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ABSTRACT

It has been over a decade since the first observation
that small non-coding RNAs can functionally modu-
late epigenetic states in human cells to achieve func-
tional transcriptional gene silencing (TGS). TGS is
mechanistically distinct from the RNA interference
(RNAi) gene-silencing pathway. TGS can result in
long-term stable epigenetic modifications to gene
expression that can be passed on to daughter cells
during cell division, whereas RNAi does not. Early
studies of TGS have been largely overlooked, over-
shadowed by subsequent discoveries of small RNA-
directed post-TGS and RNAi. A reappraisal of early
work has been brought about by recent findings
in human cells where endogenous long non-coding
RNAs function to regulate the epigenome. There are
distinct and common overlaps between the proteins
involved in small and long non-coding RNA transcrip-
tional regulatory mechanisms, suggesting that the
early studies using small non-coding RNAs to modu-
late transcription were making use of a previously un-
recognized endogenous mechanism of RNA-directed
gene regulation. Here we review how non-coding
RNA plays a role in regulation of transcription and
epigenetic gene silencing in human cells by revisit-
ing these earlier studies and the mechanistic insights
gained to date. We also provide a list of mammalian
genes that have been shown to be transcriptionally
regulated by non-coding RNAs. Lastly, we explore
how TGS may serve as the basis for development of
future therapeutic agents.

INTRODUCTION

The history of RNA-directed transcriptional gene silencing
(TGS)

Almost three decades ago, Marjorie Matzke et al. observed
that over-expression of a transgene led to DNA hyper-
methylation and transcriptional silencing in doubly trans-
formed tobacco plants (1) (Figure 1). Mechanistically, this
type of silencing in plants was found to be the result of small
non-coding RNAs directing epigenetic changes, specifically
DNA methylation, to those loci containing sequences ho-
mologous to the small RNA. The phenomenon was termed
small RNA-directed transcriptional gene silencing (TGS).
TGS was later shown in Arabidopsis to require the action
of RNA-dependent DNA methylation (2,3) and members
of the Argonaute protein family (4). A few years later RNA
interference (RNAi), mediated by double-stranded RNAs,
was discovered as a powerful post-TGS (PTGS) system
against messenger RNAs (mRNAs) in plants (5), and a few
months later in Caenorhabditis elegans (6).

Transcriptional gene silencing in humans

The study of small non-coding RNA-directed TGS has
been carried out in various model organisms such as
plants (Arabidopsis thaliana), yeast (Saccharomyces pombe),
flies (Drosophila melanogaster) and worms (C. elegans) (re-
viewed extensively in (7,8)). A decade ago, the first report
of RNA-directed TGS in human cells was observed when
exogenous siRNAs were used to silence a transgenic elon-
gation factor 1 � promoter driving a Green Fluorescent
Protein (GFP) reporter gene (9) (Figure 1). Importantly,
the observed silencing was clearly at the transcriptional
level, as indicated by nuclear run-on analysis. Moreover, si-
lencing was also epigenetic: inhibition was abrogated by 5′
Aza-cytadine (5′ AzaC) and Trichostatin A (TSA), com-
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Figure 1. Regulatory non-coding RNA timeline. A timeline of some important observations in RNA biology are shown leading up to our collective
understanding of non-coding RNA-directed transcriptional gene silencing (TGS). (5,71,170–177).

pounds involved in inhibiting DNA methylation and his-
tone deacetylalion, respectively (9). This early observation
was soon followed by other studies (10,11), all of which
confirmed that small non-coding RNAs could functionally
control gene transcription and epigenetic states in human
cells. But the underlying mechanism of action remained un-
known.

