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Temporal fluxomics reveals oscillations in TCA cycle
flux throughout the mammalian cell cycle
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Abstract

Cellular metabolic demands change throughout the cell cycle.
Nevertheless, a characterization of how metabolic fluxes adapt to
the changing demands throughout the cell cycle is lacking. Here,
we developed a temporal-fluxomics approach to derive a compre-
hensive and quantitative view of alterations in metabolic fluxes
throughout the mammalian cell cycle. This is achieved by combin-
ing pulse-chase LC-MS-based isotope tracing in synchronized cell
populations with computational deconvolution and metabolic flux
modeling. We find that TCA cycle fluxes are rewired as cells
progress through the cell cycle with complementary oscillations of
glucose versus glutamine-derived fluxes: Oxidation of glucose-
derived flux peaks in late G1 phase, while oxidative and reductive
glutamine metabolism dominates S phase. These complementary
flux oscillations maintain a constant production rate of reducing
equivalents and oxidative phosphorylation flux throughout the cell
cycle. The shift from glucose to glutamine oxidation in S phase
plays an important role in cell cycle progression and cell prolifera-
tion.
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Introduction

Cell cycle progression is tightly interlinked with cellular metabolism

(Kaplon et al, 2015). The availability of sufficient metabolic nutri-

ents and intracellular energy status controls the ability of cells to

enter and progress through cell cycle. The absence of glucose was

first shown to arrest cells at the G1/S restriction point (Blagosk-

lonny & Pardee, 2002). More recently, cellular energy status (ATP/

AMP ratio) was found to regulate canonical cell cycle signaling

pathways via AMP-activated protein kinase (AMPK; Banko et al,

2011). The mammalian target of rapamycin (mTOR) plays a central

role in regulating cell cycle progression and growth, integrating

stimuli of amino acid, energy, and oxygen availability (Fingar &

Blenis, 2004; Cuyàs et al, 2014). Cell cycle progression is further

controlled by intracellular metabolites affecting epigenetics: Nuclear

acetyl-CoA levels, determined by nuclear ATP citrate lyase (ACL;

Wellen et al, 2009) and pyruvate dehydrogenase (PDH; Sutendra

et al, 2014), regulate the acetylation of histones and thus control

cell cycle progression (Berger, 2007; Li et al, 2007). Additionally,

several metabolic enzymes were shown to directly regulate the cell

cycle machinery, including PFKFB3 and PKM2, controlling the activ-

ity of cyclins and cyclin-dependent kinase (CDK) inhibitors in the

nucleus (Yalcin et al, 2009; Yang et al, 2011, 2012).

Signaling pathways that coordinate cell cycle progression further

regulate metabolic activity to support the changing metabolic

demands throughout the cell cycle. The ubiquitin proteasome

system, which tightly controls the concentration of cyclins, regulates

the activity of two key enzymes in glucose and glutamine metabo-

lism (Almeida et al, 2010; Tudzarova et al, 2011; Estevez-Garcia

et al, 2014); the ubiquitin ligase anaphase-promoting complex/

cyclosome (APC/C) and ligase Skp1/cullin/F-box protein (SCF)

complex control glycolytic flux via PFKFB3, restricting its expression

to late G1 and early S; APC/C also regulates glutaminolysis via

glutaminase 1 (GLS1), whose expression is induced in S and G2/M.

Cyclins and cyclin-CDK complexes were further suggested to regu-

late central metabolic activities, including glycolysis, lipogenesis,

and mitochondrial activity (Hsieh et al, 2008; Bienvenu et al, 2010).

Furthermore, central oncogenes and tumor suppressors that control

proliferation, growth, and cell cycle can stimulate the expression of

enzymes that mediate glycolysis and glutaminolysis (Levine &

Puzio-Kuter, 2010).

While the cell cycle machinery was found to regulate the concen-

tration of key metabolic enzymes, an understanding of how the

actual rate of metabolic reactions and pathway (i.e., metabolic flux)

changes throughout the cell cycle is still fundamentally missing.

Metabolic flux is a not a directly measurable quantity and is typi-

cally inferred using isotope tracing techniques coupled with compu-

tational metabolic flux analysis (MFA; Wiechert, 2002; Sauer, 2006).
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Isotope tracing coupled with MFA is commonly used to address

problems in biotechnology and medicine and has recently become a

central technique in studies of cancer cellular metabolism (Metallo

et al, 2009; Duckwall et al, 2013). Applied to cell populations with

cells at different phases of the cell cycle, this approach typically esti-

mates the average flux throughout the cell cycle.

Here, we present a temporal-fluxomics approach for quantifying

cell cycle-dependent oscillations in metabolic flux, combining

isotope tracing in synchronized cell populations with computational

deconvolution and metabolic network modeling. We applied this

approach to derive a first comprehensive and quantitative view of

flux dynamics in central metabolism of proliferating cancer cells.

The analysis adds a temporal dimension to our understanding of

TCA cycle metabolism, showing major oscillations in the oxidation/

reduction of glucose versus glutamine-derived fluxes as cells

progress through the cell cycle.

Results

Cellular concentration of central metabolic intermediates
oscillate throughout the cell cycle

To study metabolic dynamics throughout cell cycle, we synchro-

nized HeLa cells using double thymidine block and applied high-

throughput LC-MS-based targeted metabolomics analysis to

synchronized cell populations (> 106 cells per sample) in 3-h inter-

vals for two complete cell cycles (see cell synchronization dynamics

measured via propodium iodide staining/FACS analysis in Fig 1A;

Appendix Fig S1; Materials and Methods). To obtain a reliable and

accurate view of periodic metabolic oscillations and to overcome a

potential perturbation of metabolism due to synchronization-

induced growth arrest, we let synchronized cells complete one cell

cycle before starting the LC-MS analysis (9 h after cells are released

in G1/S). Measured metabolite abundances in the synchronized

cells were normalized by total cell volume in each time point to

determine metabolite concentrations.

As cell synchronization is gradually lost with time due to inherent

non-genetic cell-to-cell variability (a phenomenon also known as

“dispersion”), the distribution of cell cycle phases in the synchro-

nized cell population becomes similar to that of non-synchronized

cells after completing three rounds of replications (Fig 1A). To

account for the loss of synchrony and to precisely quantify oscilla-

tions in metabolite levels, we employed “computational synchro-

nization” (Bar-Joseph et al, 2008): We constructed a probabilistic

model that describes the dynamics of the cell population loosing

synchrony, assuming that each cell has its own “internal clock”

which controls the cell cycle progression rate (see Synchronization

loss model in Materials and Methods). The parameters of the model

were estimated by fitting a simulation of how the synchronized cell

population progresses through the different phases of the cell cycle

with corresponding FACS measurements, finding that cell–cell vari-

ability in the rate of cell cycle progression through the cell cycle is

11% (Fig 1B, Materials and Methods). We used this model for

computational deconvolution of measured metabolomics data, esti-

mating metabolite concentration dynamics throughout the cell cycle,

circumventing the impact of cell dispersion (Materials and

Methods). Inferring the dynamics of metabolite concentrations

throughout the cell cycle (rather than that of metabolite abundances)

further required estimates of the dynamics of cell volume throughout

the cell cycle. The latter was estimated based on deconvolution of

total cell volume measurements performed in the synchronized cell

population (Materials and Methods, Fig 1C). For example, the

concentration of the nucleotide cytidine triphosphate (CTP) was

found to oscillate throughout cell cycle, showing a ~50% increase in

concentration in G1 phase versus G2/M phase (measured and decon-

voluted concentrations shown in Fig 1D). As shown, the magnitude

of the oscillation drops with time and converges to the steady-state

concentration measured in non-synchronized cells.

Our analysis reveals 57 metabolites whose concentrations signifi-

cantly oscillate throughout the cell cycle (Fig 2, Dataset EV1, FDR-

corrected P-value < 0.05, Materials and Methods). Oscillations in

nearly 44% of these metabolites could be detected only when in

silico synchronization via computational deconvolution was applied

(i.e., equation 7 in Materials and Methods), emphasizing the

strength of our pipeline. The median size of the observed oscilla-

tions is ~60% (difference between maximal and minimal concentra-

tion throughout the cell cycle); roughly one-quarter of these

metabolites show concentration changes larger than twofold

throughout cell cycle. A significantly high fraction of the metabolites

peaks either in late G1 (~50% in the second half of G1, P-

value < 10�5, compared with the expected fraction assuming that

concentration peaks are uniformly distributed throughout the entire

cell cycle) or early S (~35% in the first half of S, P-value < 0.002).

