Supplementary
Fig. 1). They are substantially narrower than the natural linewidth
of 6 MHz of Rb D1/D2 lines.

To characterize the nonclassical property of the photon-pair
source, we confirm its violation of the Cauchy–Schwarz inequal-
ity28. Normalizing the coincidence counts to the accidental
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background floor in Fig. 3a–c, we get the normalized cross-

correlation function gð2Þs;as tð Þ with maximum values ½gð2Þs;as�m¼ 11±1,
11±2 and 6±1. With the measured autocorrelations

gð2Þs;s 0ð Þ¼2:0� 0:2 and gð2Þas;as 0ð Þ¼1:6� 0:2, we obtain violation of

the Cauchy–Schwarz inequality ½g 2ð Þ
s;as tð Þ�2=½g 2ð Þ

s;s 0ð Þg 2ð Þ
as;as 0ð Þ� � 1 by

factors of 38±8, 38±11 and 11±3, for Fig. 3a–c, respectively. We
further verify the quantum nature of heralded anti-Stokes photons

by measuring their conditional autocorrelation function g 2ð Þ
c

(ref. 29). An ideal single-photon source gives g 2ð Þ
c ¼ 0. A two-

photon Fock state gives g 2ð Þ
c ¼ 0.5, and a coherent state

gives g 2ð Þ
c ¼ 1. The measured g 2ð Þ

c as a function of coincidence
window width Dt are plotted as Fig. 3d–f, which are below the
two-photon threshold within their coherence time.

As we reduce the coupling laser power, the EIT bandwidth
becomes narrower and the dispersion induced phase mismatch-
ing further constrains the biphoton joint spectrum27. Therefore,
the biphoton bandwidth and coherence time are not determined
by the lifetime of the excited states even though the photon pairs
are indeed generated spontaneously. Figure 4a shows the
measured decay time constant (square) and 1/e correlation time
(circle) of the biphoton waveform as functions of coupling laser
power. The longest correlation time at 1 mW coupling power
approaches B100 ns. On the other side, ½g 2ð Þ

s;as�m, the maximum
value of the normalized cross-correlation function, decreases as
we reduce the coupling power. Figure 4b shows the ½g 2ð Þ

s;as�m and
photon-pair generation rate as functions of the pump power.
While the photon-pair rate is proportional to the pump laser
power, the ½g 2ð Þ

s;as�m drops at a high pump power. Limited by our
available pump laser power of 7 mW, we produced B2,000 pairs
per second. As the threshold of the ½g 2ð Þ

s;as�m is 2.0 for violating the
Cauchy–Schwarz inequality, the nonclassical property of the
photon source is still preserved at 170 mW pump power, which
corresponds to a generation rate ofB47,000 pairs per second.

Discussion
In summary, we demonstrate generation of subnatural-linewidth
biphotons from a hot paraffin-coated 87Rb vapour cell using
EIT-assisted SFWM. The biphoton coherence time, controlled by
the coupling laser power, can be as long as 94 ns. The
corresponding bandwidth of 1.9 MHz is substantially narrower
than the natural linewidth 6 MHz of Rb D1/D2 transitions. It can
be used to generate nearly pure heralded single photons5. The
exponential waveform with tunable time constant is perfect for
interacting with atoms30 and coupling to an optical cavity31. In this
work, the heralding efficiency of the photon pairs is 3.1%. This is
determined by the small optical depth of B1 of the atomic vapour
cell, which is limited by the maximally allowed temperature
(o70 �C) of the paraffin coating. If we can further increase the cell
temperature while maintaining a low spin relaxation rate, we
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Figure 1 | Generating narrowband biphotons from a hot 87Rb vapour cell. (a) Experimental set-up. In the presence of counter-propagating vertically (V)

polarized pump (780 nm, op) and coupling (795 nm, oc) laser beams, horizontally polarized (H) Stokes (780 nm, os) and anti-Stokes (795 nm, oas)

photon pairs are spontaneously generated and coupled into two opposing single-mode fibres (SMF). Then, they pass through optical frequency filters

(Fs and Fas), and are detected by two single-photon counting modules (SPCMs and SPCMas). The coincidence counts are recorded by a time-to-digit

converter (Fast Comtec P7888). Two polarizing beam splitters (PBSs) are used as polarization filters to distinguish the paired photons from the two driving

laser beams. The fibre–fibre coupling efficiency and SPCM detection efficiency are 80% and 50%, respectively. Each optical frequency filter composes of a

wide-band line filter and a narrowband etalon Fabry–Perot cavity filter. The etalon filters have free spectrum range (FSR)¼ 13.6 GHz. The bandwidth,

transmission efficiency and the extinction ratio of the frequency filters are 350 MHz, 80% and 60 dB for Fs, and 80 MHz, 30% and 40 dB for Fas,

respectively. In the inset, we make a zoom-in on the transverse cross-section of cell to clearly show the beam profiles of all incident lasers and the biphoton

mode. The biphoton mode has a waist diameter (1/e2) of 250 mm focused in the middle of the 0.5-inch-long cell. The collimated coupling and pump laser

beams are counter propagating and have the same 1/e2 beam diameter of 1.4 mm. The optical-pumping beam has a 1/e2 diameter of 2 mm and does not

overlap with the SFWM volume enclosed by the pump and coupling beams. The cell inner diameter is 10 mm. (b) The relevant 87Rb atomic energy-level

diagram for backward SFWM and optical pumping. The strong optical-pumping laser is used to optically pump the atoms from the level |5S1/2, F¼ 2i to

|5S1/2, F¼ 1i, to suppress the on-resonance Raman scattering of the coupling beam.
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expect to improve the heralding efficiency and generate biphotons
with richer waveforms by engineering the spatial profile of the
pump beam, as those demonstrated in cold atoms19.

