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Prediction of creep failure time 
using machine learning
Soumyajyoti Biswas1,2, David Fernandez Castellanos3 & Michael Zaiser1*

A subcritical load on a disordered material can induce creep damage. The creep rate in this case 
exhibits three temporal regimes viz. an initial decelerating regime followed by a steady-state 
regime and a stage of accelerating creep that ultimately leads to catastrophic breakdown. Due to 
the statistical regularities in the creep rate, the time evolution of creep rate has often been used to 
predict residual lifetime until catastrophic breakdown. However, in disordered samples, these efforts 
met with limited success. Nevertheless, it is clear that as the failure is approached, the damage 
become increasingly spatially correlated, and the spatio-temporal patterns of acoustic emission, 
which serve as a proxy for damage accumulation activity, are likely to mirror such correlations. 
However, due to the high dimensionality of the data and the complex nature of the correlations it 
is not straightforward to identify the said correlations and thereby the precursory signals of failure. 
Here we use supervised machine learning to estimate the remaining time to failure of samples of 
disordered materials. The machine learning algorithm uses as input the temporal signal provided 
by a mesoscale elastoplastic model for the evolution of creep damage in disordered solids. Machine 
learning algorithms are well-suited for assessing the proximity to failure from the time series of the 
acoustic emissions of sheared samples. We show that materials are relatively more predictable for 
higher disorder while are relatively less predictable for larger system sizes. We find that machine 
learning predictions, in the vast majority of cases, perform substantially better than other prediction 
approaches proposed in the literature.

All materials break under sufficiently high stress. However, even when the system can support a load at the 
instance of its application, it may still break at a later time by creep rupture1. Local damage may accumulate 
even at a sub-critical loads. Accumulation of microstructural damage may be associated with the thermally 
activated crossing of energy barriers: examples include the accumulation of free volume as result of the thermal 
activation of shear transformations in amorphous materials2,3, or the thermally assisted removal of dislocation 
barriers in irradiated metals leading to microstructural slip localization and irradiation embrittlement4. Local 
damage accumulation reduces the energy barriers for future damage activation, thus promoting a tendency to 
localization. Overall, creep deformation is generally known to have three temporal regimes. First, we observe a 
decelerating strain rate regime associated with (statistical) hardening or aging effects as the weakest elements of 
the microstructure deform first and become consequentially inactivated by internal back stresses3. The decel-
erating regime is followed by an intermediate regime of constant strain rate and a final accelerating strain rate 
regime, associated with damage accumulation and strain localization and leading to catastrophic breakdown2.

For obvious reasons, understanding the creep failure dynamics is an important issue for stability analysis 
of structures across scales. Especially, predicting the residual lifetime of a given sample until its failure under a 
subcritical load is a question that is actively investigated by both physicists and engineers5. Reliable lifetime pre-
dictions might not only avoid catastrophic in-service failure of components and systems, but also yield substantial 
economic benefits in view of the possibility of extending replacement cycles. Sample specific information on the 
damage accumulation process can, on the one hand, be obtained from the macroscopic sample response, i.e., the 
time dependent creep strain or strain rate. More detailed information can be drawn from analysis of the spatio-
temporal pattern of energy releases as local creep damage accumulates in a material subject to subcritical load. 
The idea is here that the introduction of local damage is accompanied by a release of elastic energy which can be 

OPEN

1WW8‑Materials Simulation, Department of Materials Science, Friedrich-Alexander-Universität 
Erlangen-Nürnberg, Dr.‑Mack‑Str. 77, 90762 Fürth, Germany. 2Department of Physics, SRM University - AP, Guntur, 
Andhra Pradesh  522502, India. 3PMMH, CNRS‑UMR 7636, ESPCI Paris, PSL University, Sorbonne Universite, 
Universite de Paris, 75005 Paris, France. *email: michael.zaiser@fau.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72969-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16910  | https://doi.org/10.1038/s41598-020-72969-6

www.nature.com/scientificreports/

recorded by monitoring the acoustic emission (AE) of the sample, thus providing a means of non-destructively 
monitoring the damage accumulation process.

Among the empirical attempts to predict sample specific failure times from macroscopic creep strain rates, 
one possible approach is to correlate the time tm of minimum strain rate with the catastrophic failure time tf  , 
in the simplest case by assuming a linear relationship between both6,7. However, there are multiple issues in 
using that observation for failure time forecasting: (i) in analyzing time series for an individual sample, it is 
often difficult to identify a unique minimum for the strain rate. This problem is particularly pronounced when 
the creep strain rate is itself a stochastic, highly intermittent process; (ii) while empirical observation indicates, 
on average, a linear relation between tm and tf  , the scatter is high especially for highly disordered samples; (iii) 
the prediction for tf  necessarily requires waiting until tm can be reliably identified. Given that experimentally 
observed tm already amount to 60% of tf  and that larger times are needed to reliably identify a minimum, the 
resulting prediction might be too late to be useful8.

