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Abstract

Lack of chronic immune activation in the presence of persistent viremia is a key feature that distinguishes nonpathogenic
simian immunodeficiency virus (SIV) infection in natural hosts from pathogenic SIV and HIV infection. To elucidate novel
mechanisms downmodulating immune activation in natural hosts of SIV infection, we investigated natural killer T (NKT)
lymphocytes in sooty mangabeys. NKT lymphocytes are a potent immunoregulatory arm of the innate immune system that
recognize glycolipid antigens presented on the nonpolymorphic MHC-class I-like CD1d molecules. In a cross-sectional
analysis of 50 SIV-negative and 50 naturally SIV-infected sooty mangabeys, ligand o-galactosylceramide loaded CD1d
tetramers co-staining with Va24-positive invariant NKT lymphocytes were detected at frequencies =0.002% of circulating T
lymphocytes in approximately half of the animals. In contrast to published reports in Asian macaques, sooty mangabey NKT
lymphocytes consisted of CD8" and CD4/CD8 double-negative T lymphocytes that were CXCR3-positive and CCR5-negative
suggesting that they trafficked to sites of inflalmmation without being susceptible to SIV infection. Consistent with these
findings, there was no difference in the frequency or phenotype of NKT lymphocytes between SIV-negative and SIV-infected
sooty mangabeys. On stimulation with a-galactosylceramide loaded on human CD1d molecules, sooty mangabey NKT
lymphocytes underwent degranulation and secreted IFN-y, TNF-a, IL-2, IL-13, and IL-10, indicating the presence of both
effector and immunoregulatory functional capabilities. The unique absence of CD4* NKT lymphocytes in sooty mangabeys,
combined with their IL-10 cytokine-secreting ability and preservation following SIV infection, raises the possibility that NKT
lymphocytes might play a role in downmodulating immune activation in SIV-infected sooty mangabeys.
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hence, differences in the adaptive immune response to SIV are
unlikely to be responsible for the differential immune activation of
pathogenic and nonpathogenic SIV infection. The rapid activation
of multiple pro-inflammatory cytokines and chemokines in acute
HIV and SIV infection point to the early innate immune response
as an important determinant of immune activation [9,19].
Natural Killer T (NKT) lymphocytes are a small subset of T
lymphocytes that are rapid responders of the innate immune
system and mediate potent immunoregulatory and effector
functions in a variety of disease settings [20,21]. NKT lymphocytes

Introduction

While persistent immune activation is a strong prognosticator of
disease progression in HIV-infected humans and SIV-infected
Asian macaques, it is singularly lacking in non-progressive
infection in natural hosts of SIV such as sooty mangabeys and
African green monkeys [1,2,3,4]. How natural hosts of SIV are
able to contain chronic immune activation in the face of
continuing viral replication and high viral loads remains a
conundrum [5]. Immune activation is observed during acute

SIV infection in sooty mangabeys and African green monkeys, but
it is rapidly down-regulated to pre-SIV infection levels
[6,7,8,9,10]. Mechanisms that have been implicated in down-
modulation of immune activation in natural hosts include early
induction of an anti-inflammatory response [11], absence of
microbial translocation [12], paucity of CCR5" CD4" T
lymphocytes [13], decreased responsiveness of plasmacytoid
dendritic cells to SIV [14], and preservation of Th17 CD4* T
lymphocytes [15,16]. The magnitude of SIV-specific T' lympho-
cyte responses in sooty mangabeys during acute and chronic SIV
infection 1s comparable to that in rhesus macaques [9,17,18] and
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recognize antigen presented by the non-polymorphic MHC Class-
I-like CD1d molecules and are characterized by a restricted TCR
repertoire due to the presence of an invariant TCR alpha chain
paired with a limited number of TCR beta chains [20,21]. In
mice, the TCR of invariant NK'T lymphocytes consists of a Vatl14-
Jal8 chain paired with V8.2, VB7 or VP2, while human
invariant NKT lymphocytes have a Va24-Jal8 chain preferen-
tially paired with VP11 [22,23,24]. Upon activation with
glycolipids presented on CD1ld molecules, NKT lymphocytes
respond rapidly with production of a diverse array of cytokines
including IL-10, TGF-B, and several Thl and Th2 cytokines
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[25,26]. Studies in mice suggest that the NKT lymphocytes
transcribe cytokine genes even before activation and are therefore
able to respond rapidly upon TCR stimulation [27]. Because
NKT lymphocytes can produce a wide array of cytokines without
the requirement of priming, they can modulate other arms of the
innate and adaptive immune system and mediate diverse, often
polar functions [28,29,30,31]. Thus, while NKT lymphocytes can
mediate anti-tumor [32] and anti-microbial effector activity
against selected pathogens [33,34,35,36,37,38], they also induce
tolerance and play a predominantly immunoregulatory role in
corneal graft tolerance, inhibition of autoimmune diabetes in
NOD mice, and regulation of immunopathology in murine
Mpycobacterium bovis and lymphocytic choriomeningitis virus infec-
tions [37,39,40,41,42].

The precise role of NKT lymphocytes in HIV/SIV infection
remains unresolved. GD4" NKT lymphocytes in humans and
macaques express CCRS and are highly susceptible to HIV/SIV
infection in vitro [43,44,45]. A selective and rapid loss of both CD4*
and CD4~ NKT lymphocytes has been observed in the peripheral
blood of HIV-infected humans [43,46,47,48] with variable
reconstitution after anti-retroviral therapy [49,50,51,52,53]. A
recent study showed a similar decline of CD4* NKT lymphocytes
in SIV-infected pig-tailed macaques [54]. In addition to preferen-
tial infection of CD4" NKT lymphocytes by R5-tropic HIV and
SIV, Fas-mediated activation-induced apoptosis and tissue seques-
tration have been implicated as possible causal mechanisms of
NKT lymphocyte depletion in pathogenic HIV/SIV infection
[43,45,48,49]. Although the consequences of NKT lymphocyte
depletion in HIV infection are not known, it is speculated that loss
of NKT lymphocytes might result in increased susceptibility to
opportunistic infections as well as contribute to increased aberrant
immune activation [48,52].