Mechanisms of small non-coding RNA-directed TGS

TGS is mechanistically distinct from the abundantly stud-
ied PTGS pathway of RNAi. One notable difference is
that TGS results in long-term stable epigenetic modifica-
tions to gene expression that can be passed on to daughter
cells during cellular division (reviewed in (12)). Early ob-
servations postulated that siRNA-directed TGS functioned
through an epigenetic nuclear mechanisms distinct from
RNAi-mediated PTGS in the cytoplasm (13). For instance
5′ AzaC and TSA were functional in reverting the siRNA
targeted TGS, indicating epigenetic modes of gene regu-
lation were at play in siRNA-directed TGS, and not via
a PTGS-based mechanism (9). Indeed, recent studies have
observed that two different siRNAs, one targeted to the
promoter and one targeted to exon 1 of the coding tran-
script, can functionally repress the targeted gene in a TGS
or PTGS based manner (14). A lot has been gleaned over the
last decade regarding the mechanism of action for RNA-
directed TGS in human cells. Studies carried out to deter-
mine the underlying mechanism of siRNA-directed TGS re-
vealed that RNA-mediated TGS is operative through RNA-
directed methylation of histone 3 lysine’s 9 and 27 (H3K9
and H3K27, respectively) and DNA methylation at the tar-
geted promoter (9,11,15–21) (Figure 2). These promoter-
directed siRNAs interact with a low level expressed (∼1–
2%) promoter associated RNA, which is essentially the 5′
UTR of the protein coding gene (16,22) (Figure 2). It is
worth noting that most genes and gene promoters appear to
be transcribed to some extent (23,24) and experimental ob-
servations suggest that non-coding RNAs interact with tar-
get loci via Watson–Crick-based RNA:RNA hybridization
(16,22) and not by double-stranded DNA invasion. Tem-
poral studies have determined that exogenously introduced
siRNAs targeted to a promoter region interact first with

Argonautes 1 and 2 (AGO1 and AGO2) (17,25,26). SiRNA
and AGO interactions is found within the first 24 h, at the
siRNA targeted promoter and is followed shortly there-
after with the recruitment of the H3K9me2 and H3K27me3
silent state epigenetic marks (17), and later by the recruit-
ment of DNA methyltransferase and DNA methylation at
72–96 h for some genes (14). It should be noted, however,
that the role of DNA methylation in TGS in human cells
is not as clearly understood as in plants; DNA methylation
at the targeted promoter is not always observed in human
TGS applications (Table 1). These effects may be explained
by the duration of RNA targeting to the promoter, the pres-
ence of robust siRNA targeting (e.g. delivery to the nucleus),
the presence and abundance of promoter-occupied RNAs
and/or the dynamic interplay of proteins interacting with
the promoter. Despite differences in the various experimen-
tal observations, a key consistent feature has been the obser-
vations that promoter-directed small RNAs can modulate
gene transcription and that some level of epigenetic based
silencing is ongoing in the observed silenced genes.

The endogenous pathway of TGS in human cells; rise of long
non-coding RNAs

While small RNAs were observed early on to regulate gene
transcription in human cells by the targeting of epigenetic
silencing complexes to those loci containing complementar-
ity to the small RNAs (Figure 1), the endogenous mech-
anism(s) driving this form of gene regulation in the con-
text of human cells remained largely unknown. MicroRNAs
(miRNAs) have been shown to be endogenous drivers of
TGS with some genes in human cells (27–30)(Table 1). In
2005, through the efforts of the FANTOM and ENCODE
consortia, it started to become apparent that a large frac-
tion of the human genome was generating long non-coding
RNAs (lncRNAs) and that many of these transcripts were
antisense to protein-coding counterparts (31,32). Several of
these sense/antisense or bidirectionally-transcribed genes
are evolutionarily conserved, suggesting some functional
cues for retention of these elements (33,34). Indeed, stud-
ies with imprinted genes and X-inactivation found that cis
acting long non-coding RNAs (lncRNAs) were actively in-



Nucleic Acids Research, 2016, Vol. 44, No. 14 6507

Table 1. Mammalian genes transcriptionally regulated by non-coding RNAs

Gene(s) Gene symbol Effector RNA Cell line Therapeutic relevance References

Eukaryotic translation
elongation factor 1 �

EEF1A1 siRNA HEK293T (9,16,18)