The oscillating metabolites include glycolytic and TCA cycle

intermediates, nucleotides, amino acids, and energy and redox

cofactors. Expectedly, the concentrations of the deoxynucleotides

dCTP and dATP increase in S phase, when utilized for DNA replica-

tion. Intermediates in polyamine metabolism (5-methylthioadeno-

sine, acetyl-putrescine, S-adenosyl-L-methionine, and S-adenosyl-L-

homocysteine) show marked oscillations, in accordance with the

known cell cycle-dependent activity of this pathway (Oredsson,

2003). Several glycolytic metabolites peak during G1/S transition, in

accordance with reports of increased glycolytic flux at this cell cycle

phase (Colombo et al, 2011; Tudzarova et al, 2011). Cellular ATP/

ADP ratio and redox potential (NADH/NAD+) further show a ~50%

increase in the G1/S transition (Appendix Fig S2). Intracellular

concentration of non-essential amino acids synthesized from

consumed glutamine, including glutamate, ornithine, proline, and

aspartate peak in S phase, in accordance with a reported increase in

glutamine dependence in S phase (Gaglio et al, 2009; Colombo et al,

2011). Intriguingly, we find that different TCA cycle metabolites

peak in distinct cell cycle phases: Acetyl-CoA and citrate peak in

G1/S, while malic acid and a-ketoglutarate peak in late S, suggesting

that the TCA cycle is rewired as cells progress through the cell cycle.

Time-resolved fluxomics reveals increased glycolytic flux into
TCA cycle in G1/S transition

To observe metabolic flux dynamics in TCA cycle and in branching

pathways throughout the cell cycle, we performed pulse-chase

isotopic tracing experiments in synchronized HeLa cells with

[U-13C]-glucose and [U-13C]-glutamine (1-h feeding), every 3 h for

two cell cycles (Fig 3A and B, Materials and Methods). Here, LC-MS

was utilized to measure the mass-isotopomer distribution of

metabolites (i.e., the fraction of each metabolite pool having zero,
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one, and two labeled carbon atoms) after 1 h of feeding with the

isotopic tracers. Computational deconvolution was employed to

analyze oscillations in metabolite isotopic labeling patterns while

considering cell dispersion. The deconvolution approach is based on

the observation that the measured fractional isotopic labeling of a

metabolite in the synchronized cell population represents the aver-

age labeling in cells with distinct intrinsic times, weighted by the

metabolite pool size in these cells (i.e., the measured isotopic label-

ing pattern is biased toward that of cells with an intrinsic time in

which the metabolite pool size is larger than in others, Materials

and Methods). Overall, we detected statistically significant oscilla-

tions in the isotopic labeling pattern of 21 metabolites when feeding

isotopic glucose, and 16 metabolites when feeding isotopic gluta-

mine (FDR-corrected P-value < 0.05, Figs 3 and 4, Dataset EV2).

The inferred oscillations in metabolite isotopic labeling and

concentrations were used to computationally analyze metabolic

flux dynamics throughout the cell cycle, utilizing a variant of

kinetic flux profiling (KFP; Yuan et al, 2008; Fig 5, in units of

nmole/ll-cells/h, i.e., mM/h, Materials and Methods). Specifically,

given a metabolite whose isotopic labeling dynamics throughout

the cell cycle was inferred as explained above, we search for the

most likely transient production and consumption fluxes in each

1-h interval through the cell cycle, such that the simulated labeling

kinetics of this metabolite (within the 1-h interval) would opti-

mally match the experimental measurements (Materials and Meth-

ods, Appendix Figs S3–S8). The simulation of the isotopic labeling

kinetics of a metabolite of interest within a 1-h time interval is

performed via an ordinary differential equations (ODE) model,

A B

C D

Figure 1. Detection of oscillations in metabolite concentrations throughout the cell cycle in HeLa cells revealed by LC-MS-based metabolomics of
synchronized HeLa cells and computational deconvolution.

A Synchronization dynamics of a population of HeLa cells within almost three complete cell cycles measured via PI staining followed by FACS analysis. The increase in
cell number following each mitosis is shown by an overlaid curve (in orange, mean and s.d. of n = 3).

B Computational modeling of the synchronization loss, considering 11% cell–cell variation in doubling time, shows that the simulated fraction of the cells in G1, S, and
G2/M in the synchronized cells throughout the cell cycle (straight lines) match experimental measurements (marked with asterisk).

C The measured average cell volume in the synchronized cell population (red, mean and s.d. of n = 3, v(t) in equation 6), the deconvoluted signal (in case of no
synchronization loss, green, v0ðxÞ in equation 6), and the simulated average cell volume considering the loss in synchronization (black, matching the measured
concentration data, equation 6).

D The measured concentration of CTP in synchronized cells shown in red (mean and s.d. of n = 5, ui(t) in equation 7), the deconvoluted concentration dynamics, in case
of no synchronization loss (green, u0ðxÞ in equation 7), and the expected concentration dynamics based on the deconvoluted concentrations and considering the loss
in synchronization, matching the measured concentrations (black, equation 7). The measured concentrations converge toward the steady-state concentrations
measured in non-synchronized cells (horizontal blue line).
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relying on the inferred concentration of the metabolite within this

time interval (considering that a metabolite with a larger pool size

would take more time to label, per unit of flux), as well as the

isotopic labeling kinetics of intermediates that produce this

metabolite. While KFP is typically applied to estimate fluxes under

metabolic steady state (in which fluxes satisfy a stoichiometric

mass-balance constraint), here, we constrain the difference

between transient fluxes that produce and consume a certain

metabolite according to the measured momentary change in the

concentration of that metabolite.

Oscillations in the isotopic labeling pattern of TCA cycle intermedi-

ates when feeding isotopic glucose suggest that glucose-derived flux

into TCA cycle increases in G1 phase and then drops in S phase. The

fractional labeling of the m + 2 form of the TCA cycle intermediates

citrate, a-ketoglutarate, and malate drops in S phase (Fig 3C–E). Feed-

ing cells with isotopic glutamine, we further observed a drop in citrate

m + 4 produced from oxaloacetate via citrate synthase in S phase

(Fig 3F). Combined with the drop in citrate concentration during S

phase (Fig 3G), metabolic modeling reveals a ~2-fold decrease in

glycolytic flux into TCA cycle as cells progress through S phase;

Figure 2. Oscillation in metabolite concentrations throughout the cell cycle in HeLa cells.

The figure shows metabolites found to significantly oscillate throughout the cell cycle (concentrations normalized per metabolite, maximal concentration in red, minimal
concentration in blue). The amplitude of the oscillations is shown on the right. Metabolites are color-coded according to metabolic pathways: energy/redox cofactors
(purple), amino acids (blue), glycolytic metabolites (red), and TCA cycle metabolites (green).
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citrate synthase flux drops from ~6 mM/h in G1/S phase to ~3 mM/h

in late S phase (Fig 5A, Appendix Fig S3). TCA cycle oxidation of

citrate via isocitrate dehydrogenase (IDH) shows similar flux dynam-

ics, with ~2-fold drop in S phase (Fig 5C, Appendix Fig S4).

To examine whether the increase in glucose-derived flux into

TCA cycle in G1/S is associated with increased in glycolytic flux,

we measured lactate concentrations in the culture media in the

synchronized cell population followed by computational deconvo-

lution (Fig 3H, Materials and Methods). We find a ~65%

increase in lactate secretion rate in G1/S transition. Considering

that the average lactate secretion rate throughout the cell cycle

is two orders of magnitude higher than that of pathways that

A

C D E

F G H

B

Figure 3. Oscillations in isotopic labeling of TCA cyclemetabolites throughout the cell cycle from [U-13C]-glucose show induced glycolytic flux into TCA cycle in
G1/S.

