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Abstract: Technical specifications of solid biofuels are continuously improved towards the 
development and promotion of their market. Efforts in the Greek market are limited, 
mainly due to the climate particularity of the region, which hinders the growth of suitable 
biofuels. Taking also into account the increased oil prices and the high inputs required to 
grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the 
most important and promising sources for solid biofuel production in Greece in the 
immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, 
well adapted to the xerothermic conditions of southern Europe, which can be utilized 
particularly for solid biofuel production. This is due to its minimum production cost, as this 
perennial weed may perform high biomass productivity on most soils with modest or 
without any inputs of irrigation and agrochemicals. Within this framework, the present 
research work is focused on the planning and analysis of different land use scenarios 
involving this specific energy crop and the combustion behaviour characterization for the 
solid products. Such land use scenarios are based on quantitative estimates of the crop’s 
production potential under specific soil-climatic conditions as well as the inputs required 
for its realization in comparison to existing conventional crops. Concerning its 
decomposition behaviour, devolatilisation and char combustion tests were performed in a 
non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and 
accrued results were compared with data already available for other lignocellulosic 
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materials. The thermogravimetric analysis showed that the decomposition process of 
cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. 
This research work concludes that Cynara cardunculus, under certain circumstances, can 
be used as a solid biofuel of acceptable quality. 

Keywords: energy crops, thermogravimetry, devolatilization, combustion, cynara 
cardunculus. 

 

1. Introduction 

The production of agricultural biomass and its exploitation for energy purposes can contribute to 
alleviate several problems, such as the dependence on import of energy products, the production of 
food surpluses, the pollution provoked by the use of fossil fuels, the abandonment of land by farmers 
and the connected urbanization. Despite the improved technology in the agricultural sector, the 
economic feasibility of biomass crops is still uncertain in many European countries under the current 
market conditions. In general, a substantially greater profit is required for the farmers to change their 
traditional cultivation with a new one for energy production. This could be successful by introducing 
crops that require particularly lower inputs. A perennial crop well adapted to the prevailing 
environmental conditions, well competitive to weeds and with minimal needs to nitrogen and other 
nutrients would be a very good choice in that respect. This is the reason for the cultivation of cardoon, 
one among the toughest weeds, for bio-fuel production.  

Cardoon (Cynara cardunculus L.), also known as Spanish thistle artichoke, is a perennial crop of 
Mediterranean origin [1], well adapted to the xerothermic conditions of southern Europe [2], typical 
conditions of arid and semi-arid areas of the Mediterranean environment. It is a multipurpose crop that 
can be utilized as a raw material in paper pulp industry, as forage in winter time but most importantly 
as solid and/or liquid biofuel in bio-energy sector [3]. Moreover, the extraction of pharmacological 
active compounds from Cardoon is also a potential application of the crop, whereas three important 
products arise; inulin in the roots of cardoon [4, 5] and cynarin and silymarin [6]. The latter two are 
bitter-tasting compounds, which are found in the leaves, and improve liver and gall bladder function, 
and stimulate the secretion of digestive juices, especially bile, and lowers blood cholesterol levels. 

 Cardoon’s growth starts after the first rains in autumn and continues during winter and spring until 
the beginning of summer when soil moisture drops at very low levels and the aerial part of the plant 
dries out, and the crop is harvested almost dry in the period July-August, avoiding soil compaction 
risks. Cardoon yields fluctuate from 9 to 26 t ha-1 in south Europe, following the variation of the 
annual precipitation [3, 7-9]. Information on the growth and biomass productivity of cardoon under 
different soil-environmental conditions is generally limited. Many trials with cardoon were carried out 
in Greece in the last decade showing that this crop may produce 12 to 16 t d.m. ha-1 under rainfed 
conditions depending on the winter and spring rainfall. Biomass yields in excess of 25 t ha-1 are 
feasible under supplemental irrigation, i.e. 2-3 applications in April-May, when water availability is 
higher. This is in agreement with other data obtained in the Mediterranean basin [4, 10]. 
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Cardoon’s growth and productivity in a series of field experiments varied out in the last decade in 
Greece are presented in this work. Furthermore, the experimental results from the combustion 
behaviour of two different samples of cardoon are described. Namely, the selected samples are 
subjected to standard proximate and ultimate analysis and measurement of their calorific values. 
Devolatilization and char combustion experiments are realized in a Thermogravimetric Analyzer 
aiming to export effective conclusions on the behavior of the specific biofuel during the two 
combustion stages. The accrued results are compared with data on the combustion behaviour acquired 
for other solid biofuels. 