HIV-1/SIV 5′ LTR siRNA, sasRNA Jurkat, Tzmb, T-cells,
invivo (mouse)

Regulation of HIV-1 (18–21,26,79,99,100,104,140–
144)

nitric-oxide synthase NOS siRNA HAEC Cardiac disease (145)
E-cadherin CDH1 siRNA HCT116; MCF7 Cancer, tumor suppressor (10)
BCL-2 (oncogene) BCL-2 sasRNA HeLa, 293 Cancer, oncogene (146)
Fibronectin FN1 siRNA HeLa (129,147)
Huntingtin gene HTT siRNA Glioblastoma Monogenetic diseases (148)
Non-sense
codon-containing
immunoglobulin
minigenes

(Ig)-mu and Ig-gamma siRNA HeLa Immunologic diseases (149)

INK4B/Cyclin-dependent
kinase inhibitor 2B/p15 +
ARF + INK4A/

Cyclin-dependen kinase
inhibitor 2A isoform
3/p16

CDKN2B+
CDKN2A

siRNA HEK293T Cancer, tumor suppressor (150)

INK4A/Cyclin-dependen
kinase inhibitor 2A
isoform 3/p16

CDKN2A siRNA HEK293T Cancer, tumor suppressor (151)

Plasminogen activator,
urokinase

PLAU siRNA PC3 and invivo Cancer (152)

Chemokine receptor 5 CCR5 siRNA HEK293T HIV-1 co-receptor (16,17)
Breast cancer-associated
gene 1

BRCA1 siRNA T47D Cancer, oncogene (153)

Progesterone receptor PGR siRNA T47D Cancer (11,25,119,153,154)
Huntingtin HD siRNA T47D Monogenetic diseases (25)
Androgen receptor AR siRNA T47D Cancer, spinal bulbar

muscular atrophy
(25,155)

v-myc avian
myelocytomatosis viral
oncogene homolog

c-MYC siRNA/sasRNA PC3, HCT113, 293, Hela,
MCF7

Cancer, oncogene (22,97,156,157)

Papillomavirus-16
oncogenes

HPV-16 siRNA HeLa HPV (158)

v-akt murine thymoma
viral oncogene homolog 1

AKT-1 siRNA 293HEK Cancer, oncogene (156)

Kirsten rat sarcoma viral
oncogene

KRAS siRNA 293HEK Cancer, oncogene (156)

Dual specificity
phosphatase 6

DUSP6 siRNA CFPAC Cancer, tumor suppressor (156)

Myostatin MSTN siRNA C2C12 mouse myoblasts muscle hypertrophy (159)
Runt-related transcription
factor 3

RUNX3 siRNA stomach carcinoma cell
line SGC7901

osteoarthritis (160)

Small nuclear 7sk (RNAi
functional in the nucleus
of human cells)

7SK siRNA Hela, 293HEK cells 7SK/P-TEFb control of
HIV-1

(126)

met proto-oncogene
(hepatocyte growth factor
receptor)

c-Met siRNA/asRNA SKHep1C3 cells Cancer, oncogene (161)

Periostin POSTN siRNA/sasRNA PC3 Cancer and metastasis (101)
Heparanase
(endo-h-D-glucuronidase)

HPA siRNA PC3, EJ and SGC-7901
cells

Cancer, angiogenesis (162)

phosphoglycerate kinase 1
promoter driving GFP

pgk-1 siRNA 293, HeLa (98)

Interleukin 2 IL2 shRNA Jurkat Immunologic (163)
Ubiquitin C UBC siRNA; shRNA HEK293GT (14)
Transforming growth
factor-� receptor II

TGF�II shRNA rat SBC10 Cancer, angiogenesis (102)

Vascular endothelial
growth factor

VEGF-A shRNA mouse C166 and invivo Cancer, angiogenesis (107,122)

Ras association domain
family 1

RASSF1A shRNA HeLa Cancer, oncogene (15,17)