A Experimental scheme for a series of pulse-chase isotope tracing experiments in synchronized cells.
B Atom tracing of TCA cycle metabolites from [U-13C]-glucose (blue) and [U-13C]-glutamine (red).
C–E Measured relative fraction of the m + 2 labeling of TCA cycle intermediates after feeding [U-13C]-glucose (red, mean and s.d. of n = 3), the deconvoluted signal

(green), and the expected labeling dynamics considering the loss in synchronization (black, representing TCA cycle oxidation of glucose-derived acetyl-CoA).
F Oscillations in citrate m + 4 labeling after feeding [U-13C]-glutamine (mean and s.d. of n = 3; experimentally measured labeling dynamics shown in red, the

deconvoluted signal in green, and the expected labeling dynamics considering the synchronization loss in black).
G Oscillations in the total citrate concentration throughout the cell cycle (mean and s.d. of n = 5; experimentally measured concentration dynamics shown in red, the

deconvoluted signal in green, the expected concentration dynamics considering the synchronization loss in black, and the measured concentration in non-
synchronized cells in blue).

H The measured lactate secretion flux in synchronized cells shown in red (mean and s.d. of n = 5, fi(t) in equation 9), the deconvoluted secretion flux dynamics, in
case of no synchronization loss (green, f 0i ðxÞ in equation 10), and the expected secretion flux based on the deconvoluted fluxes and considering the loss in
synchronization, matching the measured fluxes (black, equation 10).
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branch out from glycolysis, the observed oscillation in lactate

secretion represents cell cycle-dependent changes in glycolytic

flux: The average lactate secretion throughout the cell cycle is

~600 mM/h, while oxidative pentose-phosphate pathway (PPP) is

~3 mM/h, reductive PPP is ~3 mM/h, glycogenesis is ~0.3 mM/

h, and serine biosynthesis is below 1 mM/h (Appendix Fig S8).

Overall, our data show that the increase in glycolytic flux in G1/

S phase co-occurs with the increased glucose-driven flux entering

the TCA cycle. Notably, analyzing oscillations in glycolytic flux

based on direct measurement of changes in glucose consumption

throughout the cell cycle (rather than based on lactate secretion)

was not possible due to technical difficulty in accurately quanti-

fying glucose consumption by synchronized cells within 3-h time

intervals (considering that the synchronized cell population

consumes ~1% of the glucose in media within this short time

period).

A B C

D E F

G H I

Figure 4. Oscillations in isotopic labeling of TCA cycle metabolites throughout the cell cycle from [U-13C]-glutamine show induced oxidative and reductive
glutamine metabolism in S phase.

A, B Oscillations in aspartate (A) and malate (B) concentrations throughout the cell cycle when feeding [U-13C]-glutamine (representing oxidative TCA cycle activity).
C Uniform malate m + 4 labeling throughout the cell cycle (combined with the increase in malate concentration in S phase representing increased oxidative TCA

cycle flux in S phase).
D Oscillations in pyrimidines m + 3 labeling throughout the cell cycle when feeding [U-13C]-glutamine (representing de novo pyrimidine biosynthesis).
E Oscillations in lactate m + 3 labeling throughout the cell cycle when feeding [U-13C]-glutamine (representing malic enzyme activity).
F Oscillations in malate m + 3 throughout the cell cycle when feeding [U-13C]-glucose (representing pyruvate carboxylase activity).
G Oscillations in citrate m + 5 when feeding [U-13C]-glutamine throughout the cell cycle (representing reductive IDH flux).
H Oscillations in acetyl-CoA m + 2 when feeding [U-13C]-glucose, representing oxidative glucose metabolism.
I Oscillations in acetyl-CoA m + 2 when feeding [U-13C]-glutamine, representing reductive glutamine metabolism.

Data information: (A, B) Measured metabolite concentrations are shown in red (showing mean and s.d. of n = 5), the deconvoluted signal in green, the expected
concentration dynamics considering the synchronization loss in black, and the measured concentrations in non-synchronized cells in blue. (C–I) Measured fractional
isotopic labeling are shown in red (showing mean and s.d. of n = 3), the deconvoluted signal in green, and the expected isotopic labeling dynamics considering the
synchronization loss in black.
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Induced oxidative and reductive glutamine metabolism
compensates for the decreased glycolytic flux into TCA cycle
in S phase

Glutamine feeds TCA cycle flux by producing glutamate, which is

converted to a-ketoglutarate either via transamination or by gluta-

mate dehydrogenase. As a first estimation of the cell cycle dynamics

of glutamine-derived flux into the TCA cycle, we quantified cell

cycle-dependent glutamate production from glutamine versus gluta-

mate secretion to the media. Tracing the m + 5 labeling dynamics of

glutamate when feeding [U-13C]-glutamine and glutamate concentra-

tion throughout the cell cycle suggests that glutamate production

flux increases by 25% in S phase compared to G1 (Fig 5D). This is

evident by a marked increase in glutamate concentration in S phase

and similar m + 5 glutamate labeling kinetics throughout the cell

cycle (Appendix Fig S4). Glutamate secretion rate to the culture

medium shows a marked drop in S phase, suggesting increased

availability of glutamate for feeding the TCA cycle flux in S phase

(Fig 5D). The increased entry of glutamine-derived flux into the

TCA cycle in S phase is followed by a ~40% increase in a-ketogluta-
rate oxidation (Fig 5F, Appendix Fig S5). This is evident by the

marked increase in malate and aspartate concentration in S phase

(Fig 4A and B) and barely altered m + 4 and m + 3 labeling kinetics

of these metabolites throughout the cell cycle, respectively (Fig 4C

and Appendix Fig S9).

The increased glutamine-derived anaplerotic flux into the TCA

cycle in S phase (via net production of the TCA cycle intermediate

a-ketoglutarate) is balanced by oscillations in cataplerotic fluxes,

consuming TCA cycle intermediates for biosynthetic and bioenerget-

ics purposes: We find a ~70% increase in pyrimidine biosynthesis

flux in S phase, consuming oxaloacetate from TCA cycle (transami-

nated to produce aspartate, Fig 5G). This is evident by a marked

increase in the m + 3 labeling of pyrimidines in S phase (Fig 4D and

Appendix Fig S10), while considering the oscillations in the labeling

kinetics of carbamoyl-aspartate in pyrimidine biosynthesis and

pyrimidine concentrations (Appendix Fig S6). Oscillations in the

biosynthetic flux of pyrimidines as well as purines is further

supported by an increased m + 5 labeling of pyrimidines and

A

B

C

D

E

F

G

H

I

Figure 5. Complementary oscillations of glucose versus glutamine-derived fluxes in TCA cycle.

A–I Oscillations in metabolic flux throughout the cell cycle (in mM/h), computed based on metabolic modeling of measured oscillations in metabolite concentrations
and isotopic labeling (red and green marks represent optimal estimates of transient flux with 95% CI). Blue lines represent average fluxes inferred in a non-
synchronized cell population. As shown, glucose-derived flux into TCA cycle peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates
S phase.
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purines in S phase (i.e., having all five ribose carbons labeled) upon

feeding with isotopic glucose (Dataset EV2). The malic enzyme flux

(decarboxylating malate dehydrogenases) further shows a marked

~65% increase in S phase (Fig 5H, Appendix Fig S7), as evident by

the increased lactate m + 3 labeling in S phase when feeding isotopic

glutamine (Fig 4E). Consistently, an increased concentration of

lactate m + 3 in the culture media is further observed in S phase

(Appendix Fig S11). Notably, while glutamine-derived anaplerotic

flux increases in S phase, there is no major change in glucose-

derived anaplerotic flux through pyruvate carboxylase in S phase

(Fig 5I, Appendix Fig S5). This is evident by the drop in malate and

aspartate m + 3 in S phase when feeding isotopic glucose (Fig 4F

and Appendix Fig S12) occurring while the concentration of malate

and aspartate increases (Fig 4A and B).

While the increased glutamine-derived flux into the TCA cycle in

S phase supports an increase in a-ketoglutarate oxidation, we

further detect a surprisingly high ~55% increase in the rate of a-
ketoglutarate reduction in early S phase (Fig 5B, Appendix Fig S3).

This is evident by the marked increase in m + 5 citrate in S phase

when feeding isotopic glutamine (Fig 4G). Considering the major

drop in glycolytic flux into the TCA cycle in S phase, the relative

contribution of reductive IDH to citrate production increases from

~15% in G1 to ~24% in S phase. Cell cycle oscillations in the rela-

tive contribution of glucose versus glutamine to citrate biosynthesis

are further observed in the labeling of acetyl-CoA (produced in

cytosol from citrate via ATP citrate lyase), where the fractional

labeling of acetyl-CoA m + 2 from [U-13C]-glucose peaks in G1

phase (Fig 4H) and acetyl-CoA m + 2 from [U-13C]- glutamine in S

phase (Fig 4I). Accordingly, acetylated amino acids show increased

m + 2 labeling from glucose in G1 and from glutamine in S phase

(Appendix Fig S13).