In light of the immunoregulatory properties of NKT
lymphocytes and their potential to down-regulate immune
activation, we have investigated NKT lymphocytes in a natural
host of SIV infection. In this study, we report on a detailed
characterization of NKT lymphocytes in sooty mangabeys. We
show that in contrast to published reports of NK'T' lymphocytes in
Asian macaques, CD1d-restricted invariant NK'T lymphocytes in
sooty mangabeys do not express CD4 or CCR5. In a cross-
sectional analysis, naturally SIV-infected sooty mangabeys had
similar frequency and phenotype of circulating NKT lympho-
cytes compared to SIV-negative sooty mangabeys. Functionally,
sooty mangabey NKT lymphocytes showed robust production of
Thl and Th2 cytokines, including IL-10, and underwent
degranulation on NKT ligand-specific activation indicating that
they had both effector and immunoregulatory functional
capabilities. The IL-10 cytokine-secreting profile of sooty
mangabey NKT lymphocytes along with their preservation in
naturally SIV-infected mangabeys raises the possibility that NK'T
lymphocytes play an important role in down-regulating immune
activation during natural SIV infection.

Results

Identification of NKT lymphocytes in sooty mangabeys
The majority of human CDld-reactive NKT lymphocytes
express the invariant Va24-Joal8 TCR a-chain paired with the
VP11 TCR PB-chain and are identified by flow cytometric
detection of Va24 TCR-positive T lymphocytes that either bind
to the 6B11 mAbD directed against the invariant CDR3 region of
the TCR a-chain [55], or that bind to human CD]1d tetramers
loaded with ligand a-galactosylceramide (a-GalCer) or its analog,
PBS-57 [56,57]. Using a similar approach in sooty mangabeys,
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staining of PBMC with anti-human Va24 antibody and PBS-57
loaded CDI1d tetramers (CD1d TM) or the 6B11 antibody,
revealed a small but discrete population of Va24*CD1d TM*
and Vo24'6B117 NKT lymphocytes (Figure 1A). Limiting
dilution cloning of sorted NKT lymphocytes in one SIV-negative
sooty mangabey revealed that 97% of the NKT clones were
concurrently Vo24" and 6B11" (Figure 1B top panel) confirming
their invariant nature. A small subset of Va24*CD1d TM" cells
were not 6B117 (Figure 1B hottom panel), indicating the
presence of a minor population of non-invariant NK'T lympho-
cytes in sooty mangabeys, as have been reported in humans
[58,59,60].

In a cross-sectional analysis of fifty SIV-negative sooty
mangabeys, Vo24"CD1d TM" NKT lymphocytes ranged in
frequencies from 0 to 0.13% of circulating T lymphocytes in the
peripheral blood (Figure 1C). Owing to the rarity of circulating
NKT lymphocytes, a minimum of 200,000 CD3* T lymphocyte
events were collected to ensure that detection of NKT lympho-
cytes at frequencies less than 0.01% reached a power of =80% at
a P value <0.05. Additionally, the concurrent use of unloaded
CD1d TM provided a valuable negative control for specificity of
staining with PBS-57-loaded CD1d TM (Figure 1C). With the
exception of one mangabey, the background staining with
unloaded CD1d TM was well below 0.002% (Figure. 1C). Using
an arbitrary positive cut-off value of =0.002%, ex vivo circulating
NKT lymphocytes were detected at a mean frequency of 0.007%
in 44% of the SIV-negative sooty mangabeys studied (Figure 1C).
The frequency of NKT lymphocytes detected by the 6B11
antibody tended to be lower compared to detection with CD1d
TM. However, there was a highly significant positive correlation
between the frequency of peripheral blood Va24*CD1d TM* and
Vo24*6B11" NKT lymphocytes (Figure 1D), confirming a
dominance of invariant NKT lymphocytes in the CD1d TM* T
lymphocyte population.

NKT lymphocytes in sooty mangabeys are comprised of
CD8* and CD/CD8 double negative (DN) T lymphocytes

While most human and essentially all murine NKT lympho-
cytes consist of CD4" and DN T lymphocyte subsets [24,61],
published reports in Asian macaques have shown the presence of
predominantly CD8* and CD4" NKT lymphocyte subsets
[45,54,62,63]. Evaluation of CD4 and CD8 surface expression
on ex vwwo circulating NKT lymphocytes in 13 SIV-negative sooty
mangabeys, revealed the presence of both CD8* (mean * SD;
79.3%%22.6) and DN (17.5% *=21.6) subsets of NK'T lymphocytes
(Figure 2A & 2C left panel). In contrast to Asian macaques, CD4"
NKT lymphocytes were absent or detected at frequencies <5% of
NKT cells in sooty mangabeys. Consistent with their phenotype,
sooty mangabey NK'T lymphocytes were significantly enriched for
CD8" T lymphocytes and had significantly lower number of CD4*
T lymphocytes compared to the circulating total T lymphocyte
population (Table 1). The frequency of NK'T lymphocytes within
circulating CD8" T lymphocytes ranged between 0% and 0.13%
(mean 0.008%), while DN T lymphocytes contained 0% to 0.16%
(mean 0.007%) of NKT lymphocytes.

The CD4 and CD8 subset distribution of 57 NKT clones
isolated from one SIV-negative sooty mangabey were similar to
that of the ex vivo NK'T lymphocytes (Figure 2B & 2C right panel).
In addition to a mixed CD8* and DN T lymphocyte phenotype,
there were also a substantial number of clones that displayed a
predominant or exclusive CD8" or DN T lymphocyte phenotype
(Figure 2C). Further analysis of CD8 expression using CD8a and
CD8p antibodies revealed that NKT lymphocytes expressed
CD8aa homodimers (data not shown). Consistent with findings on
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Figure 1. Identification of NKT lymphocytes in the peripheral blood of sooty mangabeys. A) Representative dot plots showing gating
strategy for identification of NKT lymphocytes. On the CD3" T lymphocyte population, the co-staining for Vo224 and CD1d tetramers loaded with PBS-
57 (CD1d TM) and 6B11 are shown in the bottom panel. Unloaded tetramers (shown in the left of bottom panel) served as a control for non-specific
staining. B) Representative dot plots of sorted NKT clones in one SIV-negative sooty mangabey stained with anti-Va24 and CD1d TM or 6B11
antibody. C) Frequency of peripheral blood NKT lymphocytes in 50 SIV-negative sooty mangabeys. Horizontal bar denotes mean. The background
staining with unloaded CD1d TM for one animal (which was above 0.002%) and the corresponding Vo24*CD1d TM* frequency are shown in red. D)
Positive correlation between the frequency of Va24"CD1d TM* T lymphocytes and Va246B11* T lymphocytes in the peripheral blood of 50 SIV-

negative sooty mangabeys.
doi:10.1371/journal.pone.0009787.g001

ex vivo PBMC, none of the NKT clones had a CD4* T lymphocyte
phenotype (Figure 2C).