A different prediction approach focuses on temporal statistics of the damage accumulation process as moni-
tored by AE. In this case, one looks at the magnitudes, times, and possibly locations of acoustic emission events 
and tries to identify statistical correlations that allow to interpolate the time of failure. For instance, one may 
exploit the observation made both in simulations2 and experiments9 that the AE event rate νAE may accelerate 
towards failure according to a reverse Omori law, νAE ∝ (t − tf )

−p with p ≈ 1 . Such a reverse Omori behavior 
was also reported to be a generic feature of mean-field models of thermally activated rupture processes10. In 
such situations, one can obtain the failure time by fitting the Omori law to the AE record until time t, with 
the advantage that (unlike predictions based on the strain rate minimum) the ensuing predictions continually 
improve with increasing record length, i.e. decreasing time-to-failure. At the same time, the approach to failure 
may be accompanied with other characteristic changes in the AE burst statistics, such as an increase in the AE 
event magnitude or characteristic changes in the Gutenberg-Richter exponent of the power law type statistics of 
burst energies2,11, which may also be used for monitoring and prediction purposes.

Even further information can be harnessed by simultaneously monitoring the spatial pattern of damage 
accumulation, as failure is associated with localization of damage2,9,11. Spatio-temporal correlations in energy 
release signals, therefore, may hold important information regarding distance to the catastrophic breakdown of 
the sample. However, given the high dimensionality of the data sets involved and the possible complexity in the 
correlation measures, it may not be possible to extract the necessary information regarding failure time in terms 
of simple empirical laws. Indeed, the task of extracting non-trivial correlations from high dimensional data is 
precisely what machine learning algorithms can do best. In recent times, machine learning found widespread 
applications in predicting deformation, failure, and flow processes in disordered systems based on complex 
data. Predictions of irreversible deformation and failure processes were based on data describing local atomic 
structure in amorphous solids12,13, mesoscale microstructures14 (for an overview see e.g.15), as well as monitor-
ing data obtained in macrosopic tests16–18. Here we use Random Forest regression19 for extracting information 
regarding sample specific failure times from spatio-temporal records of energy release signals prior to failure. To 
avoid problems resulting from scarcity of data, we obtain our training and testing data from ensembles of creep 
rupture simulations performed using the model introduced in Ref.2. The trained algorithm is tested over a set of 
samples previously unseen by the algorithm using various accuracy measures. We investigate the variations in 
prediction accuracy as a function of loading shear stress, the degree of microstructural disorder, and sample size.

Results
As a model for creep rupture, we use a mesoscale elastoplastic model2,3 that considers plastic activity accompa-
nied by damage accumulation in a simulated sample which is driven by temporally constant, subcritical shear 
loads (see “Methods”). The sample volume is divided into mesoscopic volume elements. Local energy barriers 
control deformation and damage accumulation within the individual elements. The statistical distribution of 
these barriers characterizes the microstructural disorder of the material. The barrier height is reduced by stress, 
hence, if local stresses are high enough, barriers may be crossed and local plastic activity takes place. At the same 
time internal stresses, which arise from local deformation, couple the deformation response of the individual 
elements. Plastic deformation generates local damage which reduces, on average, the local barrier height. The 
coupling between deformation, internal stresses and damage accumulation ultimately leads to damage locali-
zation in the form of a macroscopic shear band. Such damage localization induces a divergence of the strain 
rate which indicates catastrophic failure. The model has been successful in reproducing the temporal regimes 
of creep, the statistics of damage accumulation in the form of avalanches, and the observation of progressive 
strain localization in the approach to failure2,3. A detailed model description and default model parameters are 
provided in the “Methods” section.

The model produces, as raw data output, information that can be interpreted as a simulated Acoustic Emis-
sion time series: Deformation activity is characterized by the timings, locations, and amplitudes of deformation 
avalanches, as well as by the resulting spatio-temporal strain patterns. As shown in2,3, the corresponding time 
series exhibit correlations which evolve with time. Examples are the variation of the statistics of avalanches or 
the progressive localization of spatial activity (see Fig. 1). These variations depend on the proximity to failure 
and can thus be envisaged as precursors with the potential for prediction. As explained in the “Methods” section, 
from the space-time series of deformation avalanches as produced by a mesocale creep simulation we extract 
several features that are used for ML prediction of the failure time.