2. Experimental Section 

2.1. Materials and Methods 

A number of field experiments have been carried out in Thessaly plain (Experimental Farm of the 
University of Thessaly, Velestino), Central Greece during the last decade (Table 1). Due to the 
encouraging results, field experiments have been expanded to west and northern Greece, i.e. Agrinion 
plain and Kilkis area, respectively, in the last three years. The climate in Greece is typical 
Mediterranean with cool humid winter and rather dry and warm summer. Small climatic variations 
exist in Thessaly, the largest Greek lowland and the centre of the country’s agricultural production, 
which is characterized by a more continental climatic character with colder winters and hot summers, 
whereas in Agrinion plain winter and summer are mild and precipitation is higher throughout the year. 
Finally, Kilkis’ climate resembles that of Thessaly, with higher precipitation during spring. The study 
soils are all deep to very deep, moderately fertile to fertile and are classified as Typic Xerohrept, 
Vertic Xerochrept, and Aquic Xerofluvent in Thessaly plain; Typic Xerofluvent in Agrinion; and 
Typic Xerochrept in Kilkis [11]. Split-split plot experimental designs were applied in most 
experiments with studied factors: plant density, nitrogen dressing, levels of weed control, irrigation 
water depth, etc. In most experiments, the growth and aerial fresh and dry biomass (total and per plant 
component) were recorded in consecutive distracting samplings throughout the growing period. Seed 
yield was determined in the final harvest. Based on all data collected and the local socio-economic 
conditions, economic and energy budgets for cardoon cultivation have been produced at farm level. 

In order to carry out the primary characterization of the fuels, a Thermo Finnigan Flash EA 1112 
CHNS elemental analyzer was used. Proximate analysis was performed according to the ASTM 
standards. Specifically, the ASTM D 3173-87, ASTM D 3174-89 and ASTM D 3175-89a were 
followed for the determination of moisture, ash content and the volatile matter, respectively. Fixed 
carbon for each sample was determined by subtracting the volatiles and ash content from the initial 
mass. The high and low heating values were estimated through empirical formulas from the elemental 
analyzer CHNS. 

As concerns the devolatilization processes, two representative samples of cynara’s biomass, 
henceforth named as C1 and C2, were used for this devolatilisation and reactivity study. The 
difference between them is that the called C2 is the only one that includes seeds resulting in a solid 
biofuel of improved quality. This state will be verified through the obtained results presenting in this 
research work. After air-drying, the samples were sieved to the desired particle size. In particular, the 
particle size fractions selected were in the range of 150-250 μm and 250-500 μm. The pyrolysis and 
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char combustion characteristics for both of samples were studied in a non-isothermal TA Instruments 
Q600 simultaneous TGA-DSC apparatus. All TGA experiments were conducted in an inert (pyrolysis 
tests) and an oxidative (combustion tests) environment, at ambient pressure and heating rate 20 
°C/min. The constant flow rate of 100ml/min was applied both for high purity helium (He) and air 
(80/20 in N2/O2), operating as the heat transfer medium [12]. Prior to the heating program, the system 
was purged with helium for 10 min at 400 ml/min to ensure that the desired environment was 
established. Aiming to reduce the effects of heat- and mass- transfer limitations small sample weights, 
about 20 mg, were placed in an open alumina sample pan. Weight loss (TG curves) and the rate of 
weight loss (DTG curves) were continuously recorded under dynamic conditions, as functions of time 
or temperature, in the range of 30-1000 °C. Also, the weight precision of the instrument is 0.1 μg. 

Table 1. Cynara Cardunclulus L. experimental fields established by the Laboratory of 
Agronomy of the University of Thessaly during (1999–2007). 

 

Location Coordinates 
Year of 

Establishm
ent 

Studied 
Factors 

Rainfall 
(mm) 

Total dry matter 
(min–max; in t/ha) 

Velestino 
Magenisia 
Clay-loam 
(0.1 ha) 

39°12’N 
22°14’E 
87 m alt 

9/3/1999 
3 densities (0.6, 1 and 2 pl/m2) 
2 N-levels (0 and 60 kg N/ha) 
4 replicates 

≈ 450 
mm 
per year 

2nd year: 9.3–15.8 
3rd year: 5.7–11.4 
4th year: 7.6–11.5 

Velestino 
Magenisia 
Clay-loam 
(0.15 ha) 

39°12’N 
22°14’E 
87 m alt 

9/9/2004 
3 irrigations (350, 100 & 0 mm) 
3 N-levels (0, 50 & 100 kg N/ha) 
3 replicates 

≈ 450 
mm 
per year 

1st year: 5.2–6.3 
2nd year: 11.1–15.1 
3rd year: 12.1–18.6 
4th year: ongoing 

Palamas 
Karditsa 
Loamy 
0.1 ha) 

39°25’N 
22°05’E 
105 m alt 

13/4/2006 
2 irrigations (180 & 0 mm) 
3 N-levels (0, 80 & 160 kg N/ha) 
4 replicates 

≈ 450 
mm 
per year 

1st year: 3.7–4.5 
2nd year: 27.1–30.8 
3rd year: ongoing 

Palamas 
Karditsa 
Loamy 
(4 ha) 