Phenotypic characterization of sooty mangabey NKT
lymphocytes

To investigate the properties of sooty mangabey NKT
lymphocytes, we first examined the expression of NK cell markers,
memory T lymphocyte markers and cytolytic molecules on sooty
mangabey NKT clones (Figure 3A-B). Human and mouse NKT
lymphocytes express the NK cell markers CD161A [64] and
CD161C/NKI.1 respectively [65], while macaque NK'T lympho-
cytes from the spleen were reported to express CD536 [63]. We
examined the expression of the NK cell markers CD56, CD161,
CD16, and NKG2D on sooty mangabey NK'T' clones. While the
majority of mangabey NKT clones (92.1%*17.2) expressed
NKG2D, there was considerable heterogeneity in the expression
of CDI161 (52.8%=*32.6), CD16 (40.5%*36.6) and CD56
(29.3% *£26.9%) within clones (Figure 3B). Analysis of the surface
markers CD95, CD28, CD45RA, and CXCRS3 showed that the
majority of the NKT clones were CD95"CD28~ CD45RA™ and
CXCR3" (Figure 3A-B) indicating an effector memory phenotype
consistent with findings in human NKT lymphocytes [43,66]. In
addition, the NK'T clones contained intracellular granzyme B
(49.3%*38.7) and perforin (43.5% *20) suggesting the potential
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for cytolytic activity (Figure 3A-B). This is in concordance with
published reports of cytolytic activity in human NKT lymphocytes
[61,64,67,68].

Since the initial phenotypic characterization was performed on
in vitro cultured NKT clones, we asked whether ex vivo circulating
NKT lymphocytes displayed a similar phenotype. Peripheral
blood NKT lymphocytes from one SIV-negative sooty mangabey
from whom the NKT clones were derived showed a similar
phenotype to clones with regards to a high frequency of CD95,
NKG2D and CXCRS3 surface expression (Table 2). However, in
contrast to NKT clones, peripheral blood NK'T lymphocytes were
predominantly CD28" (Table 2 and Figure 3C). This is consistent
with loss of CD28 expression on tissue cultured human NKT
lymphocytes [64,67] as opposed to ex wwo human NKT
lymphocytes [61,68]. Ex vivo NK'T lymphocytes also differed from
NKT clones in having a paucity of cells expressing the NK
markers CD56 and CD161, and the cytolytic molecules granzyme
B and perforin (Table 2). In comparison to memory CD8* and
DN T lymphocytes, ex vwo NKT lymphocytes consisted of a
homogenous CD95"CD28"CCR7™ population, consistent with a
transitional effector memory phenotype (Fig. 3C). The phenotypic
differences between ex vivo NK'T lymphocytes and NK'T clones is
likely a reflection of the activated status of NKT clones subsequent
to in vitro stimulation with a-GalCer and IL-2.
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Figure 2. T lymphocyte subset distribution of sooty mangabey NKT lymphocytes. A) Representative contour plots showing surface
expression of CD4 and CD8 molecules on ex vivo circulating T and Ve24"CD1d TM* NKT lymphocytes in two sooty mangabeys (SM #1 and SM #-2). B)
Contour plots showing surface expression pattern of CD4 and CD8 molecules on representative NKT clones. C) Distribution of CD4* (CD4'87), CD8"
(CD8*47), DN (CD4~87) and DP (CD4*8") T lymphocyte subsets in ex vivo NKT lymphocytes in 13 SIV-negative sooty mangabeys (left panel) and in 57
NKT clones derived from sorted 6B11* T lymphocytes of one SIV-negative sooty mangabey (right panel).

doi:10.1371/journal.pone.0009787.g002

Sooty mangabey NKT clones secrete Th1 and Th2
cytokines, degranulate, and proliferate in a CD1d-
restricted manner

To investigate the functionality of sooty mangabey NK'T lympho-
cytes, we first investigated the cytokine-secreting profile of NK'T clones
following stimulation with CD1d-transfected cell lines pulsed with
o-GalCer (C1R.d/aGC). Stimulation with mock-transfected C1R cell
lines pulsed with a-GalCer (C1R/aGC) served as a negative control.
In vitro stimulation of NK'T' clones with either mitogen (PMA/Ca) or
CIR.d/aGC resulted in up-regulation of CD69 indicating NKT cell
activation (Figure 4A). There was a concomitant decrease in CD1d
TM staining that was confined to the CIR.d/aGC stimulated
lymphocytes (Figure 4B) indicating that the NK'T lymphocyte TCR
was down-regulated following ligand-specific stimulation.

At the end of a 16 to 24-hour stimulation period with C1R.d/
aGC, production of the Th1 cytokines IFN-y, TNF-a, and IL-2, and
the Th?2 cytokines IL-4, IL-13, and IL-10, was observed in NKT
clones by intra-cellular cytokine flow cytometry (Figure 5A-B) and
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ELISA (Figure 5C). Interestingly, I1.-17 production was not detected
(data not shown). This contrasts with a recent report on emergence of
IL-17 producing NKT lymphocytes in SIV-infected rhesus macaques

Table 1. Distribution of T lymphocyte subsets in circulating
NKT cells and total T lymphocytes in sooty mangabeys.