At each time t measured since the beginning of the creep process, the machine learning algorithm makes a 
prediction for the remaining time to failure, tp . To each time t at which a prediction is made, we can post mortem 
assign an actual remaining time to failure ta . Therefore, we define the (mean) fractional error of the machine 
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learning prediction as the statistical average over the test set eML = �
|tp−ta |

tf
� ; the complementary quantity 1− eML 

is denoted as the prediction performance.
In order to assess prediction capabilities, it is appropriate to quantify the performance of the algorithm not 

in absolute terms but relative to a baseline that can obtained without involving any monitoring data or ML algo-
rithms. We use as baseline for residual lifetime prediction at time t the mean residual lifetime of samples in the 
reduced training set St consisting of all training samples with lifetime larger than t. The mean error (averaged 
over the test set) made by this baseline prediction for individual samples is denoted by ewoML . We then define 
the improvement achieved by machine learning over the baseline prediction as ǫ = eML/ewoML . The comple-
mentary quantity

is denoted as the prediction score. A prediction score of 1 means that there is no error, whereas a prediction score 
of zero indicates that the prediction is only as good as the baseline prediction that the individual sample lifetime 
equals the average lifetime of the samples in the training set. Note that, since both lifetimes and predictions are 
statistically distributed variables, even with a high prediction score there may exist individual samples for which 
the ML prediction is worse than the baseline.

We use the creep time series of 1000 samples as our training set and 200 different samples as the test set to 
evaluate the predictions of remaining time to failure. With the trained algorithm, we systematically investigate 
how the above prediction accuracy measures depend on externally applied stress, disorder and sample size, and 
we investigate how the prediction accuracy is influenced by the inclusion of spatial features into the monitoring 
data. Afterwards, we benchmark the machine learning predictions against other methods of prediction that use 

(1)S = 1−
eML

ewoML
.

Figure 1.   The top panel shows the spatial evolution of damage (cumulative number of local AE events) as time 
evolves ( t(a) < t(b) < t(c) < t(d) ). At later time, the damage becomes localized. The bottom panel shows the 
growth of the global AE event number with time. The qualitative signature of localization appears roughly above 
0.7tf , which is already close to breakdown. The aim of this study is to make predictions substantially ahead of 
the manifestation of damage localization.
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empirical laws. Specifically, we use the time minimum of the strain rate tm to predict the failure time tf  assuming 
a linear relationship between both, and the distinct Omori-type acceleration of the AE event rate in the approach 
to failure that has been reported for the model at hand2.

Dependence of prediction performance on applied stress level.  In order to reproduce creep condi-
tions, the system is loaded with a constant external stress �ext which is below the short-term critical stress �c at 
which the system fails instantaneously. The ensuing failure time tf  depends strongly on the ratio �ext/�c . It is 
therefore natural to expect a variation in predictability as �ext/�c → 1 . We have used three values of applied 
stress—60%, 70% and 90% of the critical stress, respectively, keeping the other parameters of the model fixed.

Figure 2 shows the fractional errors eML and ewoML for different values of stress. Even though the absolute 
value of the sample lifetime changes by many orders of magnitude for this considerable range of variation in the 
applied load (see inset in Fig. 3), we find no significant or systematic dependency of the fractional error on stress. 
Note that for small values of t, the prediction from machine learning is just equal to the average of the training 
set. This is expected since, at the beginning of the creep dynamics for a particular sample, the algorithm has not 
yet received any sample specific information. As time progresses, the algorithm utilizes its training and makes, 
based on the precursor activity up to that time, predictions that improve with increasing length of the precursor 
record. On the other hand, in the absence of any ‘training’, the naive prediction from the average of training data 
does not improve with time and remains roughly constant.

Figure 3 shows the prediction score achieved by machine learning for different stress levels, as a function of 
time-to-failure. Note that the extreme increase of the damage rate just before failure ensures that failure is always 
correctly identified as it happens, with the consequence that for t → tf , S → 1 . The question is, however, whether 
the machine learning algorithm can achieve good prediction scores at earlier times.
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Dependence on material disorder.  In the model we use, the local barrier heights which control dam-
age accumulation are statistically distributed to represent a material with a disordered microstructure. If one 
assumes the weakest-link hypothesis, then the local strength of a mesoscale region is essentially the strength 
of the weakest microscopic subregion. In this case, the mesoscale distribution function of the local strength is 
expected to follow a Weibull distribution3. We statistically distribute the local barriers according to a Weibull 
distribution with shape parameter k, which determines the width of the distribution and hence can be used to 
quantify the microstructural disorder. Specifically, a small value of k indicates a wide distribution and therefore 
a high degree of microstructural disorder. This translates into a comparatively large statistical scatter of sample 
lifetimes. Conversely, very large values of k imply nearly deterministic behavior, i.e., the creep curves of different 
samples and the corresponding sample lifetimes are almost identical.

