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Abstract: The aim of this study was to create a reinforced composite wood-based panel that would be
leaned towards the environment Plywood was used as a core material and fiber-reinforced polymer
was used as a reinforcement. Conventional resin for the fiber-reinforced polymer was substituted with
polyvinyl acetate (PVAC), which has several advantages, such as a lower price, easier handling, and
better degradability. The second chosen component, basalt fiber, is cost attractive and environmentally
friendly. The combination of one and two layers of fabric with three fiber fractions and 4 mm thick
plywood was investigated. The best results were achieved with two layers of fabric and the highest
fiber fraction. The improvements of the ultimate bending load and bending stiffness of the plywood
in the perpendicular direction were 305% and 325%, respectively. The ultimate load and stiffness
of the parallel direction were improved by 31% and 35%, respectively. However, specimens always
failed in the compressional zone. The highest reinforcing effect was found with the impact test: The
energy required to fracture specimens increased by 4213% and 6150% for one and two layers of fabric,
respectively. In conclusion, specimens exhibited high ductility due to the PVAC and basalt fiber. The
amount of work and energy required to cause fractures was extensive.

Keywords: basalt fiber; FRP; plywood; reinforcement; sandwich panels; layered structures

1. Introduction

Plywood is a material that was used mostly in the past for aircraft, cars, and sports goods [1]. It has
a successor. The fiber-reinforced polymer (FRP) is a composite material now used for these high-tech
products [2], due to FRP’s superior properties when considering both mechanical and physical aspects.
However, environmental problems connected with FRP are gaining attention [3]. In this respect,
plywood which is made of sustainable material [4] is better than FRP. The drawbacks of these materials
could be lessened and plywood could be well reinforced if they are properly combined and modified
into one composite material.

Currently, most FRPs use epoxy or polyester resins as a matrix [5]. However, the reinforcement
of plywood could allow the mounting of fabrics with other wood-working adhesives. Some of these
adhesives are less harsh for the environment than conventionally used resins. One of these is the
polyvinyl acetate (PVAC) adhesive. For example, it is used instead of harmful urea-formaldehyde
(UF) resin for particleboard production [6], and it could also substitute for the polymeric matrix of FRP.
It is worth mentioning that wood processing for wood-based panels has less influence on life cycle
impact, while formaldehyde-based chemicals have the highest one. On the other hand, the impact of
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PVAC is less significant when using these panels for products such as doors [7]. The advantages of
PVAC adhesive over epoxy resin are its lower price, faster solidification, easy handling and cleaning,
and its less negative impact on the environment [8]. Moreover, PVAC is degradable, and some types
are even biodegradable [9,10]. Still, epoxy resin has a higher modulus of elasticity and better water
resistance [11]; thus, application of PVAC will not necessarily increase stiffness. Additionally, PVAC is
not soluble in water but swells due to its presence. As a consequence, this leads to reduced durability [9];
these panels should not be directly exposed to rainfall.

Another component of FRP is fibers. Commonly used fibers are made of carbon, aramid, or
glass [12]. These are connected with either high production costs [13] or problematic recycling [14].
For example, carbon fiber manufacturing requires much energy [15]. Production of glass fibers
requires additives. This is a tangible difference from basalt fibers. Basalt is directly processed
into fibers by melting without the need for any modification [16]. The melting temperature of
basalt fibers is only slightly higher than that for glass fibers, but its mechanical properties are also
higher [17]. Life cycle assessment (LCA) of overall basalt fiber production confirms a considerably
lower environmental footprint than those of carbon or glass fibers [18]. Moreover, Inman et al. [19]
found that 86.6% of emissions in basalt-fiber-reinforced polymer (BFRP) production is caused by
epoxy resin. Recycling of basalt fibers is notably eased because basalt as the material is not modified.
However, recyclability is a function of the application, not just the material. Still, a water semi-resistant,
thermo-plastic polymer provides more options for the removal of reinforcing layers and separation of
basalt fibers. Additionally, sources of basalt are abundant [20]. Nowadays, basalt fibers are of interest
for reinforcement of wood–plastic composites [21] and reinforcement of timber beams [22,23].