The complementary oscillations in glucose versus glutamine-

derived flux into the TCA cycle result in an overall uniform produc-

tion rate of reducing equivalents (NADH/FADH2) ~85 � 5 mM/h

throughout the cell cycle (Fig 5E, Materials and Methods): Glucose-

derived production of reducing equivalents peaks in G1/S while

glutamine-derived production of reducing equivalents peaks in late

S phase. While the relative contribution of glutamine to NADH/

FADH2 production oscillates (between ~60% in G1/S and ~75% in

late S phase), it remains the prime source of reducing power for

driving oxidative phosphorylation all throughout the cell cycle, in

accordance with previous measurements in non-synchronized cells

(Fan et al, 2013). Consistent with the total production rate of

NADH/FADH2 remaining constant throughout the cell cycle, we find

that oxygen consumption rate does not change throughout the cell

cycle (Appendix Fig S14). Hence, the complementary oscillations in

glucose versus glutamine oxidation in TCA cycle result in a constant

rate of reducing equivalent production, sustaining a constant rate of

mitochondrial oxidative phosphorylation flux throughout the cell

cycle.

Suppression of glycolytic flux into TCA cycle in S phase is
important for cellular progression through the cell cycle

The drop in glycolytic flux into TCA cycle in S phase (Fig 5A)

involves a major twofold decrease in flux through pyruvate dehydro-

genase (PDH), the prime source for acetyl groups for TCA cycle

oxidation. PDH is negatively regulated by pyruvate dehydrogenase

kinase (PDK), and treatment with the PDK inhibitor dichloroacetate

(DCA) was previously shown to enhance glycolytic flux into TCA

cycle while decreasing reductive glutamine metabolism toward

citrate biosynthesis (Fendt et al, 2013). Accordingly, treating the

synchronized HeLa cells with 4 mM of DCA for 1 h leads to a

marked increase in the fractional labeling of citrate m + 2 and acetyl-

CoA m + 2 from isotopic glucose, representing a major increase in

glycolytic flux into the TCA cycle (Fig 6A and B). Notably, DCA

treatment completely eliminates the oscillations in glycolytic flux

into the TCA cycle, as evident by a uniform fractional labeling of

citrate m + 2 and acetyl-CoA m + 2 when feeding DCA throughout

the cell cycle. DCA treatment further leads to a uniform citrate

m + 5/m + 4 ratio and fractional labeling of acetyl-CoA m + 2 from

isotopic glutamine, eliminating the oscillations in glucose versus

glutamine flux toward acetyl-CoA production (Fig 6C and D).

To test whether the suppression of glycolytic flux into TCA cycle

in S phase is important for progression of cells through the cell cycle,

we measured the cell cycle phase distribution in synchronized HeLa

cells after 3-h treatment with DCA. We find that DCA treatment leads

to 16% increase in the fraction of cells in S phase (Fig 6E, two-tailed

t-test P-value = 0.006). Treating of non-synchronized HeLa cells as

well as colon carcinoma cells (HCT116) with DCA for 24 h further

shows a significant increase in the fraction of cells in S phase

(Fig 6F, 30% increase in HeLa, two-tailed t-test P-value < 10�3, 17%

increase in HCT116, P-value < 10�5). Notably, the observed increase

in the fraction of cells in S phase represents slower progression rate

of cells through S phase rather than cell cycle arrest at that phase, as

almost all HeLa cells (~97%) complete at least one cell cycle after a

72-h treatment with DCA (Appendix Fig S15). Conversely, treating

of cells with a mitochondrial pyruvate carrier inhibitor (UK5099),

which slows glycolytic flux into TCA cycle, shows the opposite effect

of lowering the fraction of cells in S phase (Appendix Fig S16). Over-

all, our results indicate that the shift from glucose to glutamine-

derived flux into TCA cycle plays an important role in cellular

progression through S phase.

Discussion

We described a temporal-fluxomics approach for analyzing the

dynamics of intracellular metabolic flux throughout the cell cycle in

proliferating human cells. Inferring cell cycle-dependent changes in

flux is technically challenging due to several factors including the

perturbative nature of synchronization-induced growth arrest, the

gradual loss of population synchrony, and the requirement for accu-

rate measurements of oscillations in metabolite pool sizes that in

many cases vary by less than twofold at maximum. Addressing

these challenges, we tracked synchronized cells for three complete

cell cycles, performed LC-MS-based metabolomics and pulse-chase

isotope tracing in the synchronized cells, and employed computa-

tional deconvolution techniques to reliably detect oscillations in

metabolite concentrations and isotopic labeling dynamics. Inferring

transient fluxes within each 1-h interval throughout the cell cycle

was complicated by the fact that the labeling of TCA cycle interme-

diates in the synchronized cells does not reach isotopic steady state

within 1-h feeding with the isotopic nutrients. This was addressed

by modeling the isotopic labeling kinetics of metabolites within each

1-h interval throughout the cell cycle, for each one time interval

Molecular Systems Biology 13: 953 | 2017 ª 2017 The Authors

Molecular Systems Biology TCA cycle flux oscillations throughout the cell cycle Eunyong Ahn et al

8



using an approach conceptually similar to non-stationary metabolic

flux analysis (MFA; Noh et al, 2006; Noack et al, 2011). Applied to

HeLa cells, we derived a first comprehensive and quantitative view

of metabolic flux oscillations at a high temporal resolution in central

metabolism throughout the cell cycle of human cells, showing

complementary oscillations between glucose and glutamine-derived

A B

C D

E F

Figure 6. PDK inhibition via DCA treatment eliminates the oscillation of glycolytic flux into TCA cycle and inhibits cellular progression through S phase.

A–D One-hour treatment of synchronized cells with DCA inhibits the oscillations in citrate m + 2 (A) and acetyl-CoA m + 2 (B) from isotopic glucose (representing
glycolytic flux into TCA cycle). It further inhibits oscillations in citrate m + 5/m + 4 ratio (C) and acetyl-CoA m + 2 (D) from isotopic glutamine (representing
oxidative versus reductive TCA cycle flux).

E The fraction of cells in G1, S, and G2/M phases in synchronized HeLa cells after 3-h treatment with DCA (normalized by measurements in untreated control cells).
F The fraction of cells in G1, S, and G2/M phases in non-synchronized HeLa and HCT-116 cells after 24-h treatment with DCA (normalized by measurements in

untreated control cells).

Data information: As shown, DCA significantly increases the fraction of cells in S phase, inhibiting cellular progression into G2 phase, showing mean and s.d. of n = 3 for
all isotopic labeling forms and FACS measurements (A–F). Statistical significance of changes in the fraction of cells in each cell cycle phase following DCA treatment is
calculated based on two-tailed, unequal variance t-test (E, F; *P-value < 0.01).
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flux in the TCA cycle throughout the cell cycle. Cell cycle-dependent

changes in flux through the pentose-phosphate pathway were previ-

ously studied using isotope tracing in synchronized human cell lines

(Vizan et al, 2009) and in yeast by also utilizing MFA (Costenoble

et al, 2007).

The inferred flux oscillations through central metabolism via

glucose and glutamine could potentially be biased by oscillations in

the metabolism of other carbon sources. For example, the uptake

and catabolism of glucogenic and ketogenic amino acids may feed

into TCA cycle and potentially oscillate through the cell cycle.

Though, apparently, the relative contribution of amino acid catabo-

lism to TCA cycle flux in HeLa cells is extremely low; feeding

isotopic glucose and glutamine for 24 h shows that more than 97%

of the carbons in TCA cycle metabolites are derived exclusively from

glucose and glutamine (and from atmospheric CO2, Appendix Fig

S17). Hence, a potential change in amino acid metabolism through-

out the cell cycle would have little or no effect on the reported flux

oscillations from glucose and glutamine. Not accounting for poten-

tial oscillations through other reactions implicated in central meta-

bolism of glucose and glutamine could in principle also bias the

presented flux estimations. Though, notably, the flux analysis here

is performed separately through groups of converging reactions

producing different metabolites (e.g., for reactions producing citrate,

malate/oxaloacetate, and lactate); hence, a potential bias in some of

these independent flux estimations would not change the overall

emerging view of glucose and glutamine oscillations; for example,

the increased TCA cycle metabolism of glutamine in S phase is

supported by several independent flux estimations showing

increased glutamine-derived flux into TCA cycle in S phase, oxida-

tion of a-ketoglutarate, reduction of a-ketoglutarate, malic enzyme

flux, and increased nucleotide biosynthesis. Another simplifying

assumption that facilitated the estimation of flux dynamics through-

out the cell cycle is of rapid mixing of mitochondrial and cytosolic

metabolite pools, giving rise to estimates of whole-cell level fluxes.