The two key elements to make the SFWM narrowband biphoton
generation feasible are the paraffin coating and the spatially
separated optical pumping. The long ground-state coherence time
preserved by the paraffin coating enables the efficient optical
pumping, which is spatially separated from the biphoton
generation volume, for the flying atoms without interfering the
SFWM transitions. As a general state preparation method, the
technology demonstrated here can be immediately applied to
reduce incoherent photon noise thus improve the fidelity of the
Raman-based quantum memory32. Future improvements could
include improving the quality of optical frequency filtering (etalon

Fabry–Perot cavity, polarization filter, spatial-mode filter) and
optimizing the power and spatial profile of the optical pump beam.

As compared with the cold-atom experiments33,34, the hot
atomic vapour cell configuration is much simpler for operation
and maintenance, and it is a continuous biphoton source. Our
demonstration may lead to miniature narrowband biphoton
sources based on atomic vapour cells for practical quantum
applications and engineering.

Methods
Experimental set-up. The experimental set-up and associated atomic energy-level
diagram are illustrated in Fig. 1. A paraffin-coated 87Rb (99% enrichment purity,
Precision Glassblowing Inc) vapour cell is placed in a temperature-stabilized hot-air
heating oven, which is not shown in Fig. 1a, and is set at 63 �C with fluctuation
o0.2 �C. The length of the vapour cell is L¼ 0.5 inch and its inner diameter is
d¼ 10 mm. The longitudinal orientation of the cell is from east to west and there is
no magnetic shielding in this experiment. The SFWM process is driven by two laser
fields: the pump laser (D2 line: 780 nm, op) is locked to the 85Rb transition
|5S1/2, F¼ 2i-|5P3/2, F¼ 3i, which is red detuned by 2.7 GHz from the 87Rb
transition |5S1/2, F¼ 1i-|5P3/2, F¼ 2i, and the coupling laser (D1 line: 795 nm, oc)
is on resonance to the transition |5S1/2, F¼ 2i-|5P1/2, F¼ 1i. The vertically
polarized pump and coupling laser beams are counter propagating with the
same 1/e2 beam diameter of 1.4 mm. Backward, horizontally polarized, Stokes
(780 nm, os) and anti-Stokes (795 nm, oas) photon pairs are spontaneously
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Figure 3 | Biphoton waveforms with controllable correlation time.

(a–c) Two-photon coincidence counts, collected over 600 s with 1 ns bin

width, as a function of the relative time delay t between paired Stokes and

anti-Stokes photons. The incident pumping laser power is fixed at 6 mW,

while the incident coupling laser powers of a,b and c are 27, 9 and 1 mW,

respectively. The red circles are the experimental data. The solid blue

curves are obtained numerically with the experimental parameters by

taking into account the Doppler effect (Supplementary Note 1). The

corresponding measured conditional autocorrelation function g
2ð Þ

c of

heralded single anti-Stokes photons are plotted in d–f. The error bars are

s.d.’s resulting from the statistical uncertainties of coincidence counts that

can be reduced with longer data taking time.
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generated, coupled into two opposing single-mode fibres, passing through optical
frequency filters (Fs and Fas), and detected by two single-photon counting modules
(SPCMs and SPCMas, Excelitas/PerkinElmer SPCM-AQRH-16-FC). The two-photon
coincidence counts are recorded by a time-to-digit converter (Fast Comtec P7888)
with a temporal bin width of 1 ns. Two polarization beam splitters are used as
polarization filters to distinguish the paired photons from the two driving laser
beams. The spatially separated optical pumping is implemented by applying a strong
vertically polarized optical-pumping beam (oop) that is on resonance to the tran-
sition |5S1/2, F¼ 2i-|5P3/2, F¼ 1i. The optical-pumping beam is aligned parallel to
the pump-coupling beams without overlap. The laser beam profiles on the cross-
section of the cell are shown in the inset of Fig. 1a. The optical-pumping beam, with
a power of 32 mW, has a 1/e2 beam diameter of 2 mm. The Stokes and anti-Stokes
single-mode diameter on the cell centre is 250mm. To further separate the generated
photon pairs from the two driving laser beams, the pump and coupling laser beams
are aligned with an angle of B0.5� to the Stokes and anti-Stokes directions.

Normalized cross- and autocorrelation functions. The normalized two-photon

cross-correlation function is defined as g 2ð Þ
s;as tð Þ¼hâws tsð Þâw

as ts þ tð Þâas ts þ tð Þâs tsð Þi
=½hâw

s âsihâwasâasi�, where âw
s;as and âs;as are the creation and annihilation operators of

the Stokes and anti-Stokes fields, respectively. The experimental gð2Þs;as tð Þ is obtained
by normalizing the two-photon coincidence counts to the flat background floor of
accidental coincidence counts. The normalized autocorrelation functions are

defined as gð2Þs;s tð Þ¼hâws tð Þâw
s tþ tð Þâs tþ tð Þâs tð Þi= hâw

s âsi2
� �

and

g 2ð Þ
as;as tð Þ¼hâwas tð Þâw

as tþ tð Þâas tþ tð Þâas tð Þi=½hâw
asâasi2�. The autocorrelation

functions are measured using a fibre beam splitter.

Theoretical calculation of biphoton waveforms. The theoretical curves in Fig. 3
are obtained numerically following the Schrodinger picture approach27 by
integrating over the Doppler-broadening profile (Supplementary Note 1). The solid
theoretical curve in Fig. 4b is obtained by taking into account the uncorrelated
noise photons (Supplementary Note 2).

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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