Plywood and other wood-based panels were successfully reinforced with some types of FRP.
One of these cases is a carbon fiber and phenol-resorcinol formaldehyde matrix. However, specimens
tested by bending failed due to delamination [24]. Authors explain this behavior with the distinctive
mechanical properties of the materials used. Delamination also occurred when strengthening plywood
with basalt-fiber-reinforced epoxy resin [25]. Several other studies describe their approach to the
reinforcement. Carbon fibers bonded by isocyanate-based adhesive were used by Ashori et al. [26].
A similar study with chopped carbon fibers and phenol-resorcinol formaldehyde was performed by
Heng et al. [27]. Bal et al. [28] reinforced plywood with glass fibers and phenol-formaldehyde adhesive.
Another type of study is of strengthening with glass-fiber-reinforced polyester resin [29]. These were
applied both between veneers and on the surfaces of the plywood. Most of these studies describe a
significant improvement in terms of stiffness, flexural strength, and ultimate failure load. The best
effect was usually achieved by a higher amount of fibers, with their position closer to the surface of the
panel. However, these studies have another feature in common. The matrices used have either high
amounts of hazardous volatile organic compounds or contain toxic substances; basalt fibers are scarce
in this up-to-date research on wood-based panel (WBP) reinforcement.

PVAC resin alone cannot be used for FRPs due to its low stiffness [30] and volume-loss-related
solidification. However, it stands a fair chance when mounted on the plywood with basalt fibers. All of
these materials could be combined into strong panels that resist tension failure and the impact load.
Moreover, these panels should be more environmentally acceptable with advantageous costs.

2. Materials and Methods

2.1. Panel Production

A reinforcing layer was applied to the plywood surface. The main goal was to improve its
mechanical properties when subjected to quasi-static three-point bending as well as impact load.
For this purpose, reinforcement of any timber product or WBP (wood-based panel) should be mounted
at least on its tensional side, where fracture usually occurs [31]. However, for plywood, the symmetrical
composition should be maintained [32]. For this reason, both surfaces of plywood were covered with
basalt fabric embedded in the PVAC matrix.
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For the experiment, 4 mm thick, three-layered birch plywood (AZ wood a.s., Brno, Czech Republic)
was used. Twilled basalt fabric (Basaltex a.s., Šumperk, Czech Republic) was bonded with Ponal Super
3, D3 PVAC adhesive (Henkel s.r.o., Prague, Czech Republic). Two compositions with either one or two
layers of fabric were produced. Raw plywood was used as a control panel. Weft and warp directions
of the fabric were collinear with the parallel and perpendicular directions of the plywood, respectively
(Figure 1).
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Both groups of plywood with single and double coating were fabricated with three different
adhesive amounts. Each adhesive amount was calculated to give a specific fiber fraction in the solidified
PVAC adhesive. At first, the thickness of the fabric was measured according to ISO 4603 (1993) [33].
The average thickness of the basalt fabric was 0.22 mm; thus, the bulk volume (with voids) of one
square meter of fabric was 220 cm3. The areal weight of the fabric was 340 g·m−2. This was taken from
the product datasheet. The mass (m) of 340 g—which is the weight of one square meter of fabric—and
the bulk volume (V) of this one square meter of fabric were used to calculate its bulk density (ρ)
according to Equation (1). The thickness of the fabric was considered to be a height when calculating
the bulk volume.

ρ =
m
V

(1)

The bulk density (contains both basalt fibers and voids) of the fabric was 1.55 g·cm−3. It was
compared with the density of solid basalt rock at 2.8 g·cm−3 [34]. Therefore, the volume of fibers in
one square meter of fabric was approximately 121 cm3. This amount represents 55% of the bulk fabric
volume and is considered to be an upper limit for the fiber volume fraction in this fiber-reinforced
PVAC resin. Additionally, variants with lower fiber fractions of 50% and 45% were to be fabricated, as
this could affect the final mechanical properties [35]. This fiber fraction represents a theoretical ratio of
the volumes between fibers and solidified PVAC.