This assumption is typically made when analyzing flux in eukary-

otic cells due to experimental complications in measuring metabo-

lite concentrations and labeling dynamics in distinct subcellular

compartments. Methodological advancements in subcellular level

metabolomics are required for further studies on cell cycle oscilla-

tions in metabolic flux in mitochondria versus cytosol.

Our result of an induced glycolytic flux in G1/S phase is qualita-

tively consistent with previous reports ~3- to 10-fold increase in

glycolytic flux in G1/S in HeLa cells (Colombo et al, 2011;

Tudzarova et al, 2011). However, here, analyzing the metabolism

of synchronized cells after resuming exponential growth (i.e.,

completing an entire cell cycle after released from synchronization

growth arrest) suggests a moderate increase in glycolytic flux of

only ~65% in G1/S phase. The smaller magnitude of the oscillations

in glycolytic flux inferred here is in agreement with the moderate

changes in concentration of glycolytic intermediates, which increase

only ~2-fold in G1/S phase. Our finding of increased glutamine-

derived flux into the TCA cycle and support of pyrimidine biosyn-

thesis in S phase agree with reports of the essentiality of glutamine

(and not glucose) for entering and progressing through S phase,

which can be rescued by nucleotide feeding (Gaglio et al, 2009;

Colombo et al, 2011).

We showed that complementary oscillations in the rate of

glucose versus glutamine oxidation in the TCA cycle result in a

constant rate of NADH/FADH2 production and reduction of oxygen

by the electron transport chain throughout the cell cycle. Notably,

while here we observe a constant rate of oxygen consumption

throughout the cell cycle, fluctuations in oxygen consumption were

previously reported in yeast cells, with DNA replication and cell

division occurring when oxygen consumption rate is low, protect-

ing genome integrity (Chen et al, 2007). On the other hand, respi-

ration was suggested to actually protect against oxygen-associated

DNA damage in proliferating human cells by reducing the intra-

cellular oxygen concentration and ROS levels (Sung et al, 2010)

and hence may potentially be beneficial during S phase. Cell

cycle-dependent changes in the utilization of glucose versus gluta-

mine may be associated with reported changes in mitochondrial

structure throughout the cell cycle, converted from isolated frag-

ments into a hyperfused network in G1/S transition (Mitra et al,

2009).

While the current study focuses on identifying and quantifying

oscillations in metabolic flux throughout the cell cycle, further

research is required to decipher how these metabolic changes are

regulated. The ubiquitin ligase complexes APC/C and SCF

complex were claimed to control glycolytic flux by limiting the

expression of PFKFB3 to the G1/S transition, in accordance with

the identified increase in glycolytic flux. SCF complex further

limits the expression of GLS1 to S and G2/M phases, in agreement

with our finding of induced glutamine to glutamate conversion in

these cell cycle phases. More generally, metabolic enzymes are

typically not regulated at the level of mRNA or protein throughout

the cell cycle based on cell cycle transcriptomics and proteomics

studies (Olsen et al, 2010). However, post-translational modifi-

cation of central metabolic enzymes is highly abundant and oscil-

lations in phosphorylation levels of metabolic enzymes have been

described (Olsen et al, 2010). Considering our finding of oscilla-

tions in the concentration of numerous metabolic intermediates,

as well as energy and redox cofactors, suggests that metabolic

regulation via changes in enzyme-binding site occupancy and

allosteric regulation may also play a key role in regulating cell

cycle flux dynamics. This is further supported by the fact that

metabolic substrate and inhibitor levels in mammalian cells are

typically in the same range as the Km values for the corresponding

enzymes (Park et al, 2016).

We showed that treatment of HeLa cells with the PDK inhibitor

DCA eliminates the oscillations in glucose flux into TCA cycle,

suggesting that cell cycle-specific regulation of PDH activity may

be involved in regulating these flux oscillations. Consistently,

PDK4 was reported to be induced by the E2F-pRB pathway which

controls cell entry to S phase (Hsieh et al, 2008; Kaplon et al,

2015). Furthermore, analyzing published phosphoproteomics data

for HeLa cells measured throughout the cell cycle (Olsen et al,

2010) shows more than twofold increase in the phosphorylation of

the PDH E1 component in early and late S phase versus in G1

(Appendix Fig S18). Validating this observation here, we find a

significant twofold increase in the phosphorylation of PDH- S232

specifically in S phase (Appendix Fig S19). A drop in glycolytic

flux into TCA cycle in S phase is further supported by a recent

report of a drop in the abundance of the pyruvate dehydrogenase

complex in mitochondria in S phase, following translocation of the

complex components to the nucleus (Sutendra et al, 2014). Further

research is required to determine the precise regulatory
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mechanism that underlies cell cycle oscillations in glycolytic flux

into TCA cycle, which may potentially spread quantitatively

among several enzymes [in accordance with the view of metabolic

control analysis (Fell, 1997)].

In the conventional view of mammalian metabolism, acetyl-

CoA (a major anabolic precursor for fatty acid biosynthesis) is

primarily produced by the oxidation of glucose-derived pyruvate in

mitochondria. Previous studies have employed isotope tracers to

show that in cancer cells grown under hypoxia (Metallo et al,

2012), in cells with defective mitochondria (Mullen et al, 2012),

and in anchorage-independent growth (Jiang et al, 2016), a major

fraction of acetyl-CoA is produced via another route, reductive

carboxylation of glutamine-derived a-ketoglutarate (catalyzed by

reverse flux through isocitrate dehydrogenase, IDH). Under these

conditions, feeding cells with isotopic glutamine leads to a marked

increase in the fractional labeling of citrate m + 5 and conse-

quently in the isotopic labeling of synthesized fatty acids. Here,

we showed that the fractional labeling of citrate m + 5 significantly

oscillates throughout the cell cycle under standard normoxic condi-

tions. This reflects major oscillations in the relative contribution of

oxidative TCA cycle flux (peaking in G1) and in the reductive

metabolism of glutamine-derived a-ketoglutarate (peaking in S) to

the production of acetyl-CoA throughout the cell cycle. Notably,

though, the oxidative IDH flux remains several-fold higher than

the reductive flux all throughout the cell cycle, reflecting an over-

all net flux in the oxidative direction.

Understanding the metabolic adaptation of cells to tumorigenic

mutations is a central goal of cancer metabolic research. Consider-

ing that tumorigenic mutations typically alter cell cycle progression,

flux alterations observed at a cell population level may merely

reflect a change in the distribution of cell cycle phases in the popula-

tion (due to cells in different phases having different metabolic

fluxes). Hence, the presented temporal-fluxomics approach will

enable to revisit our understanding of oncogene-induced metabolic

alterations, disentangling population level artifacts from directly

regulated flux alterations with important tumorigenic role and

revealing potential targets for therapy. Combined targeting of cell

cycle-specific flux alterations with drugs that block progression

through the same cell cycle phases is expected to have important

therapeutic applications (Diaz-Moralli et al, 2013; Saqcena et al,

2015).

Materials and Methods

Materials

Most of the chemical reagents were purchased from Sigma-Aldrich

unless otherwise specified. Stable isotopes [U-13C]-glucose and

[U-13C]-glutamine were obtained from Cambridge Isotope Laborato-

ries, Inc. Cell culture media and reagents were purchased from

Biological Industries, unless otherwise specified. HeLa and HCT-116

cells were purchased from ATCC. For oxygen consumption

measurements, chemicals (inhibitors and culture medium) were

obtained from Sigma and other materials from Agilent. Antibodies

used were as follows: phospho S232 PDH E1 alpha protein (PDHA1)

Profiling ELISA Kit, (ABcam-ab115343); human PDH E1 alpha

protein ELISA kit (PDHA1), (Abcam-ab181415).