Mean % * SD®

cpa* cps* CD47CD8~ cp4*cps*
CD3*Tcells 35*7 45+7 19+4 0504
NKT cells 25+23 74+25 21+25 1.8+2.8
P-Value* <0.0001 <0.001 0.79 0.13

*Paired t-test.
©Mean % and Standard Deviation in 13 SIV-negative sooty mangabeys.
doi:10.1371/journal.pone.0009787.t001
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doi:10.1371/journal.pone.0009787.9003

[69]. Cytokine production following C1R.d/aGC stimulation was
close to levels induced after PMA/Ca stimulation (Figure 5B-C)
indicating the potency of NKT ligand-specific stimulation for
activation of NKT clones. In contrast, stimulation with control
C1R/aGC induced little or no cytokine production (Figure 5B-C).
To determine whether both Thl and Th2 cytokines were produced
by the same NKT cell, we investigated concurrent production of
IFN-vy, IL-2, and IL-13 by NKT clones stimulated with C1R.d/aGC
and PMA/Ca (Figure 5D). More than 60% of cytokine-secreting
NKT cells secreted only IFN-y after C1R.d/aGC or PMA/Ca
stimulation (Figure 5D). Concurrent production of IFN-y and IL-13
was observed in <20% of cytokine-secreting NK'T cells (Figure 5D).
Clomparison of mitogen stimulation with that of NK'T ligand-specific
stimulation showed significant differences with regards to cytokine
production. Concurrent IFN-y and IL-2 production in the absence of
IL-13 was only seen after PMA/Ca but not CG1R.d/aGC stimulation
(Figure 5D). Furthermore, production of IL-13 alone in the absence
of the Thl cytokines IFN-y and IL-2 was only seen after C1R.d/
aGC stimulation (Figure 5D), suggesting the presence of discrete Th2
cytokine-secreting NKT lymphocyte subsets.

In addition to cytokine production, NK'T clones also underwent
degranulation upon stimulation with C1R.d/aGC, as evidenced
by the surface expression of CD107a (Figure 5E). The degranu-
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lation was evident as early as four hours following stimulation,
suggesting that sooty mangabey NKT clones were capable of rapid
cytolytic activity. The CD1ld-restricted nature of NK'T lymphocyte
activation was confirmed by partial to complete inhibition of
cytokine secretion and proliferation in the presence of anti-CD1d
blocking antibody (Figure 6). Addition of anti-human CD1d mAb
(clone 42.1) to CIR.d cells prior to pulsing with o-GalCer,
inhibited IFN-y production by CIlR.d/aGC-stimulated NKT
clones in a dose-dependent manner (Figure 6A). Functional CD1d
restriction of sooty mangabey NKT clones was further verified by
examination of o-GalCer-induced proliferation. Proliferation of
CFSE-labeled NKT clones was observed after a 5-day period of
stimulation with CIR.d/aGC  (Figure 6B). The proliferative
response to C1R.d/aGC was significantly inhibited in the
responding NKT clones treated with anti-CDId in a dose-
dependent manner (Figure 6B-C). No inhibition of proliferation
was observed with control isotype Ab (Figure 6C).

Cytokine responses of ex vivo peripheral blood NKT
lymphocytes in sooty mangabeys mirror those of NKT

clones
To determine whether the functional profile of i vitro expanded
NKT clones reflected the properties of circulating NKT
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Table 2. Phenotypic comparison of NKT clones and ex vivo
circulating NKT lymphocytes from one SIV-negative sooty
mangabey.

% positive NKT lymphocytes

ex vivo clones*
CD95*CD28* 96.8 139
CD95*CD28~ 3.2 85.7
CXCR3* 954 97.1
CCR5* ND 1.2
CD16"CD56" 0 10.4
CD16'CD56 11.7 0.2
(D16 CD56" 1.4 56
cD161* 8.5 59.6
NKG2D* 75 92
NKG2A* 10.3 ND
Granzyme B* 23 493
Perforin®™ 17 434

*Mean % of 27 clones.
ND- not determined.
doi:10.1371/journal.pone.0009787.t002

lymphocytes, we analyzed the cytokine secretion of ex vivo NK'T
lymphocytes in seven SIV-negative sooty mangabeys. The
cytokine response of ex vivo peripheral blood NKT lymphocytes
following NKT ligand-specific stimulation was assessed by ELISA.
After a 24-hour stimulation period, supernatants of PBMC
cultured with C1R.d/aGC showed production of IFN-vy, IL-2,
IL-10, and IL-13 (Figure 7A). Stimulation with a-GalCer in the
absence of CD1d (C1R/aGC) also resulted in low levels of IFN-y
and IL-2 production (Figure 7A). This may either reflect
presentation of soluble a-GalCer by CD1d-positive APCs present
in PBMC or a xenogenic response of mangabey PBMC to human-
derived CIR cells. With the exception of IL-4, the cytokine
secreting profile C1R.d/aGC-stimulated PBMC was similar to
that of NKT clones. IL-4 was not detected in culture supernatants
of PBMC stimulated with C1R.d/aGC, but was detected after

A B
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CIR.d/aGC IR R10
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Figure 4. Activation and TCR downregulation in sooty
mangabey NKT clones. Representative histogram plots on one NKT
cell clone showing (A) surface expression of CD69 and (B) TCR detection
by CD1d TM following 16 hours in vitro stimulation with the NKT-
specific ligand a-GalCer presented on CI1R cell lines expressing CD1d
(C1R.d/a-GC), C1R cell lines pulsed with a-GalCer (C1R/a-GC), PMA/Ca or
medium alone (R10).

doi:10.1371/journal.pone.0009787.9g004
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PMA/Ca stimulation. A kinetic analysis of cytokine production
over a 2 hour to 7-day period also failed to detect any IL-4
production after C1R.d/aGC stimulation (Figure 7B). IFN-y was
the dominant cytokine response, starting as early as 2 hours and
peaking at one day (Figure 7B). In addition to IFN-y, low levels of
IL-13 and IL-10 were also detected at 2 hours. Similar to IFN-y,
production of IL-2, IL-13, and IL-10 peaked at 24 hours
(Figure 7B).

In order to verify the specificity of the cytokine response on
C1R.d/aGC stimulation, PBMC were stimulated in the presence
of anti-CD1d blocking antibody. There was a significant 1.3-fold
to 3-fold reduction in IFN-y production in PBMC treated with
anti-CD1d antibody in comparison to untreated PBMC
(Figure 7C), indicating that the cytokine response on CGIR.d/
aGC stimulation PBMC was a result of NKT lymphocyte
stimulation. There was no correlation between the ex vivo NKT
lymphocyte frequencies and the amount of cytokine production
(data not shown).