The exact mass of wet adhesive to achieve these fiber fractions had to be calculated. The fiber
volume of 121 cm3 was considered to be 55%, 50%, and 45% fiber volume fraction in the reinforcing
coating. Thus, the volume of the PVAC adhesive had to be 99, 121, and 143 cm3 for these fiber fractions
after solidification, respectively. At first, the required mass of the solidified adhesive was estimated.
The density of the solid PVAC was 1.2 g·cm−3. The exact mass of the Ponal super 3 PVAC that was
supposed to be achieved in the solidified state was estimated by multiplication of its volume with its
density, both of the solid phase (Equation (1)). This was done for all three fiber fractions.

However, this value has to be the weight of the solid-state adhesive that is applied in a wet state.
Therefore, mass lost must be compensated, since PVAC solidifies due to evaporation—release of water.
This can be simply done by dividing the mass of solidified adhesive by its solid content. Solid content
is a mass of solid particles that form solidified adhesive when the water has evaporated. In the case of
Ponal super 3, solid content particles share 50% of the wet adhesive mass.

Finally, the amount of applied wet adhesive was 238, 291, 356 g·m−2 that, according to this theoretical
evaluation, represent 55%, 50%, and 45% fiber volume fraction, respectively. This amount was used for
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each layer of basalt fabric. The control plywood is abbreviated as P. Variants marked as 1 or 2 refer to the
amount of fabrics on each surface of reinforced plywood, and the additional numbers 55, 50, and 45 refer
to the fiber volumetric fraction. The design of the experiment is summarized in Table 1.

Table 1. Design of the experiment.

Variant Number of Reinforcing Layers * Fiber Fraction [%] n1 n2

P 0 n/a 20 16
1–55 1 55 20 16
1–50 1 50 20 16
1–45 1 45 20 16
2–55 2 55 20 16
2–50 2 50 20 16
2–45 2 45 20 16

* Reinforcing layers were placed symmetrically on both surfaces. n1 = number of specimens for the three-point
bending test. n2 = number of specimens for the impact test.

The stacking sequence for one layer of reinforcement was an application of 2/3 of the total adhesive
amount per layer on the plywood surface with a hand roller. The basalt fabric was applied. Finally,
the rest of the adhesive was spread on the surface of the composite. The laminating sequence for a
double layer of basalt fabric was an application of 1/3 of the adhesive amount per double layer on the
surface of the plywood. Then, the basalt fabric was mounted. An additional 1/3 of the adhesive with
the second layer of basalt was applied the same way as the first one. Finally, the rest of the adhesive
was spread on the panel surface. Adhesive amounts were used as calculated for each fiber fraction.

According to EN 315: Standard for tolerances and dimensions of plywood, 4 mm thick panels may
vary from 3.5 to 4.3 mm [36]. Hence, smaller panels for control plywood, plywood with reinforcement
with one layer, and plywood with reinforcement with two layers of fabric were cut from one panel
only. Otherwise, the thickness variation could have a negative influence on the results among variants
of each group.

The composites were covered with 8 µm thick high-gloss PTFE (polytetrafluoroethylene) separator
(Tart s.r.o., Brno, Czech Republic). A 0.5 mm thick silicon layer (Gumex s.r.o., Brno, Czech Republic)
was placed on the very top. The first PTFE created a glossy surface on the pressed composite. The
silicone layer adapted to the roughness of basalt fabric and provided fewer gaps and more even
pressure throughout the structured fabric. The stacking sequence is presented in Figure 2; however,
only one surface is shown for simplicity.
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The composites with one and two layers of basalt fabric were pressed for 20 and 30 min, respectively.
The pressing temperature of 100 ◦C and a pressure of 1.5 MPa was the same for both compositions.
The resulting panels had fine glossy surfaces with fabric structures (Figure 3).
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2.2. Testing of Panel Properties

The composite panels were investigated for ultimate load and stiffness (EI) in bending according
to the EN 310 (1990) standard [37] by ZH050/TH 3A universal testing machine (Zwick Roell AG, Ulm,
Germany). EI was calculated in Nmm2 according to Equation (2), where F2 − F1 is an increment of
applied load on the linear part of the load-deflection curve, w2 − w1 is an increment of deflection
corresponding to F2 − F1, and l is a span in bending.