Cell culture and synchronization

HeLa cells were cultured in Dulbecco’s modified Eagle’s medium

(high glucose, Biological Industries, 01-055-1A) supplemented with

10% (v/v) heat-inactivated dialyzed fetal bovine serum (Biological

Industries), 3 mM L-glutamine, 100 U/ml penicillin, and 100 lg/ml

streptomycin with 5% CO2 in a humidified incubator at 37°C.

Culture medium was additionally supplemented with 84 mg/ml

L-serine, and 48 mg/ml L-cystine to maintain sufficient amount of

nutrients for three cell doublings. HeLa cells have been validated by

the vendors, and we tested for mycoplasma using EZ-PCR myco-

plasma detection kit (Biological Industries). Cell number and

volume analysis were performed using a Z2 Beckman Coulter Coun-

ter (100 lm aperture); cells were trypsinized and resuspended

in IsoFlow Sheath Fluid (Beckman Coulter) immediately before

counting.

Cell synchronization was achieved using double thymidine

block. Briefly, 2 mM thymidine (Sigma-T1895) was added to 10-cm

culture plates at 25–30% confluence for 17 h. Cells were released

from the first block by washing twice with phosphate buffer saline

(PBS) and replacing with fresh culture medium. After 9 h, cells were

incubated with 2 mM thymidine for a second block time for 17 h.

Cells were replated in smaller plates (60 or 35 mm) for further anal-

ysis. Cell cycle analysis of synchronized cells was performed by

quantitation of DNA content using propodium iodide (PI) staining

followed by flow cytometry. For PI staining, cells were fixed using

75% ethanol/PBS and then resuspended in 0.5 ml of PI staining

solution (3.8 mM sodium citrate, 40 lg/ml PI, 50 ng/ml RNase A)

for 40 min at room temperature in dark. Flow cytometric analysis

was performed using LSRII (BD Biosciences, with at least 50,000

cells per FACS run). Cell cycle stages from raw FACS data were

quantified using Modfit (Verity House Software).

To check the effect of dichloroacetate treatment on cell cycle

progression, synchronized cells were treated with 4 mM pyruvate

dehydrogenase kinase inhibitor dichloroacetate (Sigma-Aldrich) for

3 h. Non-synchronized cells were treated with 16 mM DCA for

24 h, followed by cytometric analysis after DNA staining with PI.

LC-MS-based metabolomics and isotope tracing

To measure intracellular metabolite pools, cells were washed with

2 ml of ice-cold PBS for three times and metabolites extracted with

200 ll of 50:30:20 (v/v/v) methanol:acetonitrile:water solution at

�20°C. The cells were quickly scraped on dry ice. For the extraction

of metabolites from the culture medium, 50 ll of media was mixed

with 200 ll of 50:30 (v/v) methanol:acetonitrile solution at �20°C.

All metabolite extractions were stored at �80°C for at least 1 h,

followed by centrifugation, twice at 20,000 g for 20 min to obtain

protein-free metabolite extraction.

Metabolite pool sizes are expressed per total cell volume,

measured using a Coulter counter in cells grown in parallel in dif-

ferent plates. Absolute metabolite concentrations for specific

metabolites of interest were determined based on isotope ratio using

chemical standards (Bennett et al, 2008; Dataset EV3). Pulse

isotopic labeling was performed by feeding synchronized cells at

each time point with either [U-13C]-glucose or [U-13C]-glutamine for

1 h. To minimize the perturbation to cells due to the replacement

with fresh media, we used conditioned medium obtained from a
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previous culture of HeLa cells. Specifically, conditioned medium

with either isotopic glucose or isotopic glutamine was incubated

with fully attached HeLa cells at ~30% confluence for 4 h and then

stored in 4°C until used for pulse-chase labeling experiments.

Chromatographic separation was achieved on a SeQuant ZIC-

pHILIC column (2.1 × 150 mm, 5 lm bead size, Merck Millipore).

Flow rate was set to 0.2 ml/min, column compartment was set to

30°C, and autosampler tray was maintained at 4°C. Mobile phase A

consisted of 20 mM ammonium carbonate with 0.01% (v/v) ammo-

nium hydroxide. Mobile Phase B was 100% acetonitrile. The mobile

phase linear gradient (%B) was as follows: 0 min 80%, 15 min

20%, 15.1 min 80%, and 23 min 80%. A mobile phase was intro-

duced to Thermo Q-Exactive mass spectrometer with an electrospray

ionization source working in polarity switching mode. Metabolites

were analyzed using full-scan method in the range 70–1,000 m/z

and with a resolution of 70,000. Positions of metabolites in the

chromatogram were identified by corresponding pure chemical

standards. Data were analyzed with MAVEN (Clasquin et al, 2012).

Measurement of oscillations in oxygen consumption

Measurement of oxygen consumption was done using the XFp Extra-

cellular Flux Analyzer (Agilent). Briefly, HeLa cells after synchro-

nization were plated (20,000 cells/well) into XFp culture mini plates

and grown at 37°C with 5% CO2 in a humidified incubator for vari-

ous times to enrich the cell population with cells at distinct cell cycle

phases. Cells were washed and incubated with prewarmed XF assay

medium (Sigma D5030, pH 7.4) supplemented with 25 mM glucose

and 3 mM glutamine for 1 h in a non-CO2 incubator at 37°C. Appro-

priate dilutions of the inhibitors (final well concentrations: oligo-

mycin 1 lM, FCCP 1 lM, rotenone/antimycin A 1 lM) were

prepared in the assay medium as per the instructions in the manual.

Hydrated sensor cartridges were calibrated prior to the measurement

on SeaHorse XFp Extracellular Flux Analyzer (Agilent). Data acquisi-

tion consisted of a baseline measurement followed by oligomycin,

FCCP, and rotenone/antimycin A injections, respectively. OCR data

were normalized against cell volume obtained from Coulter counter

measurements of the cells from a parallel plate without any treat-

ment and expressed in pmoles/min/ll.

Synchronization loss model

We construct a probabilistic model that describes the loss of

synchronization following release from double thymidine block, due

to cell–cell variability in the rate of progression through the cell

cycle. Each cell is assumed to have its own “internal clock”, which

controls the speed at which it progresses through the cell cycle (de-

noted by c). The relative progression rates of cells released from

synchronization arrest are assumed to be normally distributed:

c�Nð1; r2Þ. We estimate the variance of the distribution (r2) as

well as the duration of G1, S, and G2/M (denoted by dG, dS, and dM,

respectively, in hours), given the FACS measurements of the frac-

tion of cells in each cell cycle phase in the synchronized cell popula-

tion (as described below). We denote the cell doubling time by dCYC
(=dG + dS + dM, in hours). For a cell whose rate of progression

through the cell cycle is c, the cell-intrinsic time x (in hours) within

the cell cycle (0 ≤ x ≤ dCYC) at time t after the release from synchro-

nization-induced growth arrest is

x ¼ c � t þ dG � ðc � t þ dGÞ
dCYC

� �
dCYC ; (1)

considering that cells resume growth in G1/S transition after

released from double thymidine block. For example, for a cell with a

relative progression rate through the cell cycle of c = 1 released from

growth arrest, it will take dS + dM hours to complete one cell cycle

(and then have an intrinsic time of x = 0), while for a cell with

double the rate (c = 2), it will take half the time (i.e., (dS + dM)/2).