Peripheral blood NKT lymphocytes are not depleted in

SIV-infected sooty mangabeys

Previous studies have shown that CD4" NKT lymphocytes are
highly susceptible to i vitro HIV and SIV infection [43,44,45].
Selective depletion of peripheral blood NKT lymphocytes, not
exclusively confined to GD4" NKT cells, has been reported in
HIV-infected humans [43,46,47] and SIV-infected pig-tailed
macaques [54]. To assess if NKT lymphocytes are similarly
depleted in sooty mangabeys with chronic SIV infection, we
performed a cross-sectional analysis of the frequency of peripheral
blood NKT lymphocytes in 50 SIV-negative and 50 naturally
SIV-infected sooty mangabeys (Figure 8A—C). The median age of
the SIV-negative sooty mangabeys was 11 years (range 4 to 20
years), while the median age of the SIV-infected mangabeys was
17 years (range 10 to 24 years). NKT lymphocyte frequencies
>0.002% of circulating T lymphocytes were detected in 44% of
SIV-negative sooty mangabeys (mean 0.007%) and in 52% of
SIV-infected sooty mangabeys (mean 0.01%) and did not differ
between the two groups (Figure 8A). The frequency of NKT
lymphocytes within the GD8* and DN T lymphocyte subsets were
also similar between SIV-negative and naturally SIV-infected
sooty mangabeys (Figure 8B—C), indicating that there was no
depletion of CD4 NKT Ilymphocytes in SIV-infected sooty
mangabeys. Consistent with these findings, we did not detect a
difference in the proportion of CD8" and DN NKT lymphocytes
between SIV-negative and SIV-infected sooty mangabeys
(Figure 8D). These data suggest that neither the frequency nor
the phenotype of NKT lymphocytes are perturbed in sooty
mangabeys with long-standing SIV infection. NK'T' lymphocytes
in SIV-infected sooty mangabeys appear to be functionally intact
as evidenced by comparable levels of IFN-y production in SIV-
infected and SIV-negative mangabeys following NKT ligand-
specific stimulation (Figure 8E). Finally, we investigated the
relationship between plasma SIV viremia and the frequency of
NKT lymphocytes in SIV-infected sooty mangabeys (Figure 9A
Q). Unlike pathogenic SIV infection where an inverse correlation
between viral load and the frequency of total and CD4" NKT
lymphocytes was observed [54], we did not detect a similar
correlation in sooty mangabeys (Figure 9A-C). A trend for a
positive correlation between plasma SIV RNA and the total
frequency of circulating invariant NK'T lymphocytes did not reach
statistical significance (Figure 9A). Moreover, the percentage of
DN and CD8+ NKT lymphocytes showed no correlation with
viral load (Figure 9B-C).
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Figure 5. Th1 and Th2 cytokine production by sooty mangabey NKT clones. A) Intracellular cytokine staining of one representative NKT
clone with antibodies against IFN-y, TNF-o, IL-2, and IL-13 following 16 hours in vitro stimulation with PMA/Ca or the specific ligand a-GalCer
presented on C1R.d cells (C1R.d/a-GC). Medium alone (R10) served as a negative control. Dot plots gated on NKT lymphocytes show intracellular
expression of recent activation marker CD69 versus each cytokine with stimulation conditions denoted on the right of each panel. Numbers
denote the % of NKT cells in each quadrant. B) Mean frequency of cytokine-positive NKT cells. Data on 9 NKT clones shown. Error bars denote
SEM. ND: Not determined. C) Cytokine ELISA for IFN-vy, IL-4, IL-13, and IL-10 on culture supernatants collected at 24 hours post-stimulation. Mean
and SEM of four clones shown. D) Cytokine profile of the NKT clones with regards to the concurrent production of IFN-y, IL-2, and IL-13. Data on 9
NKT clones after 16 hours of stimulation shown. Pie charts (top panel) showing the proportion of one-, two-, and three-functional responses in
cytokine-secreting 6B11* cells. Bar charts (bottom panel) showing the mean proportion of responding cells for each of seven functional
combinations. Boxes represent interquartile ranges. E) Representative dot plots (on the left) gated on NKT clones showing CD107a surface
expression in CD1d/a-GalCer stimulated NKT lymphocytes in comparison to cells stimulated with C1R/a-GalCer or medium alone for 4 hours.
Mean frequency of NKT clones degranulating after 4-hour stimulation (on the right). Data on surface upregulation of CD107a on four NKT cell
clones shown. Error bars denote SEM.

doi:10.1371/journal.pone.0009787.9005

subset in natural hosts might provide useful insight into differences
between pathogenic and nonpathogenic lentiviral infection. We
show that sooty mangabey NKT lymphocytes are a functionally
diverse population that rapidly produces a broad array of Thl and

Discussion

In this study we present results of a comprehensive analysis of
the phenotype and function of ex vivo and clonal NK'T lymphocytes

in sooty mangabeys. To our knowledge this is the first report of
NKT cells in a natural nonhuman primate host of the simian
immunodeficiency virus. The mechanism of chronic immune
activation in pathogenic lentiviral infection remains a central
unresolved question of AIDS pathogenesis. We reasoned that, in
light of their immunoregulatory function, NK'T cells have the
potential to play a role in modulating immune activation during
HIV and SIV infection. Thus, a study of this unique T lymphocyte

@ PLoS ONE | www.plosone.org

Th2 cytokines, undergo degranulation, and proliferate when
stimulated with a-GalCer presented on CD1d molecules indicat-
ing both effector and immunoregulatory functional capabilities.
NKT lymphocytes were potent responders since these functional
properties were apparent even on short-term stimulation of ex vivo
PBMC, where NKT lymphocytes accounted for <1% of T
lymphocytes. Circulating NKT lymphocytes in sooty mangabeys
were characterized by a unique absence of CD4" T lymphocytes, a
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Figure 6. Sooty mangabey NKT lymphocytes respond to NKT ligands in a CD1d-restricted manner. A) IFN-y ELISA on culture
supernatants of NKT clones stimulated with C1R.d/a-GalCer (50 ng/ml) for 16 hours in the presence of anti-CD1d antibody (clone 42.1) at 0, 1, and
20 pg/ml. Data shows IFN- v secretion from five clones. B) Representative histogram plots gated on NKT lymphocytes showing proliferation assessed
by CFSE staining after 5 days of CD1d/a-GalCer stimulation in the presence or absence of anti-human CD1d mAb (clone 42.1). C) Dose-dependent
reduction in proliferation of NKT cells with anti-CD1d. Mean and SEM of five NKT clones shown.