EI =
l3(F2 − F1)

48(w2 −w1)
(2)

The impact test was performed on a DPFest 400 impact machine (Labortech, Opava, Czech
Republic) following the ISO 6603 [38] standard. Two panels per variant were made. Ten parallel and
ten perpendicular specimens (Figure 1) were cut from each panel for the flexural test, amounting to 20
specimens per variant and orientation. Sixteen specimens per variant were cut for the impact test.

All data were subjected to statistical testing. The data normality was evaluated by the Shapiro–Wilk
test. Levene and Brown–Forsythe tests were used to prove the homogeneity of variances. ANOVA
(analysis of variances) was used under fulfilment of homoscedasticity. Significant differences between
groups were compared by the Tukey HSD (honestly significant difference) test. A nonparametric
Kruskal–Wallis ANOVA with multiple comparisons of p values was chosen for the data groups that
did not have normal distribution or homogeneous variances. All data were tested at a 95% confidence
level that represents 0.5 probability value (p). Results of the ANOVA analysis are marked in each
relevant figure and table. However, only the significant difference compared to the control (reference)
plywood is provided.

A material model was created for a deeper understanding of results. Its main contribution was to
show the stress distribution through the panel in the linear portion of load and deflection. At first, the
fabric was tested according to ISO 4606 (1995) [39] in order to determine its tensional properties in
the warp and weft directions. The test was carried out on a ZH050/TH 3A universal testing machine.
The tensile moduli of elasticity were 40 and 37.9 GPa for the warp and weft directions, respectively.
Material constants for birch plywood were obtained from the Handbook of Finnish plywood [36]. The
data for PVAC were used by Konnerth et al. [11]. The final results were used to describe the control
plywood and reinforcement with one layer of fabric. The model was based on a numerical solution by
the finite element method (FEM). The plywood and the reinforced plywood were calculated as layered
(laminated) shell structures. Deflection and stress analyses were performed; the calculation considered
shear coupling according to the laminate Mindlin–Reissner theory. In this theory, the normal to the
mid-surface remains straight, but is not necessarily perpendicular to the mid-surface [40].



Materials 2020, 13, 49 6 of 14

3. Results and Discussion

3.1. Density

The reinforced panels exhibited increased density (Figure 4), which can generally be attributed to
the PVAC adhesive and basalt fibers [34]. Both had a considerably higher density than that of birch
plywood [36]. Statistically, the 1–55 variant is not significantly different (p-value = 0.7) compared to
the control plywood. The 1–50 and 1–45 are significantly different, with p-values of 0.008 and 0.005,
respectively. Two-layered reinforcement caused a highly significant increase in density, leading to the
p-value of 0.000 for all three variants compared to the control plywood.
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plywood P.

Variants with one layer of fabric had a notably higher increase in density compared to the reference
panels, while the difference with two-layered variants was lesser. There are three possible reasons for
these results. First, when more layers are added, the be density would be marginally closer to that
of the PVAC–basalt fiber composite. Hence, panel density would be less and less different with each
added layer. The second reason is the variable thickness among plywood panels, which causes the
non-proportional change of density. Finally, hot pressing with added moisture from the adhesive could
slightly plasticize the panel, which can lead to densification [41]. The amount of adhesive affected
panel compression. Groups with one and two layers of reinforcement manifested a thickness decrease
as the amount of adhesive rose. However, the average decrease of all variants was 42 µm from 55%
to 50% fiber fraction, and only 4 µm from 50% to 45% fiber fraction, which are quite insignificant
dimensional changes.

3.2. Ultimate Bending Load and Bending Stiffness (EI)

Parallel specimens have grains of surface veneers aligned with their longer sides (Figure 1). These
give them higher moduli of rupture (MOR) because the longitudinal tension and compression strength
of wood are always superior to its strength in the perpendicular direction. The same applies to the
modulus of elasticity (MOE) [42]. The grain orientation of perpendicular specimens is shifted by 90◦.
These specimens represent two main axes of plywood. Mechanical properties in these axes may vary
greatly [43]. The fewer plies are used, the more different the mechanical properties will be. The highest
difference is in the least homogeneous three-plied plywood [36].