39°25’N 
22°05’E 
109 m alt 

11/4/2007 2 irrigation (150 & 0 mm) 
Demonstration field 

≈ 450 
mm 
per year 

1st year: 2.3–3.2 
2nd year: ongoing 

Mouries 
Kilkis 
Sandy 
(4 ha) 

41°14’N 
22°45’E 
250 m alt 

14/4/2007 2 irrigation (150 & 0 mm) 
Demonstration field 

≈ 600 
mm 
per year 

1st year: 1.1–2.9 
2nd year: ongoing 

Agrinion 
Sandy clay 
(1.3 ha) 

38°40’N 
21°14’E 
42 m alt 

12/9/2007 Demonstration field 
≈ 650 
mm  
per year 

1st year: ongoing 

Perivolaki 
Sandy 
(2.2 ha) 

39°12’N 
22°14’E 
87 m alt 

14/3/2007 Demonstration field 
Weed competition experiments 

≈ 450 
mm  
per year 

1st year: 2.1–2.9 
2nd year: ongoing 

Fyteies 
Kilkis 
Clay 
(4 ha) 

38°40’N 
21°14’E 
50 m alt 

7/5/2007 2 irrigation (150 & 0 mm) 
Demonstration field 

≈ 650 
mm 
per year 

1st year: <1.5 
2nd year: ongoing 
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2.2. Kinetic Modeling 

The thermal decomposition of cynara cardunculus is characterized by a high yield of low molecular 
mass compounds at low heating rate. According to many researchers [13-19], the behaviour of biomass 
under pyrolysis and combustion conditions can be successfully described by the decomposition of its 
main fractions, i.e. cellulose, hemicellulose and lignin. Despite the fact that the devolatilization 
processes are complex because of the simultaneous degradation of the three components, these were 
assumed to decompose individually. Similarly, the kinetic behaviour of cardoon samples as biomass 
materials has been modeled by several independent, parallel, first-order reactions [12, 14, 20]. The 
kinetic model and the equations are reported in detail in previous studies [20, 21]. Briefly, the 
equations that describe the overall rate of conversion for N reactions and the thermal decomposition of 
the individual components can be described by: 

1, 2,3,...,i
i

i

dadm c i N
dt dt

− = ⋅ =∑  (1) 

and 

exp( / ) (1 )ni
i i i

da A E RT a
dt

= ⋅ − ⋅ −  (2) 

where Ai, Ei and n are the pre-exponential factor, activation energy for each component i and the order 
of the reaction, respectively. Coefficient ci expresses the contribution of the partial processes to the 
overall mass loss, :o charm m−  

0, ,i i char ic m m= −  (3) 
where m0,i and mchar,i are the initial sample mass and the final char yield – normalized with m0 – of 
component i, respectively. 

The reaction between a fuel char and oxygen is considered a very complicate process according to 
many researchers [22-25]. Some of the factors that influence the reaction and appear to be the most 
important are the various parts of different properties that chars may be composed of and the variety in 
surface reactivity of chars during their combustion. In order to include the heterogeneous nature of 
char into the kinetic model, it is assumed to be consisted of a mixture of various components each of 
which demonstrates different reactivity. Hence, the sample mass, m, normalized by the initial sample 
mass as a function of time is given by the following formula: 

∑ =+−= ∞

z

jj mmtactm
1

]1)0([)](1[)(  (4) 

where, n is the number of components, cj is the fraction of combustibles in component j, and aj(t) is the 
reacted fraction of component j in time t. The term ∞m is the normalized amount of the solid residues 
(minerals) at the end of the experiment. 

A separate equation was used for each component to describe the dependence of the reaction rate on 
the temperature and fractional burn-off:  

)()()/exp( 2 jjOjj
j afPgRTEA

dt
da

−=  (5) 

where, Aj is the pre-exponential factor of component j, Ej is the activation energy of component j, g 
expresses the effect of ambient gas composition and f describes the change of surface reactivity, as a 
function of the fractional burn off. It has been proved [23, 24, 26] that function g is proportional to the 
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partial pressure of oxygen in air and, hence, its value is stated as 22 )( OO PPg =  and could be included 

into the pre-exponential factor, while the fj(aj) function was described by: 
jn

jjj aaf )1()( −=  (6) 

where nj is the reaction order ranging from 0 to 2. The method of nonlinear least squares was applied 
for the optimization of kinetics parameters by minimizing the objective function: 
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dt
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where (dm/dt)exp and (dm/dt)calc is the experimental and calculated differential thermogravimetric 
curve, correspondingly.  