Figure 4, left, shows time dependent prediction scores achieved for a range of values of k. High disorder 
substantially improves predictability of the remaining time to failure. The reason for the higher prediction scores 
lies in the more complex precursor activity and larger variations in local properties, resulting in spatio-temporal 
correlations which anticipate strain localization already at early creep stages well before catastrophic failure (see 
Ref. 20). In particular, significant local strain differences emerge already at an early stage in strongly disordered 
samples. Thus, spatial signatures can contribute to prediction at a much earlier stage, leading to better-trained 
algorithms for the same number of training samples. On the other hand, with decreasing disorder prediction 
scores become independent of the disorder. This can be understood by noticing that when the disorder distribu-
tion is very narrow, the stochastic behavior of the time series becomes dominated by thermal noise, which is kept 
constant. Hence the predictability becomes independent of the disorder of local strengths.

Dependence on sample size.  The mesoscale model considers a square lattice composed of L× L mes-
oscale regions. Here we vary the linear system size L to study the impact of sample size on the accuracy of the 
machine learning predictions.

As can be seen from the plots in Fig. 5, the prediction scores decrease with system size. This can be understood 
as a consequence of strain localization. Sample failure is controlled by processes taking place in a localized shear 
band which emerges before failure. The width of this band does not depend on system size, hence it occupies a 
smaller fraction of the sample when the sample is larger. If one assumes that precursory signals that can be used 
for prediction mainly emanate from the shear band region (see Ref. 9 for a discussion of this phenomenon on 
a real sample), whereas other regions mainly produce confounding ’noise’, then it is clear that smaller samples 
exhibit a better ratio of precursor signal to stochastic noise, and are therefore more predictable.

This observation might have far-reaching consequences in terms of real-world predictions. For example, a 
catastrophic shear band in a laboratory-scale fracture test of a rock sample occupies a far larger fraction of the 
overall sample volume than the slip localization zone in the context of an earthquake. Thus, sample size may be 
an important factor determining predictability, with unfortunate implications for the predictability of geo-scale 
fracture processes.

Comparison of ML with alternative prediction methods.  It is useful to compare the machine learn-
ing predictions obtained here with results obtained by other methods. We consider two approaches that have 
been proposed and used in the literature.

First, we envisage an empirical method which uses the time tm at which the global minimum strain rate occurs 
to predict the failure time tf  as a linear function of tm6,7. The main drawback of this method lies in the fact that 
the average minimum is quite flat, whereas the instantaneous creep strain rate is subject to strong fluctuations. 
To apply this method, a smoothed signal must first be constructed from the discrete sequence of events (see 
“Methods”). The question is whether the best possible prediction from the empirical method based on the global 
minimum is better than the one from machine learning. Figure 6, left, shows such a comparison. As expected, the 
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initial predictions from the strain rate minimum are, during the initial stages of creep before the actual minimum 
has been reached, far worse than the machine learning ones. The same is true during the late stages of creep close 
to the failure time, since predictions based on the strain rate minimum cease to improve once the minimum is 
passed, whereas ML predictions continuously improve. For moderate to low disorder ( k = 4− 8 ), the strain 
rate minimum method performs consistently worse than the machine learning method. Only for high disorder 
( k = 2 ) and creep times close to tm it achieves prediction scores that are comparable to ML.

A method that is complementary to the strain rate minimum approach, in the sense that it yields predictions 
that continuously improve in the approach to failure, might be based on a reverse Omori-type acceleration of the 
event rate in the approach to failure. Such an acceleration is observed in experimental AE records and has been 
discussed as a means of prediction9, and it is also a generic feature of the creep model considered here2. Accord-
ing to the reverse Omori law, the event rate increases in the approach to failure as ṅ ∝ (tf − t)−1 , and one can 
fit this relationship to the data to obtain the failure time as a fit parameter. Alternatively, one can integrate this 
relationship to express the event occurrence time as a function of the event number, t(n) = tf [1− exp(−an)] 
and again fit this relationship to the data. We choose the latter method since it avoids the need of averaging 
the strongly intermittent and fluctuating event rate. Results are compiled in Fig. 6, right. It is seen that Omori-
type predictions indeed improve in the approach to failure, however, they consistently perform well below the 
machine prediction. Except in the immediate vicinity of failure, predictions based on reverse Omori fits actually 
perform below the baseline defined by the ensemble averaged lifetime. The reason for this finding is that reliable 
fits of an Omori type acceleration are a priori impossible until one is well beyond the strain rate minimum. Also, 
while the reverse Omori law is very clearly borne out when one considers ensemble-averaged statistics with a 
large ensemble of samples, it is much less evident in single samples, in particular when the samples are small or 
strongly disordered.