At time t after the release from synchronization arrest, a cell having

an intrinsic time of x has a relative progression rate through the cell

cycle c equal to 1
t ðxþ k � dCYC � dGÞ, with k representing the number

of completed cell cycles since the release from growth arrest (based

on equation 1). Hence, considering that c is normally distributed,

we can compute the number of cells in the synchronized population

at time t whose cell-intrinsic time is x (denoted g0ðx; tÞ) as:

g0ðx; tÞ ¼
X2
k¼0

2k � e
� xþk�dCYC�dG

t �1

� �2
2r2 ; (2)

considering values of k between zero and two, representing three

complete cell cycle. We denote by g(x,t) the probability density func-

tion of the number of cells at time t whose cell-intrinsic time is x,

with gðx; tÞ ¼ 1
c g

0ðx; tÞ, where C is a normalization factor. The

expected fraction of the cells in S, G1, and G2/M phases at time t

(denoted by ms(t), mG(t) and mM(t), respectively) are calculated as:

msðtÞ ¼
Z ds

0

gðx; tÞdx; (3)

mGðtÞ ¼
Z dsþdG

ds

gðx; tÞdx; (4)

mMðtÞ ¼
Z dCYC

dsþdG

gðx; tÞdx; (5)

We perform a maximum log-likelihood estimation of the four

parameters of the model (r, dG, dS, and dM), minimizing the vari-

ance-weighted sum of squared residuals between the simulated frac-

tion of cells in the different cell cycle phases (ms(t), mG(t), and

mM(t)) and the FACS measurements (assuming Gaussian noise in

FACS measurements with an empirically estimated standard devia-

tion of ~10%). This minimization was performed via an implementa-

tion of sequential quadratic optimization (SQP) available in

MATLAB. Confidence intervals were computed by the likelihood

ratio test, comparing the maximum log-likelihood estimates with

that obtained when constraining each of the four parameters to

increasing and then decreasing value (considering the 95% quantile

of chi-squared distribution with one degree of freedom). The optimal

parameters found were r = 11% � 1%, dG = 6.8 h � 0.8 h,

dS = 6.4 h � 0.5 h, and dM = 3.2 h � 0.4 h. Overall, the good fit

between the model prediction and experimental data shown in

Fig 1B supports the underlying assumptions of this model. Comput-

ing the duration of each cell cycle phase based on PI staining/FACS

measurements in a population of non-synchronized HeLa cells and

considering a decreasing exponential cell age distribution show

8.2 h for G1, 4.9 h for S, and 2.9 h for G2/M. The small under
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estimation of the duration of G1 and over estimation of the duration

of S by the analysis of the synchronized cell (both not more than 1 h

off the measurements in the non-synchronized cells) may be due to a

slight perturbation to cell cycle dynamics due to synchronization-

induced growth arrest.

Computational deconvolution of cell volume measurements in
the synchronized cell population

Computational deconvolution was used to estimate cell volume

dynamics throughout the cell cycle, correcting for cell dispersion that

bias Coulter counter measurements of cell volume performed in the

synchronized cells. Specifically, denoting the average cell volume in

the synchronized cell population at time t by v(t) (9 ≤ t ≤ 45), we

estimate the average cell volume in the cell-intrinsic time x within

the cell cycle (0 ≤ x ≤ dCYC), denoted by v0ðxÞ, as following:

vðtÞ ¼
Z dCYC

0

v0ðxÞgðx; tÞdxþ eðtÞ; (6)

where e(t) represents experimental noise in the volume measure-

ment performed at time t. We represent v0ðxÞ using a cubic spline,

which is a commonly used approach for fitting biological time-

series data (considering splines with four segments, defined based

on five knots). Non-convex optimization was used to find the

optimal position of the knots and corresponding value of v0ðtÞ
minimizing the sum-of-square of the error terms. Non-convex opti-

mizations were solved using MATLAB’s implementation of SQP.

Computational deconvolution of metabolite concentration,
isotope labeling, and uptake and secretion rate measurements

Given a metabolite i whose measured concentration in the synchro-

nized cell population at time t (9 ≤ t ≤ 45) is denoted by ui(t)

(measured metabolite pool size normalized by the measured aver-

age cell volume at time t, v(t)), we estimate the concentration in

cell-intrinsic time x within the cell cycle (0 ≤ x ≤ dCYC), denoted by

u0
iðxÞ as:

uiðtÞ ¼ 1R dCYC
0 v0ðxÞgðx; tÞ dx

Z dCYC

0

u0
iðxÞv0ðxÞgðx; tÞdxþ eðtÞ; (7)

considering that the measured concentration of metabolite i at time

t represents the average concentration in cells with cell-intrinsic

time x, weighted by the total volume of cells with intrinsic time x

at time t (i.e., v0ðxÞgðx; tÞ). We represent u0
iðxÞ using a cubic spline

and estimate its coefficients as described above.

We denote the measured relative abundance of the kth mass

isotopomer of metabolite i (i.e., the fraction of the metabolite pool

having k labeled carbons) after 1-h feeding with an isotopic

substrate of synchronized cells at time t by ui,k(t). We estimate the

relative abundance of the kth mass isotopomer of metabolite i in

cell-intrinsic time x within the cell cycle denoted u0
i;kðxÞ as:

ui;kðtÞ ¼ 1R1
0 u0

iðxÞv0ðxÞgðx; tÞdx
Z 1

0

u0
i;kðxÞu0

iðxÞv0ðxÞgðx; tÞdxþ eðtÞ;

(8)

considering that the measured fractional isotopic labeling of a

metabolite i at time t represents the average labeling in cells with

intrinsic cell cycle time x, weighted by the metabolite pool size in

cells with cell-intrinsic time x (i.e., with u0
iðxÞv0ðxÞgðx; tÞ).

We denote the measured change in pool size of metabolite i in

the culture media between time t�Δt and time t by Δei(t). We esti-

mate the transport flux of metabolite i by the synchronized cell

population at time t, denoted fi(t) (in molar amount per unit of cell

volume per hour, with positive and negative flux representing secre-

tion and uptake, respectively) by dividing the change in pool size of

metabolite i by the accumulated volume of cells in the culture

metabolite between time t�Δt and time t:

fiðtÞ ¼ 1R t
t�Dt

R dCYC
0 v0ðxÞgðx; t0Þ dxdt0

DeiðtÞ; (9)

The transport flux of metabolite i at cell-intrinsic time x, denoted

f 0i ðxÞ is estimated as:

DeiðtÞ ¼
Z t

t�Dt

Z dCYC

0

f 0i ðxÞv0ðxÞgðx; t0Þdxdt0 þ eðtÞ; (10)

considering that the measured change in pool size of metabolite i

at time t represents the cumulative transport within the Δt time

interval by cells with different intrinsic cell cycle time x.

Statistical significance of oscillations in metabolite
concentrations and isotopic labeling patterns

To assess the statistical significance of observed oscillations in the

deconvoluted concentration of a certain metabolite, we compared

the observed amplitude of the oscillation to the amplitude expected

by chance (considering the noise in LC-MS measurements). Specifi-

cally, for each metabolite i, we define the amplitude of its oscillation

by ai as:

ai ¼ max
0� x� dCYC

u0
iðxÞ � min

0� x� dCYC
u0
iðxÞ: (11)

Next, we compute the distribution of amplitudes expected by

chance by repeating the following steps 10,000 times: For each time

t for which LC-MS measurements were performed on the synchro-

nized cell population (9 ≤ t ≤ 45), we generate a random metabolite

concentration [denoted r(t)] by sampling from a normal distribution

whose mean is the average concentration of metabolite i measured

throughout all time points in the synchronized cells, and with the

standard deviation of the experimental measurement of metabolite i

at time t, denoted ri(t):

rðtÞ�N
1

k

Xk
t¼1

uiðtÞ; r2i ðtÞ
 !

: (12)

Computational deconvolution (equation 7) is applied on the

randomly generated metabolite concentration data [i.e., r(t)] and an

empirical P-value computed based on the fraction of randomly

sampled concentration vectors for which the derived amplitude is

equal or larger than that computed for the concentration measure-

ments of metabolite i. FDR correction for multiple testing is

computed using the approach of Benjamini–Hochberg. A
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conceptually similar method was employed to assess the statistical

significance of oscillations in the relative abundance of metabolite

isotopic labeling [applying computational deconvolution (equa-

tion 8) to randomly generated isotopic labeling data].

Computational inference of metabolic flux dynamics throughout
the cell cycle

For every 1-h interval j throughout the cell cycle j 2 f0. . . dCYCb cg
(referred to as the jth cell cycle interval), we computed the most

likely momentary fluxes through nine reactions in TCA cycle and in

branching pathways (Fig 3B). Toward this end, we employed a vari-

ant of kinetic flux profiling (KFP) to separately infer fluxes produc-

ing each metabolite i in cell cycle interval j, for which the simulated

isotopic labeling kinetics optimally match the experimental

measurements.