The ultimate load and stiffness of all variants in the parallel direction are presented in Table 2. The
highest values were observed in the plywood with two layers of reinforcement. Overall, the addition
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of reinforcing layers had a beneficial effect. Moreover, none of the reinforced specimens failed in the
tension side, which is the usual location of the fracture.

Table 2. Flexural properties in the parallel direction.

Ultimate Load [N] EI [×103 Nmm2]
Variant Mean St. Dev. ANOVA Mean St. Dev. ANOVA

P 502 25.6 3355 212
1–55 537 29.5 3698 236
1–50 563 31.0 3443 157
1–45 570 29.5 3443 121
2–55 658 42.0 *** 4527 130 ***
2–50 651 45.8 *** 4112 355 ***
2–45 636 29.7 *** 3937 229 ***

*** significant difference (p ≤ 0.05) compared to control group P.

The statistical comparison of variants determined that one layer of reinforcement does not
significantly increase the ultimate failure load. The p-value was higher than 0.8 for all variants with
one layer of basalt fabric. All variants with two layers of reinforcement were significantly different
compared to control plywood at the p-value of 0.13. Similar results were obtained for bending stiffness.
One layer of reinforcement did not significantly (p > 0.1) increase EI, while two layers had a highly
significant effect (p = 0.000) on EI increase.

Load-deflection behavior (Figure 5) was different compared to the control plywood. Specimens
yielded and deflected with a slightly rising force. Finally, the test was aborted at 30 mm deflection,
which was the limit of the extensometer. The highest increases of the ultimate load and EI compared to
control plywood were 31% and 35% for the 2–55 variant, respectively.
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The higher ultimate load and EI are caused by the increased thickness and density [44] between
main groups, but also due to the high tensile strength and modulus of basalt fibers. Compression yield
was the first to occur because the compressive yield strength of wood is only half of the tension. Low
compression yield strength leads to a lower modulus of rupture (MOR) and modulus of elasticity (MOE)
of flexure-loaded timber elements [45]. The PVAC matrix is problematic, as it is less rigid than the
conventional resin for FRP [30]. Overall, the contribution of basalt-reinforced PVAC on the compression
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side is low, since the MOEs of PVAC vary between 0.5 and 4 GPa [30], while the MOEs of 4 mm thick birch
plywood are approximately 10.7 and 6.8 GPa for the parallel and perpendicular directions, respectively.
Thus, the increases in thickness and density were not fully reflected in increased load-bearing capacity
and EI. This can be seen with the two-layered reinforcement (Figure 6) in the parallel direction. The
compression failure indicates that the weakness of this composite is located on its top. The matrix is the
part that withstands the compression load of FRP composites; epoxy resin has an MOE approximately ten
times higher than that of wood [46]. Therefore, fiber-reinforced epoxy would be better for the compression
side of plywood, but it would not correlate with the environmental aspect of this study.
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Figure 6. Deflection and failure of a control specimen (P) and a specimen with two layers (2) of
basalt-fiber-reinforced PVAC. The reinforced variant exhibited compression failure.

On the other hand, the matrix has a negligible effect on the tensile strength of FRP [35];
basalt-fiber-reinforced PVAC is a suitable reinforcement for the tension side. Additionally, PVAC is the
least brittle among wood bonding adhesives; it has the ability to sustain high deformations without
fractures [11] and a high creep factor. Therefore, it adjusts to dimensional changes in the wood [47].
Figure 7 shows the stress distribution of parallel specimens. The model also confirms low stress on the
compression side of plywood reinforced with one layer of fabric, while the tension side was properly
involved and bears a high portion of the stress.
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In general, plywood has much lower MOR and MOE in the perpendicular direction. This is the
direction that should be strengthened to create a more homogeneous panel. The tensile strength of
wood in the perpendicular direction can even be 40 times lower than its strength along the grain [48].
Thus, reinforcement with basalt fibers had a more positive effect. Again, the best effect was found
with two layers of fabric and the highest fiber fraction. The ultimate load and EI in the perpendicular
direction increased by 305% and 325%, respectively (Table 3). The directions of the plywood were made
more uniform. Therefore, this type of reinforcement can be used for more demanding applications in
the transportation industry—for example, such as for linings of containers or vans [29].