3. Results and Discussion 

3.1. Cardoon Origin and Cultivation 

Cardoon (Cynara cardunculus), also known as Spanish thistle artichoke, is a perennial very deep-
rooted weed of Mediterranean origin [1], well adapted to the xerothermic conditions of southern 
Europe and Mediterranean climatic type areas. Cardoon’s growth starts after the first rains in autumn 
and continues during winter and spring until the beginning of summer, when soil moisture drops at 
very low levels, and the aerial part of the plant dries out. Then the crop can be harvested almost dry 
(<15% moisture content) in the period July-September, so avoiding drying costs (normally 7- >15 €/t) 
and soil compaction risks. Fast re-growth starts again after the first rains in the following autumn, and 
crop canopy is very soon fully closed, and so forth. Our field experiments demonstrated that cardoon, 
as a very competitive weed itself, wouldn’t allow the mutual growth of other weeds, whereas its 
growth was not affected by pest and diseases, so that its cultivation can be realized without the use of 
agro-chemicals. Moreover, its deep and effective rooting system takes perfect advantage of the soil’s 
inherent fertility so that the crop does not need but modest nitrogen dressings only in very poor soils. 

Growing during the rainy period, cardoon takes also good advantage of the winter and spring rains, 
and performs dry biomass yields of 12-16 t ha-1 without any irrigation. However, if the crop receives 
2-3 irrigation applications from mid-April to late May (when irrigation water is normally still available 
in many regions), dry biomass yields in excess of 25 t ha-1 may be easily attainable. This is in 
agreement with other data obtained in the Mediterranean basin [4, 10]. 

3.2. Environmental Benefits from Cardoon Cultivation 

Besides the obvious environmental benefits of using energy produced from cardoon, cultivation of 
this crop has direct positive effects on the environment. 

Nitrate pollution: Cardoon needs less nitrogen than many other crops. In many field experiments, 
high biomass yields were attainable under fertilization dressings from 0 up to 50 kg N/ha in shallow 
and poor soils. Thus, the modest fertilization dressings of cardoon help controlling the nitrate pollution 
of surface and ground waters in extensive areas where annual crops (cotton, maize, wheat, etc.) are 
intensively cultivated. 
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Reduction of agro-chemicals: Due to its great adaptation, cardoon fast (re)growth controls the 
mutual growth of other weeds in many environments. On the other hand, in all field experiments, no 
evidence of cardoon suffering by any pest or disease was present. Therefore, cardoon can be cultivated 
without the use of any agrochemicals, so further reducing the production cost and the environmental 
risk from the use of these substances. 

Water management: As mentioned, cardoon can take perfect advantage of the winter and spring 
rains and produces quite high biomass yields without any irrigation.  

Soil erosion and land desertification: Cardoon starts growing at particularly high rates just after the 
first rains in October. Soon its canopy is closed and protects the soil from erosion, which is the most 
important environmental hazard on the sloping lands around the Mediterranean semi-arid zone.  

Improvement of soil characteristics: After cardoon’s establishment, the only field work is 
harvesting. Thus, cardoon fields do not suffer from soil compaction. The first leaves formed (“rozeta 
leaves”) fall off creating a humus rich top soil with improved soil physical (soil structure, permeability 
and infiltration capacity, increased water holding capacity, etc.) and chemical characteristics 
(increasing organic matter content, cation exchange capacity, available nitrogen, phosphorus, etc.).  

3.3. Energy Production and Cost 

With a gross heating value of the dry biomass measured at 16.5 GJ/t (seed excluded), Table 1, to 
18.5 GJ/t (seed included), such yields correspond to 5.7-7.5 oil equivalent (TOE) ha-1 for the rainfed 
and >11.0 toe ha-1 for the supplementary irrigated crops, respectively. 

Considering the modest inputs (practically soil preparation and sowing once in a 10 years plus 
annual harvest and transportation to the plant that is estimated at 70-200 €/ha) cardoon may produce 
the cheapest biofuel comparing to all other bio-energy crops known. Actually the energy production 
cost is determined at <0.5-1 €/GJ on the farm, 3 €/GJ including the farmers profit (dry biomass sold 
against 60 €/t in July 2008), and about 3.5-4.0 €/GJ including the cost of pellet production (note: 
current oil price in Greece 820 €/t or 20 €/GJ). Unlike other biofuels such as bio-ethanol from maize 
and biodiesel from oilseed rape (energy balances 1/1.3 and 1/2.5 [27]), heat energy produced from 
cardoon reaches 1:27, thus leading to a revolutionary state of the art. Additionally, with on farm 
output/input ratios of 3.5-4.5 €/€ cardoon appears to be by far the more interesting than many other 
crops in Greece and elsewhere and may secure a very good income to the farmers. 