doi:10.1371/journal.pone.0009787.g006

feature that distinguished them from mice, humans, and Asian infected sooty mangabeys and appeared to be functionally intact.
macaques. Consistent with this observation, NK'T' lymphocytes Our data indicate that sooty mangabey NKT cells are resistant to
were neither depleted nor reduced in frequency in naturally SIV- SIV infection in vivo. Whether persistence of functionally intact
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Figure 7. Cytokine production by ex vivo peripheral blood NKT lymphocytes in sooty mangabeys. A) Cytokine ELISA for IFN-y, IL-2, IL-10,
IL-13, and IL-4 with culture supernatants collected 24 hours post-stimulation of PBMC (mean and SEM of 4 to 7 animals). B) Kinetics of cytokine
secretion in PMA/Ca and C1R.d/o-GC stimulated PBMCs at 2 hour, 1 day, 2 days, and 7 days post-stimulation. C) IFN-y production in C1R.d/a-GC
stimulated lymphocytes in the presence of anti-human CD1d (clone 42.1) blocking antibody or isotype control Ab.
doi:10.1371/journal.pone.0009787.g007
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C1R.d/a-GC, C1R/a-GC, or medium alone (R10). Mean and SEM of data on six SIV-negative and six SIV-infected sooty mangabeys shown.

doi:10.1371/journal.pone.0009787.g008

systemic NK'T cells helps to down-modulate and maintain low
levels of immune activation in nonpathogenic natural SIV
infection remains to be determined.

NKT lymphocytes comprise a small fraction of peripheral blood
T lymphocytes in mice (mean 1.5%*0.8) and an even smaller
fraction in humans (range 0.01 to 1%) [43,70]. Published reports
of NK'T lymphocytes in nonhuman primates have been confined
to three AIDS-susceptible Asian macaque species, namely,

A B

cynomolgus macaques, pig-tailed macaques, and rhesus macaques
[45,54,62,63,69]. Ex wiwo peripheral blood NKT lymphocyte
frequencies averaging 0.4% in rhesus macaques and 0.19% in
pig-tail macaques have been reported [54,63]. While the
frequencies of circulating NKT lymphocytes in sooty mangabeys
were lower than those reported in SIV-negative Asian macaques,
mmportant phenotypic differences were noted. NKT cells in mice
and humans include two major sub-populations: CD4" and DN T
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Figure 9. Relationship between plasma SIV RNA and NKT lymphocytes. (A) Correlation between plasma SIV RNA and peripheral blood
frequency of Va24"CD1d TM* NKT lymphocytes in 43 SIV-infected sooty mangabeys. (B) Percentage of DN NKT lymphocytes and (C) percentage of
CD8" NKT lymphocytes correlated with plasma SIV RNA in 15 SIV-infected sooty mangabeys. ‘' denotes correlation coefficient values determined by
the Pearson correlation test.

doi:10.1371/journal.pone.0009787.9g009
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lymphocytes [21,70]. NKT cells in macaques include varying
proportions of CD8" and CD4" T lymphocyte subsets but have a
striking absence of DN T lymphocytes [45,54,62,63]. Sooty
mangabey NK'T cells were phenotypically distinct from murine
and human NKT cells, but similar to cynomolgus and rhesus
macaques in having a dominance of CD8" NKT lymphocytes.
However, in contrast to macaques but similar to mice and
humans, mangabey NK'T cells contained DN T lymphocytes
which accounted for as high as 74% of circulating NKT
lymphocytes (mean 21%). The unique feature of circulating
NKT lymphocytes in sooty mangabeys which distinguished them
from mice, humans, and all three Asian macaque species, was the
striking absence of CD4" T lymphocytes. CD4" single-positive or
double-positive (CD4*CD8") NKT lymphocytes account for
approximately 50% of circulating NK'T lymphocytes in humans
[61,68] and 20-80% of NK'T lymphocytes in macaques [45,54].
Similar to murine and human NKT lymphocytes, sooty mangabey
NKT lymphocytes expressed high levels of NKG2D and moderate
to high levels of CDI161 [71,72,73,74]. The effector memory
phenotype and dominant expression of CXCR3 on ex vivo NKT
cells in sooty mangabeys suggested that similar to humans, they
had the ability to traffic to extra-lymphoid sites of inflammation
[66,75]. Unlike humans and macaques, the majority of NKT cells
in sooty mangabeys did not express surface CCRS. In wvitro
experiments have shown that human and macaque GD4" NKT
lymphocytes are preferred targets of HIV and SIV infection in
which the viruses replicate more rapidly in comparison to
conventional CD4" T lymphocytes [43,45]. The lack of CD4
and CCR)5 on sooty mangabey NKT cells suggests that they are
not susceptible to SIV infection, despite recruitment to inflamma-
tory sites.

Is there a functional consequence to the lack of CD4* NKT cells
in sooty mangabeys? Studies in humans have shown that DN
NKT cells mainly produce Thl cytokines while the CD4" NKT
cells produce both Thl and Th2 cytokines [61,68]. However,
despite these differences, a recent study reported that human
CD4" NKT lymphocyte subsets preferentially induced Thl
responses, whereas the DN subset induced a shift toward Th2
responses through NKT-DC cross-talk along with elimination of
IL-12-producing DC by direct NKT cytolysis [76]. Thus the
association between phenotype and cytokine-secreting profile of
NKT lymphocytes is not necessarily a simple one. Despite the
absence of CD4" NKT cells, ex zivo NKT lymphocytes and NKT
cell clones in sooty mangabeys produced a wide array of Thl and
Th2 cytokines, including IL-10. At the single-cell level, Th2
cytokine secretion was mediated by a heterogeneous population of
NKT cells (Figure 5D). Thus, IL-13 was produced by both IFN-vy-
secreting and non-IFN-y-secreting NK'T cells. Moreover, sooty
mangabey DN NKT lymphocytes produced both Thl and Th2
cytokines. These observations reinforce the concept that functional
differences in NK'T lymphocytes are not solely associated with
their CD4/CD8 phenotype. Other factors, such as the cytokine
microenvironment and NKT-APC interaction are likely to
determine the Th1/Th2 bias of a responding NKT lymphocyte.