Tubulin folding cofactor
E-like

TBCEL/ LRRC35 miRNA HCT116 Kenny-Caffey syndrome
(KCS)

(150)

Ras p21 protein activator 2 RASA2 miRNA HCT116 Cancer, tumor suppressor (150)
Rhophilin, Rho GTPase
binding protein 2

RHPN2 miRNA HCT116 (150)

Wolf-Hirschhorn
syndrome candidate 1

WHSC1 miRNA HCT116 Wolf-Hirschhorn
syndrome

(150)

Homeobox D4 HOXD4 miRNA MCF7; MDA-MB-231 (164)
HIV-1 LTR miRNA Jurkat, T-cells HIV-1 infection (28)
HIV-1 TAR miRNA Tzmb, Jurkat, T-cells HIV-1 infection (29,165)
OCT4 and Nanog
(pluripotent factor)

OCT4 and Nanog lncRNA (antisense,
pseudogene)

MCF7 Cancer, pluripotency (54)

PTENpg1 asRNA alpha PTEN lncRNA (Trans-antisense,
pseudogene)

293, Hela, Jurkat Cancer, tumor suppressor (53)

P21 tumor suppressor P21 lncRNA (antisense) MCF7 Cancer, tumor suppressor (39)
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Table 1. Continued

Gene(s) Gene symbol Effector RNA Cell line Therapeutic relevance References

P15 tumor suppressor P15 lncRNA (antisense) HL-60, KG-1, Kasumi-1,
DG-75, Raji and Ramos

Cancer, tumor suppressor (38)

alpha-globin gene HBA2 lncRNA Embryonic stem cells Alpha thalassemia (40)
DM1 insulator DM1/SIX5 lncRNA Primary fibroblasts (166)
Herpes LAT lncRNA invivo (mice) HPV (167)
P53, lncRNA-p21 hnRNP-K lncRNA MEF, invivo (mice) Cancer, oncogene (57)
lncRNA HOTAIR HOX lncRNA MDA-MB-231, SK-BR-3,

MCF-10A, MCF-7,
HCC1954, T47D and
MDA-MB-453 cell lines.
Human tissue samples

Cancer (86)

HIV-1 HIV-1 lncRNA (antisense) Jurkat, T-cells, Tzmb,
293HEK

HIV-1 infection (49–52)

v-myc avian
myelocytomatosis viral
oncogene neuroblastoma
derived homolog

MYCN MYCNOS lncRNA (Cis-antisense) Lan6 Cancer, oncogene,
neuroblastoma

(43)

neuroblastoma associated
transcript 1

NBAT-1 lncRNA Neuroblastoma primary
tumors

Cancer, neuroblastoma (48)

brain-derived
neurotrophic factor

BDNF lncRNA (antisense) Human brain, mouse
invivo

Huntington disease,
Alzheimer disease and
Parkinson disease

(41,42)

short-chain
dehydrogenase/reductase
family member 4

DHRS4 lncRNA (antisense) HepG2 and HL7702 cell (44)

potassium voltage-gated
channel, KQT-like
subfamily, member 1

Kcnq1ot1 lncRNA (antisense) Human placenta-derived
JEG-3 cells

Romano-Ward syndrome,
Jervell and Lange-Nielsen
syndrome and familial
atrial fibrillation

(168)

moesin at 5p14.1 in
Autism

Moesin lncRNA (antisense) Human brain
(postmortem cerebral
cortex)

Autism spectrum (113)

C-terminal binding
protein 1

CTBP1 lncRNA (antisense) LNCaP, VCaP, DU145 Prostate cancer (169)

Reports from 2004 to present using exogenously administered small interfering RNAs (siRNAs), small hairpin RNAs, small antisense RNAs (sasRNA) and endogenously expressed microR-
NAs (miRNAs) or long non-coding RNAs (lncRNAs) effector transcripts to modulate gene transcription in mammalian cells are shown. Those genes targeted and their therapeutic relevant
disease is also shown.

volved in epigenetic regulation of these, dosage-dependent,
regulated loci (35).