Besides agro-pellet production, cardoon biomass contains 15-20% seed which is by 25% rich in oil 
that can be used for sustainable production of cheap bio-diesel. Finally, cardoon’s rich in cellulose and 
hemi-cellulose biomass may produce considerable amounts of bio-ethanol in the future (second 
generation biofuels). Based on the above, cardoon is considered as the most important and promising 
crop for biomass and energy production in Greece in the near future. Cardoon cultivation may partially 
replace traditional cultivations ensuring a good profit to the farmer (double compared to wheat and to 
cotton cultivation with present prices, e.g. 70 €/t dry biomass in the entrance of the factory) and 
producing biofuel of high energy content. Our research shows that is feasible to introduce 200 kha of 
cardoon cultivation in Greece in the immediate future (one fifth of the cultivated area with winter 
cereals, or 5% of the total agricultural land) for the production of over 1 million toe. This would result 
in an increase of the farm income by 150-180 million €, whereas the operation of 40-50 processing 
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plants and the creation of the new markets would create thousands of many new jobs. The solid biofuel 
(cardoon pellets, briquettes, etc) may reach the end user at prices by 30-40% lower than the oil price, 
whereas the dependence on the imported fossil fuels will be remarkably reduced. 

Figure 1. Energy balance for the production of various biofuels [27]. 
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3.4. Pyrolysis and Kinetic Modeling of the Cardoon Biofuels 

Table 2 presents a complete dataset referring to the proximate and ultimate analyses and the 
evaluation of calorific value (HHV) on dry basis of cardoon samples. In particular, the percentage of 
volatile matters varies from 70 to 72 wt%, while the fixed carbon content ranges between  
13.4-14.6 wt%, respectively. A higher ash content compared to other solid biofuels is observed, which 
accounts for 7.2 and 6.9 wt%. However, the high ash values are characteristic for cardoon residues, 
since this varies between 4% and 17% on dry basis [28-30]. Additionally, both of the samples show 
comparable results with other studies [15, 28-29] in the nitrogen and sulphur content. More 
specifically, nitrogen is lower than 1.9 wt% on dry basis, while sulphur equals to 0.1 wt% on dry basis. 
C2 sample presents the highest elemental carbon and hydrogen content resulting to its higher calorific 
value (HHV) which is approximately 16.5 MJ/kg. The percentage of its nitrogen value is double 
compared to the C1 sample. These variations are attributed to the different origin of each sample,  
i.e. stalk or seed. Generally, the composition of the tested cynara samples is comparable to other 
biomass materials [12, 20-22]. 

A comparative analysis of the weight loss (TG) and weight loss rate (DTG) curves for 
cardoon’s samples at a heating rate of 20 °C/min and particles size fraction of 250-500 μm are 
presented in Figure 2, respectively. Natural wood and its corresponding thermogravimetric curves 
have been used to compare the accrued results with artichoke. The shape of the curves indicates that 
pyrolysis proceeds in almost the same way for all biomasses samples despite the origin for the 
cynara’s samples. A more analytical look at the weight loss rate curves reveals a shoulder located at 
the low temperatures of the degradation of the lignocellulosic samples. It has been reported [13, 16, 
19, 22] that the lower temperature shoulder represents the decomposition of hemicellulose present in 
the biomass material and the higher temperature peak the decomposition of cellulose, whereas the flat 
tailing section showed above 400 °C corresponds to the degradation of lignin. This curve is more 
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pronounced in the DTG profile of C1 sample indicating its higher hemicellulose content compared to 
the C2 sample. The shoulder located on the left is less pronounced for C2 sample, while an additional 
shoulder is present in the region of 380-410 °C. A decrease in the maximum devolatilization rates for 
cynara’s samples is obtained when comparing the TG/DTG curves for cardoon residues and wood. 
Additionally, this rate is attained at earlier temperature for C1 and C2, indicating that cynara is more 
reactive compared to wood. 

Table 2. Proximate analysis, ultimate analysis and heating value of cardoon samples. 

Samples  Proximate analysis (wt%, as received) Ultimate analysis (wt%, dry basis) HHV (MJ/kg,

dry basis)  Moisture V.M.A Fixed Carbon Ash C H N S OB 
C1 8.2 70.0 14.6 7.2 40.6 5.5 0.9 0.1 45.0 13.7 
C2 7.9 71.8 13.4 6.9 43.7 6.0 1.8 0.05 40.9 16.3 

Encinar et 
al [28, 30] - 77.3C 14.3C 8.4C 46.7 4.8 0.7 0.1 47.7 18.2 

A :Volatile matter, B :By subtracting, C :Oven dry basis. 
 
The mineral matter is higher in cardoon rather than in natural wood (<1 wt%) and is considered the 

main component responsible for the low-temperature range of the volatile productions and the 
subsequent high char yields [15]. However, the degradation of energy crop samples is completed 
through a wider temperature range. Comparing the given thermogravimetric curves to wood, cellulose 
and hemicellulose containing in artichoke decompose in lower temperatures, while the third 
component, lignin, decomposes in the same temperatures as wood. 