The relative abundance of the kth mass isotopomer of metabolite

i after 1-h feeding of cells within cell cycle interval j was inferred

based on the pulse-chase labeling experiments in the synchronized

cells followed by deconvolution as described above (denoted

by u0
i;kðjÞ). To estimate the dynamics of the isotopic labeling form

of this metabolite within the 1-h cell cycle interval (i.e., within time

periods shorter than 1 h), we performed pulse-chase labeling exper-

iments with isotopic glucose and glutamine in non-synchronized

cells, measuring the relative abundance of the kth mass

isotopomer of metabolite i at different times t2T = {10,20,30,60}

(in minutes), denoted by Xi,k(t). These measurements were used

to estimate the relative abundance of the kth mass isotopomer of

metabolite i, t minutes after the beginning of the jth 1-h time

interval within the cell cycle (denoted by Xj
i;kðtÞ) by scaling the

measurements performed on the non-synchronized cells:

Xj
i;kðtÞ ¼

u0
i;kðjþ 1Þ
Xi;kð60Þ Xi;kðtÞ: (13)

To validate these estimated labeling kinetics, we performed rapid

pulse-chase labeling experiments (10 and 30 min) in synchronized

cells grown for 15 h (G1/S) and 20 h (S), finding a good match

between the estimated and measured labeling dynamics

(Appendix Fig S20).

We describe the inference of metabolic flux through reactions

producing citrate while other fluxes are obtained similarly (see

below). The analysis accounts for citrate synthase (v1) and

reductive isocitrate dehydrogenase (IDH, v2) producing citrate

(Fig 3B). We denote the total citrate consumption flux by vout,

which may be lower or higher than the sum of v1 and v2 in

case citrate is accumulated or depleted within a cell cycle inter-

val, respectively (as the synchronized cells are not in metabolic

steady state). The expected mass-isotopomer distribution of

citrate after t minutes into the jth cell cycle interval, considering

the fluxes v1, v2, and vout, is denoted Yj
citðt; v1; v2; voutÞ. Assuming

that the error in the measured isotope labeling data is normally

distributed, maximum likelihood estimate of fluxes is obtained

by minimizing the variance-weighted sum of squared residuals

between measured and computed mass-isotopomer distributions,

where rjcit;k is the standard deviation in the measurement of the

relative abundance of the kth mass isotopomer of citrate in the

jth time interval:

min
v1 ;v2 ;vout

X
t�T

X
k�f4;5g

Xj
cit;kðtÞ � Yj

cit;kðt; v1; v2; voutÞ
rjcit;k

 !2

(14)

s.t.

vout ¼ v1 þ v2 þ u0
citðjþ 1Þ � u0

citðjÞ
� �

; (14.1)

v1; v2; vout � 0; (14.2)

where u0
citðjÞ represents the deconvoluted concentration of citrate (in

mM) in the jth cell cycle interval and is used to constrain the dif-

ference between the total citrate producing and consuming flux

within the jth 1-h cell cycle interval (equation 14.1). We accounted

for the two major mass isotopomers of citrate, m + 4 and m + 5

(Appendix Fig S3). To simulate the labeling kinetics of the kth mass

isotopomer of citrate within the jth cell cycle interval, denoted by

Yj
cit;kðt; v1; v2; voutÞ, we utilized the following system of ordinary

differential equations:

dYj
cit;kðt; v1; v2; voutÞ

dt

¼ 1

u0
citðjÞ

v1X
j
mal;kðtÞ þ v2X

j
aKG;kðtÞ � voutY

j
cit;kðt; v1; v2; voutÞ

� �
;

where Xj
mal;kðtÞ and Xj

aKG;kðtÞ represent the relative abundance of the

kth mass isotopomer of malate and a-ketoglutarate, t minutes into

the jth cell cycle interval, and v1X
j
mal;kðtÞ and v2X

j
aKG;kðtÞ represent the

momentary production of the kth mass isotopomer of citrate from of

malate and from a-ketoglutarate. The term voutY
j
cit;kðt; v1; v2; voutÞ

represents the total momentary consumption of the kth mass isoto-

pomer of citrate. The difference between the momentary production

and consumption rate of the different mass isotopomers of citrate

(term in parenthesis on right hand side of the equation) is normal-

ized by the concentration of citrate to give the momentary change in

fractional labeling.

A similar approach was employed to infer fluxes through reac-

tions producing the following metabolites: (i) a-ketoglutarate—rapid

isotopic exchange with glutamate results in essentially a single intra-

cellular pool of a-ketoglutarate and glutamate (as reflected by simi-

lar labeling kinetics of the two metabolites). We considered

a-ketoglutarate/glutamate m + 5 production by oxidative IDH from

citrate m + 5 when feeding isotopic glutamine (reaction v3 in

Fig 3B) and from glutamine m + 5 when feeding isotopic glutamine

(v8), as well a-ketoglutarate/glutamate m + 3 production by oxida-

tive IDH from citrate m + 4 when feeding isotopic glutamine (v3)

(Appendix Fig S4), (ii) Malate—considering the rapid isotopic

exchange with aspartate (> 100 mM/h based KFP analysis of malate

and aspartate labeling kinetics, we account for a single malate/

aspartate pool. We consider for malate/aspartate m + 4 production

from a-ketoglutarate m + 5 (v4), when feeding isotopic glutamine,

and malate/aspartate m + 4 production from pyruvate m + 3 (v7),

when feeding isotopic glucose (Appendix Fig S5), (iii) UTP—consid-

ering UTP m + 3 production from carbamoyl-aspartate m + 3 when

feeding isotopic glutamine (v5) (Appendix Fig S6), (iv) Lactate—

considering lactate m + 3 production by malic enzyme when feed-

ing isotopic glutamine (v6) and the production of non-labeled

lactate by glycolysis (Appendix Fig S7). We consider an average
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malic enzyme flux of 7.9 mM/h throughout the cell cycle (consid-

ering a fractional labeling of 1.3% m + 3 lactate under isotopic

steady state, when feeding isotopic glutamine, and lactate secre-

tion rate of 610 mM/h).

Non-convex optimizations were solved using MATLAB’s imple-

mentation of sequential quadratic optimization (SQP). All optimiza-

tions were run 10 times, starting from different sets of random

fluxes, to overcome potential local minima. To compute confidence

intervals for estimated fluxes, we iteratively ran the SQP optimiza-

tion to compute the maximum log-likelihood estimation while

constraining the flux to increasing (and then decreasing) values

(with a step size equal to 5% of the flux predicted in the initial

maximum log-likelihood estimation; Antoniewicz et al, 2006; Fan

et al, 2013). The confidence interval bounds were determined based

on the 95% quantile of chi-squared distribution with one degree of

freedom. Notably, while all flux estimates are given in mM/h (i.e.,

fmole/pl-cells/h), multiplying a flux estimate with intrinsic time x

with the estimated cell volume at that time (i.e., v0ðxÞ in pl, see

Fig 1C) gives a flux value per cell (fmole/cell/h).

The rate of production of reducing equivalents for driving oxida-

tive phosphorylation generated by glucose oxidation was calculated

by summing the flux through the following NADH producing reac-

tions: PDH (according to reaction v1 in Fig 3B, considering that

~99% of pyruvate is produced by glucose oxidation throughout the

cell cycle, with the fractional labeling of pyruvate from isotopic

glutamine under isotopic steady state being < 0.01), oxidative IDH

(reaction v3), and the rate of shuttling of NADH produced in glycol-

ysis for oxidation in mitochondria (estimated based on pyruvate

secretion, a uniform flux of ~17 mM/h measured throughout the cell

cycle). The rate of reducing equivalents production from glutamine

oxidation was calculated based on the rate of a-ketoglutarate oxida-

tion in TCA cycle (reaction v4 in Fig 3B, considering that > 95% of

a-ketoglutarate is produced from glutamine all throughout the cell

cycle; the fractional labeling of a-ketoglutarate from isotopic gluta-

mine under isotopic steady state is > 0.95), producing NADH by

a-ketoglutarate dehydrogenase and FADH2 by succinate dehydroge-

nase (SDH). Malate dehydrogenase (v4 in Fig 3B) further produces

another NADH.

Data availability

• Oscillations in the concentrations of 57 metabolites throughout

the cell cycle: Dataset EV1.

• Oscillations in the relative abundance of metabolite mass isotopo-

mers when performing pulse-chase isotope tracing experiments

with [U-13C]-glucose and [U-13C]-glutamine in synchronized HeLa

cells: Dataset EV2.

• Concentrations of metabolites in non-synchronized, exponentially

growing HeLa cells (in mM): Dataset EV3.

Expanded View for this article is available online.
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