In 2008, a number of important studies confirmed the
role of lncRNAs as endogenous drivers of TGS in hu-
man cells, in particular those, which were antisense to their
protein-coding counterparts (reviewed in (36,37)). Anti-
sense lncRNAs were shown to regulate the p15 (38) and p21
(39) tumor suppressor genes (Table 1). The over-expression
of these antisense lncRNAs resulted in TGS of their protein-
coding counterpart while their repression resulted in the de-
repression/transcriptional activation (38,39). Support for
the role of antisense lncRNAs as active endogenous regula-
tors of gene expression was evident in an earlier understated
study, which indicated that antisense transcripts might also
be involved in CpG methylation in thalassemia (40). An-
tisense lncRNAs are now known to affect TGS for genes
such as BDNF (41,42), MYCN (43), DHRS4 (44), KCNQ1
(45–47), NBAT (48) and HIV-1 (49–52) (Table 1). Interest-
ingly, non-coding transcripts derived from pseudogenes of
Phosphatase and tensin homolog (PTEN) (53) and OCT4
(54), which contain significant homology to their protein-
coding counterparts, have also been observed to be involved
in directing TGS and subsequent PTEN and OCT4 sup-
pression (Table 1). Also, the PTEN antisense pseudogene-
directed TGS of PTEN is one of the first bona fide ex-
amples of a trans-functional lncRNA (53). LncRNAs di-
rect TGS and CpG methylation (55). Cis regulation and
antisense lncRNAs have also been observed to epigeneti-

cally regulate ribosomal genes (56) as well as p21 (57) and
MYCN (43), genes involved in cell regulation and cancer.
The plethora of lncRNA functions are extensive and the
range includes: protein modifiers (58,59), scaffolds for teth-
ering proteins (43,60,61), miRNAs (62–64), splicing mod-
ifiers (65), cellular body transformation (66–69), enhancer
function and gene activation (70–73), and epigenetic modi-
fiers (53,74,75), (reviewed in (76)). Collectively, the observa-
tions to date suggest that we are only now just beginning to
realize the complexity and pervasiveness of lncRNA func-
tional regulation in epigenetic and transcriptional states.

Mechanisms of small and long non-coding RNA-directed
TGS

To date there are ∼55 reports of small RNA-directed
TGS and ∼10 of antisense lncRNA-directed TGS (Ta-
ble 1). Mechanistically, much of what we know about
how small non-coding RNAs, such as siRNAs, miRNAs
and small antisense RNAs (sasRNAs)-directed TGS, have
been determined from cell culture studies. The promoter-
targeted small RNAs interact with various proteins to
guide TGS, beginning in the first 24 h, with direct inter-
actions with AGO1 and AGO2 (17,18,25) followed shortly
thereafter by interactions at the targeted promoter with
DNMT3a (14,18,77,78), HDAC1 (14,20) and resulting ul-
timately in histone 3 lysine 9 di-methylation and histone 3
lysine 27 tri-methylation (H3K9me2 and H3K27me3, re-
spectively)(14,16–18,20,79,80) (Figure 3). SiRNA-directed
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Figure 2. Small non-coding RNA pathways in human cells. Small non-coding RNAs can be generated as priRNAs where they are (A) processed by Drosha
and DGCR8 into miRNAs which are (B) exported from the nucleus and (C) loaded into RISC where they can affect mRNA expression by (D) binding
and blocking mRNA translation or (E) cutting the target mRNA. Some miRNAs may also be retained in the nucleus (F) where they can interact with
epigenetic remodeling proteins and (G) recruit the complexes to target loci in the genome resulting in (H) localized chromatin compaction and epigenetic
silencing.