The main pyrolysis characteristics of the tested C1 and C2 samples, such as initial 
decomposition temperature (Tin), maximum decomposition rate (Rmax) and temperature at that 
rate (Tmax) and total conversion (Ctotal) are summarized in Table 3. 

It is likely that the bigger surface slow down a little the volatiles yielding. On the contrary, the same 
fraction for both samples presents the higher decomposition rate. In particular, the mentioned rate 
(Rmax) amounts to values from 11.5-13.8 x 10-2/min in the temperature region of 250-650 °C. The 
tested samples seem to reach this rate in similar temperatures, specifically, their major weight losses 
occur between 300-350 °C, which similar to other research studies [31]. The total conversion of the 
samples for both of the fractions approaches the percentage of 78%. However, the small differences 
appearing in the devolatilisation characteristics due to the particle size and origin show that they 
probably differ in reactivity. 

Taking into account the shape of the weight loss rate curves, kinetic modeling of the cardoon 
pyrolysis was carried out by aggregating the various processes into three reactions, Figure 3. 

Finally, the obtained kinetic parameters of cardoon samples are listed in Table 4 accompanying 
with kinetic data of wood-based material [20] in order to comparative remarks be emerged. On the 
other hand, a few results on kinetic parameters of cardoon pyrolysis could be found in other research 
studies [31]. Studying the obtained data, it is more than evident that there are quantitative differences 
existing between the wood sample and the energy crop. In particular, lower activation energy values 
are observed for the hemicellulose and cellulose and higher for lignin component during the 
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degradation of cardoon samples. Moreover, the third component, lignin, of C2 sample contributes to 
the overall mass loss via the highest percentage due to its corresponding increased content 
demonstrating, consequently, that a considerable part of volatiles is evolved in this region. 

Figure 2. TG (left plot) and DTG (right plot) curves during the pyrolysis of cardoon  
and wood. 
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Table 3. Devolatilization characteristics of the samples at heating rate 20 °C/min. 
 

Samples 
Particle size 

(μm) 
Initial decomposition 

temperature (°C)  
Max decomposition 

rate (min-1x10-2) 

Temperature at 
max 

decomposition 
rate (°C) 

Total conversion 
(w/w%) 

C1 

150-250 224 11.5 335 78 

250-500 226 13.8 334 76 

C2 

150-250 223 11.9 336 78.2 

250-500 228 12.8 334 77.4 
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Figure 3. Kinetic evaluation for the pyrolysis of cardoon sample of C1 (left plot) and C2 
(right plot) at 20 °C/min by using three independent parallel reactions. 
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Table 4. Calculated kinetic parameters for the pyrolysis of biomass samples at heating  
rate 20 °C/min. 

Samples Hemicellulose Cellulose Lignin 

 
Particle size 

(μm) 

A 
 (min-1) 

E 
(kJ/mol) 

c 
(%) 

A 
(min-1) 

E 
(kJ/mol) 

c 
(%) 

A 
(min-1) 

E 
(kJ/mol) 

c 
(%) 

C1 
150-250 1.7 x 1010 108.6 16.9 3.2 x 1011 134.1 53.3 4.6 x 103 59.6 19.7 
250-500 9 x 1010 115.1 18.9 4.6 x 1011 135.7 54.8 2.3 x 103 54.5 24.8 

C2 

150-250 5.4 x 106 73.2 14.5 9.3 x 107 95.2 51.5 4 x 103 60.5 34.2 
250-500 5.8 x 1010 113.6 14.8 7.9 x 109 116.8 54.5 6.5 x 104 72.8 31.3 

Wood-based material 
[20] 

2.6 x 1011 131.1 25.3 3.3 x 103 203.2 64 3.3 x 103 56.7 9.8 

 
3.5. Combustion Behaviour of the Fuels 

3.5.1. Combustion of the pure fuels 

The combustion behaviour of the energy crop’s samples was also investigated. The knowledge of 
the possible thermal events during combustion is important for the control and optimization of process. 
Experimental results of cardoon’s samples of particles size 250-500 μm combustion are illustrated in 
Figure 4. These figures depict the reactivity of the material expressed as exactly weight loss and as 
differential weight loss and temperature. The main combustion characteristics as initial combustion 
temperature (Tin), maximum combustion rate (Rmax), temperature at that rate (Tmax), combustion time 
(t) and total conversion (Ctotal) are reported in Table 4, as well. Studying the TG curves it is shown that 
the combustion of the fuels tested proceeds in a similar way despite some marked differences. In 
particular, the combustion of both cardoon samples starts at almost the same temperature (200 °C) 
even if the combustion of treated sample (C2) starts rather earlier than untreated sample (C1). It is also 
characteristic that the process starts earlier for the coarse fraction than in the fine fraction (Table 5), 
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despite the fact that particles of smaller diameter accelerate the begging of process due to the higher 
area available for reaction with oxygen. Nevertheless, it is worthwhile to note that the energy crop’s 
combustion for both particle sizes is initiated at significantly lower temperatures compared to the 
paper samples, which start burned at ~245 °C. 