The limited published data on functionality of NK'T lympho-
cytes in AIDS-susceptible macaque species does not allow for a
complete comparative analysis of the function of sooty mangabey
and macaque NKT lymphocytes. In one study on long-term
cultured splenic NK'T lymphocytes in rhesus macaques, cytokine
secretion in response to o-GalCer stimulation was dominated by
TGF-B and IL-13 production, with low levels of IFN-y and little or
no IL-2, IL-4 or IL-10 secretion, although IL-10 was produced
intracellularly [77]. In contrast, we observed that sooty mangabey
NKT clones readily produced high levels of IFN-y along with IL-
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2, 1L-4, 1L-10, and IL-13 on a-GalCer stimulation. Moreover,
with the exception of 1L-4, the same pattern of cytokine secretion
was also observed on a-GalCer stimulation of ex vivo PBMC that
contained low frequencies of NKT lymphocytes. IFN-y and IL-2
secretion was apparent as early as two hours following a-GalCer
stimulation of ex vivo PBMC. Early IFN-y secretion by NKT
lymphocytes might help in recruitment and activation of
downstream effectors such as NK cells and CD8" T lymphocytes,
as well as enhance DC maturation, thereby promoting immune
responses to pathogens. Studies in mice have demonstrated
efficient induction of CD8" T cell responses by NKT lymphocytes
through early IFN-y production during acute virus infection
[33,38,78]. IL-2, on the other hand, is a primary growth factor for
antigen-activated T lymphocytes and also acts as the major
inducer for the development of suppressive Treg cells. Indeed,
activation of NKT lymphocytes with o-GalCer has been
demonstrated to enhance IL-2 production by NKT lymphocytes
and subsequent expansion of Tregs [79,80]. In this regard it is
interesting that a recent comparative study of acute SIV infection
in African green monkeys (AGM) and pig-tailed macaques showed
an earlier increase of Tregs in AGM that correlated with
resolution of immune activation [15]. Likewise, IL-4 and IL-10
produced by NKT lymphocytes can induce Treg cells [81], and
IL-13 can act on myeloid cells to induce TGF-B [82]. Thus, the
broad array of cytokines produced by sooty mangabey NKT
lymphocytes indicate that they have the capability to mediate both
effector functions and suppress immunopathology. The potent
production of IL-10 by sooty mangabey NKT lymphocytes, a
feature notably absent in rhesus macaques [77], suggests that there
may be species-specific functional differences in NKT lympho-
cytes. In light of these findings, it is tempting to speculate that the
presence of functionally intact NKT cells in SIV-infected sooty
mangabeys could help to blunt non-specific immune activation in
sooty mangabeys as opposed to rhesus macaques. While the low
levels of circulating invariant NKT lymphocytes in sooty
mangabeys raises questions about their overall impact on systemic
immune activation, it is possible that the presence of higher
frequencies of tissue-resident NKT cells at mucosal effector sites
could help blunt hyper-immune activation.

In summary, we have characterized the phenotype and function
of sooty mangabey NKT cells and demonstrated that they are a
heterogeneous population comprised chiefly of CD8* and DN T
lymphocyte subsets with a CXCR3-positive memory phenotype,
and expression of NKG2D and CD161 as the prominent NK cell
markers. We show that CDld-restricted sooty mangabey NK'T
cells are multifunctional and resistant to SIV infection. By virtue of
their cytolytic and Thl cytokine-secreting ability, combined with
IL-10 production, it is possible that sooty mangabey NKT cells
facilitate early induction of an appropriate antiviral immune
response while concurrently dampening non-specific chronic
immune activation. Further studies are required to investigate
the role of these T cell subsets in modulation of immune responses
in pathogenic and nonpathogenic SIV infection.

Materials and Methods

Ethics Statement

All animals were maintained in accordance with Emory
University’s Institutional Animal Care and Use Committee and
federal guidelines for animal care.

Animals

Blood samples used in this study were obtained from fifty SIV-
uninfected and fifty naturally SIV-infected sooty mangabeys. All
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animals were housed at the Yerkes National Primate Research

Center (YNPRC), Atlanta.

Sample collection

Sooty mangabey blood was collected at YNPRC in heparin
vacutainer tubes (Becton Dickinson Vacutainer systems, Franklin
Lakes, NJ), and shipped overnight on ice to the New England
Primate Research Center (NEPRC) where it was processed the
following day. Peripheral blood mononuclear cells (PBMC) were
separated by density gradient centrifugation (Lymphocyte Sepa-
ration Medium; MP Biomedicals Inc., Solon, OH) at 1500 rpm
for 45 minutes and used for phenotyping and  vitro assays.

Immunophenotyping and flow cytometry of NKT
lymphocytes

Multicolor flow cytometric analysis was performed on ex vivo and
in vitro expanded cells according to standard procedures using anti-
human mAbs that cross-react with sooty mangabeys. NKT
lymphocyte ligand PBS-57-loaded and unloaded human CDI1d
Tetramers (CD1d TM) conjugated with APC were obtained from
the NIH Tetramer core facility. The following antibodies were
obtained from BD Biosciences unless stated otherwise: anti-Va24—
PE (clone C15; Immunotech), 6B11-FITC (6B11), anti-CD3-
APC-Cy7 (SP34-2), anti-CD4-Qdot605 (14/19Thy5D7; custom/
NHP Resource), anti-CD8-Alexa Fluor 700 (RPA-T8), ant-
CD56-PE-Cy7 (NCAM16.2), anti-CD16-Alexa Fluor 700 (3G8;
Invitrogen), anti-CD161-APC (DX12), anti-NKG2D-PE (ON72;
Beckman Coulter), anti-CD95-PE-Cy5 (DX2), anti-CD28-PE
TexasRed (CD28.2; Immunotech), anti-CD45RA-PE-Cy7 (148),
anti-CCR7-biotin (150503; custom), anti-CCR5—APC (3A9), anti-
CXCR3-PE (1C6), anti-CD69-PE TexasRed (TP1.55.3; Beck-
man Coulter), anti-CD107a-PE (H4A3), anti-Perforin—FITC
(B56), anti-GranzymeB-APC (GB12; Caltag), anti-IFN-y—PE-
Cy7 (B27), ant-IL-2-APC  (MQI1-17H12), anti-IL-13-FITC
(PVM13-1; eBioscience), anti-TNF-o—Alexa Fluor 700 (MAb11).