TGS has also been observed to occur in the absence of
DNA methylation, suggesting that alternative routes may
be present for RNA-mediated transcriptional and epige-
netic silencing (10). Small RNA-directed TGS appears to
require a template or target transcript at the corresponding
targeted promoter (16,22), similar to the method by which
plants utilize RNA Polymerase V transcribed and processed
siRNAs to regulate DNA methylation and TGS (reviewed
in (81)). Notably, in plants there is a requirement for RNA-
dependent RNA polymerase (RdRP) activity to amplify
RNA polymerase V transcript-directed TGS (81), whereas
humans lack such a polymerase, which opens up a method-
ology for specific RNA-directed epigenetic modes of regu-

lation. Curiously, this is exactly what lncRNAs appear to be
doing in human cells via cis and trans-specific targeting of
epigenetic complexes to particular loci (Figure 3 and Table
1), similar to what is also observed in Saccharomyces cere-
visiae, which also lacks RdRP activity (82,83).

Early studies carried out with S. cerevisiae indicated that
antisense non-coding RNAs function endogenously to di-
rect epigenetic gene silencing in place of RdRP-mediated
mechanisms (82,83). The parallels between S. cerevisiae
and previous observations of small antisense RNA-directed
TGS in human cells (18) have emerged, suggesting that an-
tisense transcripts also function to direct TGS (Figure 3).
Most notable are the observations that particular antisense
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Figure 3. Antisense RNA-directed TGS. Small antisense non-coding RNAs can be (A) introduced into the nucleus and (B) interact with and recruit
epigenetic silencing complexes consisting of DNMT3a, Ago1, EZH2 and HDAC1 to homology containing targeted loci by interactions with low copy
promoter-associated transcripts resulting in (C) epigenetic silencing consisting of histone and DNA methylation and ultimately chromatin compaction of
the targeted locus. (D) Long antisense non-coding RNAs have also been observed to interact with similar epigenetic silencing complexes (53,54) and (E)
localize with these complexes at targeted loci resulting in (C) epigenetic silencing of the lncRNA targeted locus.

lncRNAs, first observed in tumor suppressor genes, p15
(38) and p21(39), function to epigenetically modulate their
protein-coding counterparts (Figure 1, Table 1). One in-
teresting, and surprisingly overlooked, early study found
antisense transcription was involved in DNA methylation
in Thalassemia (40), and even early work linked antisense
transcripts and DNA methylation in regulating HIV (51)
and MYC (84,85).

Mechanistically, far less is known about how antisense
lncRNAs direct epigenetic silencing in human cells. Stud-
ies carried out with the lncRNA, HOTAIR, indicate that
bimodal chromatin modifying complexes can be localized
to the HOX locus via the action of this lncRNA (86). A
common theme is also evident with Kcnq1ot1 (45) and the
p53 regulatory lincRNA p21, which indicates that the en-
tire p53 expressed pathway is controlled by the action of
this lncRNA at the p53 locus (57). Indeed, many lncR-
NAs have been observed to be associated with chromatin
(87), but mechanistic insights into the process of lncRNA-
directed gene regulation remain less clear. Interesting in-
sights into the mechanism of action of lncRNA-directed
TGS came from a recent study looking at the PTEN pseudo-
gene. It had been reported previously that the PTEN pseu-
dogene functions as a miRNA ‘sponge’ (64), similar to the
CEBPA lncRNA that acts to sponge DNMT1 away from