Table 5. Combustion characteristics of the samples at heating rate 20 °C/min. 

Samples Particle 
size (μm) 

Initial combustion 
temperature (°C) 

Max combustion 
rate 

(min-1x10-2) 

Temperature at 
max combustion 

rate (°C) 

Time 
(min) 

Total conversion 
(%w/w) 

C1 
150-250 198 46 292 44 92.8 
250-500 196 31.2 291 45 92.6 

C2 
150-250 200 16.8 322 42 93.5 
250-500 188 18.6 318 43 92.9 

 
According to the DTG curves, the combustion of cardoon is realized through two temperature 

regions (a) below 380 °C and (b) from 380 °C to 400 °C. The second stage, which is accompanied by a 
flat tailing section on the DTG curve, is only observed for sample C1 of both particles size fraction and 
sample C2 of fine fraction, Figure 6. As demonstrated in previous studies [21] this stage represents the 
combustion of the char generated during the first stage. The absence of this stage from the DTG curve 
of the coarse C2 sample is probably attributed to the fact that the combustion of the generated char is 
taking place in lower temperatures. Therefore, the shoulder in the differential thermogravimetric curve 
is not clearly visible as a separate stage. Nevertheless, the combustion of the specific sample is 
continued until 500 °C. Additionally, the C1 sample presents higher peaks located at lower 
temperatures significant of its higher reactivity during combustion. It is worthwhile to note that the 
DTG combustion curve of the higher particle fraction C2 sample is located at almost the same 
temperature region with the main peak of wood. This observation along with the absence of the second 
curve from the coarse C2 sample shows its slightly better combustion behavior. Considering sample 
C1, the lower fraction seems to be more reactive in the first temperature region and less in the second 
one. Thus, the particle size is likely to have an effect on the fuel reactivity. 

A comparison referring to the obtained combustion results between cardoon’s samples demonstrates 
a higher Rmax for the untreated thistle (C1) which mounts to 31.2-46 x 10-2/min than C2 sample whose 
rate accounts for only 16.8-18.6 x 10-2/min. Additionally, the maximum combustion rate is reached at 
earlier temperatures for C1 indicating its higher reactivity, as well. However, more time is needed for 
sample C1 to finish the combustion process. Finally, as clearly shown in Table 4, the total conversion 
for both of samples is over 92%. 

3.5.2. Char combustion of the fuels 

Apart from the devolatilisation processes, the combustion of chars is another thermal treatment 
method that is essential for the fully understanding of the bio-fuels behaviour during their energy 
utilization. Despite the widely used one-step reaction [22, 24], the differential thermogravimetric 
(DTG) data show that combustion of cynara chars is a multistep process. Indeed, weight loss starts at 
relatively high temperature and occurs to a certain extent also in oxidized environment [25], Table 6. 
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Figure 4. DTG profiles during the combustion of cardoon and wood. 

 
 
  

 

 

 

 

Table 6. Char combustions characteristics of the samples at heating rate 20 °C/min. 

Samples Particle 
size (μm) 

Initial combustion 
temperature (°C) 

Max combustion 
rate 

(min-1x10-2) 

Temperature at 
max combustion 

rate (°C) 

Time 
(min) 

Total conversion 
(%w/w) 

C1 
150-250 277 20.5 353 45 70.2 
250-500 291 17.4 365 33 75.8 

C2 
150-250 296 23.3 368 36 69.4 
250-500 297 21.1 372 40 74.8 

 
The char combustion for biomass samples starts at temperature over 290 °C. The only exceptional 

behaviour is observed for the untreated thistle (C1) char resulted from the pyrolysis of the low particle 
fraction where the initial combustion temperature is 277 °C. However, this difference is minimal and 
within the acceptable deviation limits. Additionally, both of the cardoon chars present temperatures 
where maximum combustion rate occurred (Tpeak) lying in the range of 350-375 °C. According to 
literature [19, 24], these data are comparable with the results obtained by other laboratories using olive 
kernel (Tpeak: 378 °C, Rmax: 11.74 x 10-2/min) and cotton residue (Tpeak: 384 °C, Rmax: 8.59 x 10-2/min) 
chars, verifying a similar evolving behaviour. However, the maximum combustion rate of C1 and C2 
samples is, at least twice as is for other Biofuels, Table 5, [24].  