For identification of NK'T cells, PBMCs were surface stained
for CD3 and anti-Voa24 combined with PBS-57 loaded CD1d
TM or 6Bl1 antibody. APC-labeled unloaded CD1d TM
controls were used in all experiments. Surface staining was
carried out by standard procedures. Briefly, 2 to 4 million PBMC
re-suspended in 100 pl wash buffer (PBS with 2% FBS) were
initially incubated with tetramers for 20 min at 4°C followed by
addition of surface antibodies and further incubation for 30 min
at 4°C. After washing, the cells were fixed in 2% paraformal-
dehyde. All intracellular cytokine staining (ICS) assays were
carried out on cells that were stimulated overnight. Following
16 h incubation, cells were washed in PBS containing 2% FCS
and 0.5 mM EDTA, stained for surface markers in wash buffer
for 30 min at 4°C, washed and then fixed and permeabilized
using the Invitrogen Fix/Perm reagents (CALTAG ™). Permea-
bilized cells were stained intracellularly with the requisite
antibodies. Cells were then washed in wash buffer and fixed in
2% paraformaldehyde. Flow cytometric acquisition was per-
formed on an LSR-II cytometer driven by the FACS DiVa
software (version 5.2; BD). At least 200,000 T lymphocyte events
were collected. Analysis of the acquired data was performed
using FlowJo software (version 8.8.3; TreeStar, Ashland, OR).
For experiments measuring three-functional responses, Boolean
gating was used to partition cells into specific response categories
and PESTLE v1.6.2 (provided kindly by Dr Mario Roederer)
and SPICE 5.05 software (provided free of charge by NIAID/
NIH in collaboration with Dr. Mario Roederer) was used to
analyze data.
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Medium and Reagents

The complete medium (R10 medium) used throughout was
RPMI medium 1640 (Cellgro, Herndon, VA) supplemented with
10% FCS (Sigma-Aldrich, St. Louis, MO), 1% 1 M HEPES,
2 mM L-glutamine (Cellgro), 50 IU/ml penicillin (Cellgro),
50 pg/ml streptomycin (Cellgro). The NKT-ligand a-galactosyl-
ceramide (a-GalCer, Diagnocine LLC, Hackensack, NJ) was used
at 100 ng/ml. The anti-human CDId antibody (Clone 42.1)
described earlier [83] was used at 0.1-20 pug/ml. Recombinant
human IL-2 (Roche) was used at 10-50 IU/ml of medium for the
expansion and maintenance of NKT cell clones.

In vitro expansion of NKT lymphocytes

6B11-positive lymphocytes were sorted on a FACSAria cell
sorter (BD Biosciences, San Jose, CA, USA) and cloned by limiting
dilution at 3 and 10 cells per well in 96-well, round-bottom,
polystyrene plates (Corning, NY, USA). Cells were incubated in
R10 medium containing 5 pg/ml ConA and 100 ng/ml of o-
GalCer along with 100,000 cells/well of human feeder PBMC
irradiated at 3000 rads. After two days, ConA was removed and
50 IU/ml recombinant human IL-2 was added. Wells with cell
outgrowth were re-stimulated and expanded over a 2-4 week
period. The presence of NKT clones was confirmed by staining
with anti-Va24, PBS-57 loaded CD1dTM or 6B11 mAb. Positive
NKT clones were maintained in complete media supplemented
with 50 IU/ml IL-2. For functional analyses, the clones were
gradually switched to resting stage (10 IU/ml IL-2) 48 h prior to
the assay as previously described [84].

Functional Analysis of NKT lymphocytes

For NKT cell activation assays, 2x10* NKT cells or 10°
PBMCs were plated in a 96-well flat-bottom plate with either
medium alone or with an equal number of stimulator cells that had
been treated with o-GalCer at a final concentration of 100 ng/ml.
25 ng/ml PMA (Sigma-Aldrich, St. Louis, MO) with 1 pg/ml
calcium ionophore (PMA/Ca) was used as positive control
stimulus. 50,000 CD1d-transfected C1R B cell line (C1R.d) were
v-irradiated at 10,000 rads and used as APCs for the presentation
of a-GalCer as previously described [67]. Irradiated mock-
transfected C1R cells served as a negative control stimulus for
NKT cells. For stimulation of clones with CD1d transfectants, IL-
2 was included in the culture medium at a final concentration of
10 IU/ml. Typically, proliferation and cytokine release assays on
NKT cell clones were performed 3-4 wk after the last re-
stimulation. All measurements were performed in triplicate.

CFSE proliferation assay

NKT cells were re-suspended at a concentration of =5 x10°/ml
in RPMI 1640 (Cellgro, Herndon, VA) and labeled with 2 uM
CFSE (Molecular Probes, Eugene, OR) by incubation for 10 min
at 37°C in a 5% CO, incubator. The CFSE label was quenched
with addition of Ix volume of 100% FBS. After incubation for
I min at RT, the dye was diluted further with RPMI- 1640 and
the cells were washed twice before culturing in flat-bottom 96-well
plates. FACS analysis was performed after 5 days of incubation.

Statistical Analysis

Paired and unpaired ttests were used for comparisons of
grouped and ungrouped samples respectively. The Pearson test
was performed for correlation analysis. <<0.05 was considered
statistically significant. All statistical analyses were performed using
the GraphPad Prism software version 5.0b (GraphPad Software,
Inc., La Jolla, CA).
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