It is interesting to compare the results obtained from an Omori-based prediction strategy with those obtained 
from a ’temporal’ ML strategy where we only use avalanche times and magnitudes but not spatial information. 
The performance of this ’temporal’ ML is in fact very similar to that of the Omori type prediction scheme: over 
most of the sample lifetime, the performance is below the baseline and only for ordered samples and in the very 
last stage of deformation, predction performance raises above the baseline, while always remaining well below 
that of the standard ML scheme. We may thus infer that a purely temporal ML scheme essentially probes the 
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Figure 6.   Left: comparison between prediction performance from machine learning and failure time prediction 
based upon minimum creep rate; right: performance of failure time prediction based upon Omori-type event 
rate acceleration; see “Methods” for model parameters and other details.
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reverse Omori law (and performs equally badly), whereas the performance of our actual ML scheme, and notably 
its capability of predicting strongly disordered samples, is contingent on the use of use of spatial information—the 
high early prediction scores in disordered samples are due to an early emergence of spatial localization features.

Discussion and outlook
Prediction of failure time for creep rupture is a crucial problem with wide-ranging potential applications in 
science and engineering. Empirical prediction methods are often not accurate enough, especially when the 
disorder is strong. Moreover, sample to sample variations are often high which makes it difficult to extrapolate 
knowledge gathered from a tested sample to another one. For this reason, we have trained a machine learn-
ing algorithm. For machine learning, fluctuations become a source of knowledge that can help in training the 
algorithm to better recognize precursor patterns to failure and exploit complex correlations which can be used 
to predict incipient failure.

We have performed a systematic study of the variations of predictability with applied stress, presence of 
disorder and sample size, using synthetic data generated from a well-established model of creep deformation 
and failure. We find no systematic variation of predictability with stress. However, predictability increases with 
increasing disorder while it decreases with increasing sample size. Our benchmark against alternative methods 
confirms a superiority of machine learning over other approaches suggested in the literature, which can be 
regarded as a promising method with the potential to improve existing hazard assessment techniques.

The proposed method is based on the use of a comparatively small set of features characterizing the deforma-
tion process. These features are chosen in such a manner that they have direct equivalents in laboratory tests, 
such as the timings and intensities of acoustic emissions or simple signatures of progressive spatial localization. 
Advances in acoustic emission tests have made possible in recent years to measure AE magnitudes and locations 
with high resolution, which makes the proposed machine learning method an ideal candidate for analyzing and 
extracting useful information from experimental data. The method works even if comparatively small numbers 
of sample records (here: several hundreds) are available for testing. Such ensemble tests have been conducted in 
the published literature and it will be an interesting task for future investigations to apply the present method to 
actual monitoring data on quasi-brittle disordered materials. In this context quasi-two-dimensional samples such 
as paper7,8 or semi-brittle polymer sheets, which approximately match the geometry considered in our simula-
tions, are of particular appeal. Since experimental ensembles are in general much smaller than simulated ones, 
an important question arises in this context: Can one transfer training results from simulation to experimental 
data? Whether or not this can be effected by appropriate re-scaling depends on whether the simulations correctly 
represent the essential features of the processes occurring in the experimental samples. This implies, on the one 
hand, that it is wise to ‘keep it simple’ and focus on basic features of the monitoring records. Also, parameters 
that strongly influence the prediction scores should be the same in simulations and experiments. This concerns 
in particular the ‘disorder strength’ as expressed by the k-exponent of the Weibull distribution, and indeed the 
question whether Weibull distributed thresholds adequately represent the threshold disorder of real samples. In 
this context, one might use an independent machine-learning method proposed in Ref. 21 to infer local thresh-
old distributions for matching simulations from non universal features of the experimental avalanche statistics.