Apparently, there is a connection between the maximum reaction rate and the temperature where 
this occurs. This remark has already been referred by many researchers, [32-33] who take Tpeak as a 
measure of combustibility or reactivity [24]. In this sense, the energy crops chars seem to be the more 
reactive than olive kernel and cotton residue chars, as it showed the highest reaction rate occurred at 
the lowest temperature, Tpeak.. Comparing the cardoon samples, the untreated thistle char seems to be 
the most reactive, since it yields a maximum combustion rate (20.5 x 10-2/min) at the earlier 
temperature, close to 353 °C. In contrast, C2 sample shows the higher maximum combustion rate 
which accounts for 23.3 x 10-2/min and occurred at 368 °C. Also, it is obvious that particle size has 
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also an effect on samples reactivity. Indeed, there is a shift to the left for the fraction of the lower size 
for both cardoon samples, indicating its higher reactivity. These assertions are verified by the 
following formula which calculates the reactivity, 

1 ( )o
dwR W
dt

−= ⋅  (8) 

where R is the maximum reactivity expressed in mg/h, Wo the initial weight of the char on dry-ash-free 
basis and dw/dt the maximum rate of fixed carbon loss [34]. Finally, the total conversion of all 
samples range from 69.4-75.8%. 

Figure 5. TG and DTG curves during the char combustion of C1, C2 compared to wood. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The weight loss (TG) and the weight loss rate (DTG) curves for the char combustion of energy crop 

of the bigger particles size fraction compared to wood are illustrated in Figure 5. 
As clearly seen in the plots, char combustion for both of cardoon samples is evolved through double 

and simultaneously overlapped peaks, indicating the relative heterogeneity of char samples. Similar 
features have been reported in other TG-based studies of char reactivity [22, 24, 35], suggesting that a 
mixture of two or more reactive components is present. 
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4. Conclusions 

Following the remarkable increase of oil price in the last two years, cardoon cultivation and 
biomass has attracted the interest of large companies towards the construction of medium-scale plants 
for electrical energy production. Given the heating value of the dry biomass of cardoon (15.5 GJ/t 
LHV) and that 65 € per t dry biomass is an attractive stimulus of the farmer to cultivate cardoon bring 
the energy cost at about 60 €/MWh. In Greece, all produced electricity is bought by the National 
Electric Company against 75 €/MWh (still rather lower than in other EU-25 countries), and this means 
a gross margin of about 2 million € for a 20 MWe plant only by selling the electricity. The benefit will 
be by far greater if one considers the heat production and distribution, the selling of pellets for 
medium-scale industrial uses, the management of the ash for fertilizer use and the rights of CO2 
emission. But first of all let us think of and protect our environment! 

Pyrolysis and combustion behaviour of cynara is investigated in view of the degradation of its main 
components. Two samples of different particle size were selected and subjected to chemical analyses 
and thermogravimetric tests. It is found that both samples show a comparable quality to other biomass 
materials referring to the elemental composition. On the contrary, they present lower calorific values 
and their higher ash content can accelerate possible formations of slagging and fouling phenomena on 
various parts of the combustion equipments. However, research efforts that have been carried out 
aiming at a solid biofuel of improved quality resulted in a combustible material of higher calorific 
value, i.e. 18 MJ/kg on dry basis. A small further improvement with the reduction of mineral matter of 
fuel is expected. It is also important to point out that close to zero sulphur values are observed for both 
of the cardoon samples. This energy crop presents significantly low moisture content, indicating that 
reduced requirements are needed with regard to their energy exploitation. 

Due to their biomass origin, the decomposition process follows the degradation of the 
lignocellulosic fuels. Pyrolysis proceeds in almost the same way for all samples despite the size or 
origin - including or not the seed - of the samples. However, an alteration in the particle size 
caused a small displacement to lower and higher temperatures, respectively, during the 
combustion process. The data herein provide results of individual cardoon fuels’ characteristics 
during their thermal conversion which can be used as fundamental information for the prediction 
of their combustion behaviour. However, additional research is required as concerns the 
improvement of cardoon properties, especially concerning the energy density, as well as the ash 
behaviour.  

Nomenclature 

A = pre-exponential factor [s-1] 
Ctotal = Total conversion [% w/w] 
ci = fraction of volatiles produced by the ith component 
dai/dt = conversion rate 
dm/dt = mass loss rate 
E = activation energy [kJ/mol] 
M = number of parameters involved in the model 
m0 = initial dry sample mass [10-3 kg] 
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mchar = final char yield [mg] 
(mchar)calc = calculated final char yield [10-3 kg] 
(mchar)exp = experimental final char yield [10-3 kg] 
mchar,i = final char yield of the i component [10-3 kg] 
mi = actual sample mass of the i component [10-3 kg] 
N = number of individual reactions 
O.F.DTG = objective function 
R = gas constant [kJ mol-1K-1] 
Rmax = Maximum combustion rate [10-2/min] 
T = temperature [°C or K] 
Tin = initial combustion temperature [°C] 
Tmax = temperature at max combustion rate [°C] 
Tmax rate = temperature at max pyrolysis rate [°C] 
Z = number of the measured data points 
αi = conversion (reacted fraction) 
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