the CEBPA promoter (88). Studies to interrogate the PTEN
pseudogene in greater detailed determined that this pseu-
dogene also expressed an antisense lncRNA in trans which
functions to direct TGS to the PTEN promoter and control
PTEN expression epigenetically (53). Mechanistically, the
PTEN pseudogene expressed antisense lncRNA modulated
PTEN transcription by recruiting DNMT3a and EZH2 to
the PTEN promoter. The parallels between the functions
of the PTEN pseudogene and previous observations with
small antisense ncRNA-directed TGS are notable, as both
involved the action of DNMT3a (Figure 3). It is note-
worthy that DNMT3a is the only known de novo DNA
methyltransferase in human cells (89) and has been ob-
served previously to be the only DNA methylatransferase to
bind non-coding RNAs including small ncRNAs, both an-
tisense and double stranded RNAs (18,77,78,90), and lncR-
NAs (53,91). There is an interesting connection between
DNMT3a and epigenetic silencing, which including studies
indicating DNTM3a co-immunoprecipitates with HDAC1
(92,93) and EZH2 (94), as well as early predictions that
DNA methylation is an active participant in X-inactivation
(95), one of the first bona fide lncRNA regulatory pathways
described. Collectively, a paradigm is emerging in human
cells, which proposes that non-coding RNAs, both small
and long forms (Figure 3), function through the action of
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DNMT3a to modulate chromatin and epigenetic states of
gene expression. While there are several other mechanisms
of action described for lncRNAs in human cells, the inter-
actions with DNMT3a and targeting of transcriptional and
epigenetic states is of particular interest, as this mode of
gene regulation has the potential to be long-lasting, herita-
ble and may be of significant relevance to the development
of targeted therapeutics (reviewed in (96)).

Therapeutic applications of RNA-directed epigenetic regula-
tion of gene expression

The utility of small RNA-induced TGS as a therapeutic has
been largely ignored, mainly due to the pervasiveness of
using RNAi targeted approaches to degrade mRNAs. The
main concern with RNAi and post-transcriptional mecha-
nisms of gene silencing (Figure 2) is the duration of their
therapeutic effect. The effector siRNAs required to drive
RNAi must be administered continuously to repress a ther-
apeutic target gene. This is not the case with RNA-induced
TGS, where stable, long-term, silencing can be achieved fol-
lowing a relatively short duration of promoter targeting
with the siRNAs (19,20,97–100) or small antisense RNA
(14,101). This is because the mode of action for the observed
gene silencing is transcriptional and driven ultimately by
epigenetic silencing (79,102) and not ‘slicing’ of the genes
messenger RNA as is the case with RNAi. One universal
hurdle that both RNAi and RNA-induced TGS face with is
the targeted delivery of the effector RNAs to those cells re-
quiring treatment. One approach is to utilize synthetic an-
tisense oligonucleotides targeted to promoters of interest.
This approach has worked with regards to blocking tran-
scription (103) but was not found to induce robust epige-
netic silencing, unless the particular oligonucleotides were
RNA based (104). However, it may be that better interroga-
tion of each non-coding RNA targeted promoter is required
to delineate the best promoter-associated transcripts to tar-
get and that many of the earlier studies may have neglected
this notion. Indeed, establishing TGS in the absence of a
target promoter RNA has not been reported and attempts
by some groups, including ours, have proven fruitless. An-
other approach might be to deliver the effector RNAs us-
ing receptor targeted aptamers, which has shown promise
for targeting HIV infected cells (105,106). While delivery
remains an important concern, the notion that one needs
to only target a particular gene for 2–4 days to instill stable
epigenetic silencing is promising with regards to minimizing
the need for sustained delivery. Recent studies suggest that
small RNA-directed TGS is feasible and that stable epige-
netic marks can be imposed at small RNA target loci in vivo
(99,107).

Another area of therapeutic utility can be found in the
plethora of lncRNAs that are appearing to be involved
in various diseases. Emerging evidence suggest that non-
coding RNAs play a wide role (108) in various disease
states in humans. Genome-wide observations of diseased
states, such as heart failure (109), indicate significant dif-
ferential and discordant expression between protein-coding
and non-coding antisense and pseudogenes is prevalent
(110). To date the list of those lncRNAs involved in hu-
man diseases is expanding at an unprecedented rate. LncR-