Methods
Creep model.  Synthetic space-time series of creep deformation accompanied by damage accumulation are 
produced by a mesoscale model of plastic deformation of disordered materials introduced in Refs. 2,3. The model 
considers a 2D L× L lattice of mesoscale elements denoted by an index i ∈ [1 . . . L2] . Each mesoscale element 
has a volume V which coarse-grains microscopic details of a disordered material. Similar to Ref. 22, we describe 
the state of each mesoscale element by continuum mechanics variables, namely a tensorial irreversible strain ǫpli  
and a stress tensor �i which is connected to the reversible (elastic) strain tensor via the tensor of elastic con-
stants, which we assume to represent an isotropic material. The internal microstructure of each element is char-
acterized by a spectrum of stress dependent energy barriers of which we assume the lowest barrier, �Emin,i(�i) 
to control activation of irreversible deformation. To make the connection with traditional concepts of mechanics 
of materials, we introduce element specific, stress dependent yield functions �i(�i) which fulfil the condition

We assume that deformation is controlled by deviatoric (shear) stress only and take �i to be of the form

where �eq =
√

(3/2)dev(�) : dev(�) is the von Mises equivalent stress and dev(�) denotes the deviatoric 
stress tensor. �̂i defines the equivalent stress at which �i = 0 , i.e., the stress at which the energy barrier to initi-
ate a plastic strain increment vanishes and, hence, the volume element i becomes mechanically unstable. In the 
language of plasticity theory, this corresponds to the local flow stress in the limit of zero temperature.

In the regime of negative �i , plastic deformation is controlled by thermal activation over non vanishing bar-
riers. For simplicity, we assume the rate controlling energy barrier to be linearly proportional to �i , i.e.,

where the proportionality constant Va is an activation volume. Barrier crossing leads to a discrete plastic 
event which introduces a finite tensorial plastic strain increment �ǫ

pl . The barrier crossing rate in element 

(2)�Emin,i(�i) = 0 if �i(�i) = 0

(3)�i = �
eq
i − �̂i

(4)�Emin,i(�i) =

{

−Va�i , �i < 0,
0, �i ≥ 0.
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i is νi = νel exp(−�Emin,i/kBT) = νel exp(�i/�T ) where the parameter νel defines the local yielding attempt 
frequency at the mesoscale and ν−1

el  defines the natural timescale of the model. �T = kBT/Va characterizes the 
influence of temperature in terms of a scalar, stress-like variable. In mechanically unstable elements ( � ≥ 0 ) 
events are assumed to occur instantaneously. Upon activation of an event in an element, the plastic strain field in 
that element is updated by adding to the local irreversible strain the tensorial increment �ǫ

pl
i = �ǫ

eq
i · ǫ̂i , where 

�ǫ
eq
i  denotes the scalar magnitude of the strain increment and the tensor ǫ̂i defines the direction. In line with J2 

plasticity, this direction is given by a maximum energy dissipation criterion, thus ǫ̂ = ∇�� = (3/2)dev(�)/�eq . 
On the other hand, the magnitude is given by �ǫeq = χ�eq/3G , where χ is a factor between 0 and 1. This 
choice ensures that the local deviatoric stress (the thermodynamic driving force) cannot change sign upon 
introduction of an event. The location i of a thermally activated deformation event and the associated time 
increment �t > 0 elapsed since the last thermal activation are in our simulations determined by the Kinetic 
Monte Carlo method. Upon introduction of an event in element i, we increase the plastic strain tensor in that 
element, ǫpli → ǫ

pl
i +�ǫ

pl
i  . Alongside with the plastic strain tensor, we also update the cumulative equivalent 

strain, ǫeqi → ǫ
eq
i +�ǫ

eq
i  . Using the updated plastic strain field, stresses everywhere in the simulated sample are 

re-computed. The ensuing stress changes may lead to destabilization of other elements and thus to secondary 
events. In that case, stresses are again updated considering all such plastic events simultaneously, then checking 
for further unstable events, and continuing this cycle until the system is mechanically stable and the ’avalanche’ 
terminates. The simulation then returns the following primary data: (i) the time of the thermally activated event, 
(ii) the overall strain increment, (iii) the change in the spatial strain pattern.

To account for microstructural randomness, the element strength �̂i is statistically distributed according to 
a Weibull distribution of exponent k with cumulative distribution function

and mean value ��̂i� = �̄iŴ(1+ 1/k) where Ŵ denotes the Gamma function. Whenever an element undergoes 
plastic deformation, its strength is renewed from the distribution (5). Deformation-induced damage in element 
i is described by a variable δi = f ǫ

eq
i  which is proportional to the local equivalent plastic strain. The average of 

the distribution from which local strength values are drawn decreases with local damage as �̄i = �̄0exp(−δi) , 
implementing strain softening.