Table 3. Flexural properties in the perpendicular direction.

Ultimate Load [N] EI [×103 Nmm2]
Variant Mean St. Dev. ANOVA Mean St. Dev. ANOVA

P 135 21.5 339 45
1–55 465 24.0 *** 896 56 ***
1–50 435 14.8 *** 795 26
1–45 415 13.7 *** 754 33
2–55 545 24.0 *** 1441 60 ***
2–50 513 31.4 1215 110 ***
2–45 510 30.4 1234 141 ***

*** significant difference (p ≤ 0.05) compared to control group P.

The ultimate failure load was significantly increased (p < 0.006) with one layer of reinforcement.
When two layers were used, only 2–55 had a significant effect (p = 0.027). The other variant did
not have this effect, mainly due to higher standard deviation. On the other hand, the two layers of
reinforcement had a significant influence on the EI increase (p < 0.005) with all variants, while only the
1–55 variant caused a significant (p = 0.000) increase of IE among one-layered reinforcements.

Perpendicular specimens had a distinctive behavior during the bending test. All specimens with
one layer of fabric exhibited a tension failure of the bottom reinforcement, which is shown as an abrupt
drop in the load-deflection curve (Figure 8).
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The reinforcement of parallel specimens was supported by the strong veneer, which bore a part of
the load. The reinforcement of perpendicular specimens took most of the load, because the surface
veneer in this direction had very low strength (Figure 9). Therefore, the specimens failed prior to
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30 mm deflection and the abortion of the test. These results suggest that two layers of reinforcement
are convenient. However, considering the results in both directions and the production costs, the
reinforcement with one layer of basalt fabric embedded in PVAC resin has its advantages too.Materials 2020, 13, x FOR PEER REVIEW 10 of 14 
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Three volume fiber fractions were tested for the one and two symmetrical layers of basalt fiber–PVAC
reinforcement. Some voids may have occurred during solidification of the adhesive due to its shrinking.
However, small voids have a minimum effect on the mechanical properties of FRP [13]. The estimated
fiber volume fractions were 55%, 50%, and 45%. FRP is known to have better mechanical properties with
higher fiber volume fractions. The same trend was observed with almost all variants. With either one or
two layers of reinforcement, mechanical properties were increased. However, the overall thickness of the
panel decreased with a higher amount of adhesive. This is in contradiction with common FRP, because
the lower fiber fraction means the same number of fibers, but a larger cross-section of the composite [49].
In the density section, the thickness decrease in one group was related to higher amounts of PVAC.
Probably, only the thickness of the plywood was reduced, because basalt fibers cannot be affected by
moisture or a temperature of 100 ◦C [16]. As a consequence, thinner specimens could be bent more easily.
Overall, reduction in panel thickness led to lower load-bearing capacity and stiffness.

3.3. Impact Strength

The control plywood subjected to impact load by a falling object had visible fractures at low
impact energy. On the other hand, reinforcement with one layer of fabric required 40 times more
energy to cause a visible fracture. With two layers of fabric, it was almost 62 times more (Table 4).
The evaluated data can be statistically categorized into three homogeneous groups. Those are control
plywood, panels reinforced with one layer of fabric, and panels reinforced with two layers of fabric.
The data of panels with one layer of reinforcement had p-values of less than 0.03 compared to the
control plywood. Panels with two layers of reinforcement even return p-values of 0.000, indicating a
highly significant difference compared to the control plywood. All in all, reinforcement always caused
significantly increased resistance to impact energy.

Table 4. Impact energy that caused visible fracture of specimens.