NAs have been observed in disease ranging from Can-
cer (57,86,105,106), to HIV (111,112), to autism (113), to
pluripotency and differentiation (114–116). It is worth un-
derscoring that many of the disease relevant lncRNAs have
been observed to be antisense to particular protein cod-
ing genes. A significant obstacle to using RNAi and other
post-transcriptional effectors for targeting antisense lncR-
NAs is the fact that double stranded siRNAs have an abil-
ity to target both sense and antisense transcripts (117).
The use of RNA-directed TGS avoids this issue by target-
ing the lncRNA promoter with single stranded antisense
transcripts (52). The targeting of endogenous effector an-
tisense lncRNAs can result in the de-repression and sub-
sequent transcriptional activation of the lncRNA targeted
locus (Figure 4). Using this mode of action, it becomes
feasible to activate gene expression to affect those protein-
coding genes under sustained lncRNA-directed TGS (Fig-
ure 4). This has proven an effective approach to inducing
genes both in vitro (39,52,118–121) and in vivo (42,107,122),
but presupposes that there are known antisense lncRNAs
regulating the therapeutic target gene. Collectively, the ad-
vantages to using RNA-directed TGS as a therapeutic are
many and include: (i) strand specific targeting of a gene,
(ii) stable long-term epigenetic based silencing can be es-
tablished to particular genes of therapeutic interest and (iii)
antisense RNA-based approaches work as well, if not better
than double stranded RNAs, as the endogenous pathway of
RNA-directed TGS appears to contain significant overlap
with small antisense RNAs and antisense lncRNAs (Figure
3).

CONCLUSION

It has been roughly 10 years since the first observation that
promoter-directed RNAs can affect gene transcription (Fig-
ure 1 and Table 1). This seminal observation in 2004 (9) was
indicative of a role for RNA in regulating gene expression,
a notion proposed ∼5 decades ago but largely overlooked
(123,124). Possible reasons for the poor early adoption of
RNA-directed TGS (Table 1) are varied but may include
(i) the unfortunate retraction of a similar paper published
in Nature (125), and/or (ii) the overwhelmingly positive
response to PTGS and the rejection of any RNAi-related
phenomena occurring in the nucleus, despite the fact that
RNAi was shown to be functional in the human nucleus in
2005 (126) and confirmed in many subsequent studies (25–
27,127–131).

The notion that RNA may function as the master gene
regulator in the cell was something proposed by Britten and
Davidson in 1969 (123), which at the time was largely ne-
glected by the broad scientific community. With the advent
of high-throughput technologies and the findings from EN-
CODE, that most of the human genome is transcribed and
likely plays a functional role (132–139), it is becoming ap-
parent that Britten and Davidson’s theory should be reap-
praised. Certainly, lncRNAs are abundantly active in the
nucleus, and many of them are active modulators of tran-
scriptional and epigenetic modes of gene expression (re-
viewed in (37,76) and appear to share many of the mecha-
nistic characteristics observed in small RNA-directed TGS
(Figure 3). Collectively, the mounting observations that an-



6512 Nucleic Acids Research, 2016, Vol. 44, No. 14

Figure 4. LncRNA pathways of transcriptional silencing and de-repression. LncRNAs can be expressed in (A) Cis or trans and can (B) interact with
those proteins involved in epigenetic silencing. The lncRNAs act to (C) target and tether the epigenetic silencing complexes to homology containing loci
resulting in (D) chromatin compaction and transcrtiptinal gene silencing of the targeted locus. These endogenous regulatory lncRNAs can be targeted with
(E) antisense oligonucleotides or (F) siRNAs, which results in the loss of the lncRNA and activation/de-repression of those loci actively under lncRNA
regulation.

tisense non-coding RNAs, both small and long RNAs, di-
rected to gene promoters can affect transcription by the
recruitment of silent state epigenetic complexes suggests
that a pervasive and underappreciated role for non-coding
RNAs is part of the basic fabric of life. Knowledge of this
molecular pathway may prove incredibly insightful with re-
gards to the development of disease, including epigenetic
silencing of gene expression and the development of new-
targeted therapeutics aimed at specifically affecting gene ex-

pression. The next decade could prove an exciting time for
our understanding of non-coding RNAs in the transcrip-
tional gene expression and their application as novel thera-
peutics.
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