We load the system under pure shear conditions, with principal axes oriented along ±π/4 to the x axis of 
our Cartesian coordinate system. This gives rise to a spatially homogeneous ’external’ stress tensor which repre-
sents a pure shear stress state, � = �ext(ex ⊗ ey + ey ⊗ ex) . In the course of creep deformation, the emerging 
inhomogeneous plastic strain pattern leads to inhomogeneous and multi-axial internal stresses which add to 
this external stress. The calculation of these stresses is done by the Finite Element Method with a regular square 
grid, linear shape functions, assuming linear elasticity and with homogeneous elastic properties. Each mesoscale 
element is matched with a finite element. The stress at each mesoscale element is computed as the average of the 
stress field within the associated FEM element. The reader is referred to23 for further details on the numerical 
implementation of the model.

To perform simulations under creep loading conditions, the value of �ext is kept fixed in time. To establish 
the specific value, we look first for the critical value �ext = �c beyond which the system is mechanically unstable 
and fails instantaneously even at zero temperature. This parameter defines our stress scale. We measure stresses 
in units of �c , strains in units of �c/E where E is the Young’s modulus of the material, and time in units of ν−1

el  . 
Externally controllable parameters are �ext and �T . Default parameters in our simulations are, unless otherwise 
stated, L = 64 , �T = 0.015 , χ = 0.1 , f = 0.1 , k = 4 and �ext = 0.7�c.

The model produces, as output, raw data in the form of the times, locations, and magnitudes (strain incre-
ments) of all local deformation events between initial loading and failure. We can envisage this output as a 
simulated acoustic emission record which monitors the deformation activity within the sample throughout the 
creep process.

Machine learning method.  For predicting the failure time, we use a supervised learning algorithm—Ran-
dom Forest regression19—as implemented in the Scikit-learn Python library24. The algorithm is trained over a 
training set where we use various features of the creep simulation data. Predictions are made at the times where 
an avalanche is ended. For making a prediction at a given point of time (necessarily at the end of an avalanche) 
we use the data features fed to the algorithm at that point of time, which include both temporally and spatially 
aggregated information up to that point. Specifically, the features used for prediction include (1) the elapsed time 
since the beginning of the creep process up until the point where a prediction is being made (again, necessarily 
at the end of an avalanche), (2) the size of the last avalanche at the end of which the prediction is being made. 
We also add spatially aggregated information such as the (3) maximum and (4) minimum damage magnitudes 
(accumulated local AE events as shown in Fig. 1a–d). Finally, the last column of the training data set is the target 
variable, i.e. time remaining before macroscopic failure, which we want to predict (in the test data set).

Attributes (3) and (4) are calculated by taking the sum over the individual rows and columns of the 
matrices shown in Fig. 1a–d, and determining the magnitude of the maximum and minimum accumu-
lated damage along a row or column, i.e. if dij represents the accumulated AE damage matrix, and we let 
Drow
max = max(

∑

i dij , j = 1, 2, . . . , L) and Dcol
max = max(

∑

j dij , i = 1, 2, . . . , L) , then the third attribute is simply 
max(Drow

max ,D
col
max) . The fourth feature is just the corresponding minimum. At this point a comment is needed: 

From continuum mechanical stability analysis we know that, given the nature of the applied loading (the direction 
of the applied surface tractions), an incipient shear band will be oriented parallel to either the x or y axis of our 

(5)P(�̂i) = 1− exp



−

�

�̂i

�̄i

�k



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coordinate system , and not diagonal or along any other angle. Hence the rows and columns of the accumulated 
damage matrix ( dij ) represent potential shear band ’candidates’. The absolute maximum of the summed-up dam-
age along a row or column can be thought of as representing the damage in the center of an incipient shear band, 
whereas the difference between the maximum and the corresponding absolute minimum of the summed-up 
damage gives an indication of the degree of deformation localization.

For every prediction set, a typical training data set consists of the above mentioned features of 1000 samples 
and the test data set is typically comprised of data of 200 samples (over which the prediction accuracy is meas-
ured). The training set data file is the combination of all 1000 samples time series features appended together. 
Due to the slow time variation and the size of file, one in 50 time steps are considered for the training set to have 
a significant change in the feature values. Further details about the data processing and parameter sets for the 
regression model are given below.