Impact Energy [J]
Variant Mean St. Dev. ANOVA

P 0.5 0.1
1–55 20.0 1.4 ***
1–50 19.9 0.9 ***
1–45 19.9 1.5 ***
2–55 30.9 1.2 ***
2–50 30.7 1.3 ***
2–45 30.8 1.0 ***

*** significant difference (p ≤ 0.05) compared to control group P.
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A disadvantage of plywood is its layered construction. Each layer has one direction with low
strength. Penetration through such plywood, especially a thin one, is possible, as veneers may fail one
by one in an independent manner that is limited mainly by the shear strength of the bond-line. The
main contribution of the basalt fabric was its structure. It is made of warp and weft threads woven
together. The reinforcing coating was more homogeneous, threads interacted with each other [50],
and this layer behaved uniformly in both the warp and weft directions, thus reinforcing both the
parallel and perpendicular directions of plywood. However, the real reason for such a significant
improvement in resistance to impact strength is the fixed positions of the specimens. This is a difference
from three-point bending, because specimens could not be deflected as much as those that were freely
placed. Then, the tension strength of basalt fibers could be utilized. The basalt fibers—which have a
tensile strength approximately 10 times higher [51–53] than that of birch wood [48] in its longitudinal
direction—took effect. Thus, tension failures were restricted and the PVAC provided high ductility
(Figure 10). In the reinforced specimens, a narrow failure where the fabric could not withstand the
tension load can be seen.

Comparing the types of specimens for the impact test and three-point bending test shows an
interesting result. Only warp or weft threads bore the load during three-point bending, and specimens
could be deflected as a result of the low stiffness of the PVAC. The impact test shows the benefit of
ductile adhesive and basalt fibers. Plywood loaded by impact force is supposedly not tested only in
the one direction; stress and strain are dispersed over the whole panel, where the weakest spot is prone
to fail. However, the ductile adhesive does not allow delamination due to these forces; compared to
veneer, basalt fabric provides great resistance against failure in all directions. It seems that due to the
high deflection, the stress may shift mainly to tension, where basalt fibers can grant their potential.
This behavior suggests that these panels should be constrained in the place of their final application.
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Reinforced plywood is not suitable for structural applications. This is mainly due to the
thermoplastic properties of PVAC resin [54]. However, there are several suitable applications. Panels
with low weight and high resistance to impact load could be used for packaging, substituting for boxes
made of thicker wooden panels. The described technique of fabric application is also suitable for other
wood-based panels due to the versatility of PVAC resin. Therefore, this kind of reinforcement might
find use in additional products such as safety doors.

4. Conclusions

A new method of plywood reinforcement was investigated. It seems to be a feasible alternative
to the current state of research. Many current methods use stiff resins for structural applications.
Their disadvantage is either cost, negative environmental impact, or sometimes even detrimental
compatibility with wood or reinforcing fibers. For the purpose of reinforcement, the PVAC seems to be
an attractive alternative, as it is a rather ductile polymer that adapts to dimensional changes and does
not delaminate due to higher shear stresses.

Reinforced plywood panels that were tested by three-point bending improved both in ultimate
failure load and stiffness. This effect was to a lesser extent in the parallel direction, while mechanical
properties increased more than threefold in the perpendicular direction. However, in most cases,
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failure was not reached at the level of the maximum tensile stress. Rather, the compression yield
allowed a high deflection of the specimens with increased resistance to load, which required a high
amount of work compared to the control plywood.

The problem of deflection was solved during the impact test, and it was found that 40 and 62-times
more energy were required to cause visible fractures. The testing tool fixed circular specimens all
around. Thus, the deflection was restricted. The reason for this improvement is the combination
of basalt fibers and PVAC adhesive. The basalt fabric constrained tensile failures and the PVAC
contributed to the high ductility of the whole composite panel while being resistant to shear failure.

These panels, however, pose some limitations due to their degradability by both biotic and abiotic
factors. Therefore, their area of application must exclude direct exterior exposure. Some limitations are
also dependent on the thermoplastic properties of these panels. This product, however, would have a
good resistance against the impact force during standard service conditions.
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