General features of the random forest regression model.  Random Forest (RF) regression is an ensemble algo-
rithm that makes predictions based on the average prediction of an ensemble of decision trees. A decision tree 
is a flow-chart like structure, where starting from a root node, the samples are split depending on their feature 
values or attributes. For example, a particular attribute A could be used to split the samples into two parts, those 
having values less than A0 and those having values greater than A0 . Each of these parts can be further split 
depending on other attribute values and so on. The splitting values of the attributes at each stage are optimized 
by the algorithm used until all samples at a given node have the same value of the target variable (in this case, 
time to failure), a prescribed maximum depth of the tree (number of splittings) is reached, or further splitting 
does not improve predictions. To assess the latter point we use a variance reduction criterion which works as 
follows: If N is the number of samples in a node, then the node is split (provided it is not restricted by maximum 
depth of the tree) for a threshold value, say A0 of a feature A , provided A and A0 maximize � , which is given by 
� = var(N)− nl

N var(nl)−
nr
N var(nr) , where nl and nr are the numbers of samples in the two nodes if the split 

is accepted and var(..) refers to the variance of the target variable i.e. the prediction time of the set of samples. 
This is checked for all features and all threshold values for all splitting decisions. The end nodes are called leafs 
and they hold the predictions for the given set. For each of the trees, the training data are subsampled using a 
Bootstrapping algorithm (see below). Consequently, each tree is fed with a random subset of the training data 
(hence Random Forest). Following the training, the test data, which is unseen by the model until this point, are 
passed through each tree and they end up in the leaf nodes which are then the predictions for each of the test 
data points. In case of regression, where the target variable is continuous such as here, the prediction of the RF 
for a given test data point is the average value of the predictions of each of the trees for that data point.

Data processing for regression.  From the training data set, a number of subsampled data sets are generated by 
randomly selecting data points from the training set (selecting, say, N rows randomly and uniformly from N 
rows, but with replacement, i.e. bootstrapping). Due to bootstrapping, some of the data points will be repeated, 
which acts as mitigation towards outliers in the training set. The number of subsampled, randomly generated 
sets is equal to the number of decision trees used in the RF (see below). Each of the trees are then fed with a dif-
ferent training set (randomly sampled) and in the case of regression, as in our case, the average prediction of all 
the trees is the prediction of the forest.

Parameters of the model.  As mentioned above, the RF algorithm uses a set of decision trees for making pre-
dictions. The number of decision trees used here is 1000, however, a parametric study showed no appreciable 
effect on prediction scores when this number was varied between 200 and 1200. The algorithm uses a specified 
maximum depth (number of splittings) for each tree, set at 10. Higher depth was found to lead to an increase in 
error due to overfitting. The minimum samples required to split an internal node is 2 and the minimum number 
of samples to be in a leaf node is 1. Remaining parameters are default for the Scikit-learn 0.19.1 version.

Analysis based on strain rate minimum.  In order to estimate the failure time based on the time of mini-
mum strain rate, tm , which separates the decelerating and accelerating creep regimes, we need to reconstruct a 
smooth signal from the discrete sequence of events. First, we note that the strain rate minimum occurs during 
the linear creep regime and that during this regime plastic activity is almost exclusively thermally activated, with 
subsequent mechanically activated events being rare. In this case, avalanches have a typical size of a single plastic 
event and the strain increment measured over a certain observation interval is proportional to the number of 
avalanches occurring in that interval. Consequently, we can estimate the minimum of strain rate by looking 
for the maximum of a smoothed time increment signal. To obtain such smoothed signal, we substitute the nth 
value of the discrete time increments �tn by the average of the increments whose numbers lie in the window 
[n− h, n+ h] of width 2h centered at n. Averaging over a window of fixed width defined in terms of event 
number can be interpreted as averaging with an adaptative time window (i.e., a narrow time window in stages of 
small characteristic time increments and vice versa). The value h of the window width must be set arbitrarily. We 
check the stability of the results upon variations of h in order to decide its specific value. To this end, we compute 
the probability distribution of tm , where each tm corresponds to a different realization of the creep process. We 
find that for a wide range of values h ∈ [200, 2000] the results are nearly independent of h for all the different 
values of the simulation parameters considered in this work, and we set h = 500.

Analysis based on Omori‑type event rate acceleration.  For the present creep model, the ensem-
ble-averaged event rate shows an Omori-type acceleration to failure, ṅ = a(tf − t)−1 . Since the event rate is a 
strongly fluctuating quantity, we integrate this relationship to obtain
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We may fit this relationship to the actual event times in order to obtain tf  as a fit parameter. However, a straight-
forward fit may not work since any data before the strain-rate minimum cannot be represented by Eq. (6) and the 
resulting errors may compromise the fit result. We resolve this problem by observing that, for the data in our sim-
ulations, also the decelerating part of the creep curve shows a (reverse) Omori law3, hence ṅ = a[(tf − t)−1 + t−1] 
which gives

We fit this relation to the event time list and use the tf fit parameter as our estimate for the sample specific lifetime.
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