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Abstract

The ErbB receptor signaling pathway plays an important role in the regulation of cellular

proliferation, survival and differentiation, and dysregulation of the pathway is linked to vari-

ous types of human cancer. Mathematical models have been developed as a practical

complementary approach to deciphering the complexity of ErbB receptor signaling and

elucidating how the pathways discriminate between ligands to induce different cell fates.

In this study, we developed a simulator to accurately calculate the dynamic sensitivity of

extracellular-signal-regulated kinase (ERK) activity (ERK*) and Akt activity (Akt*), down-

stream of the ErbB receptors stimulated with epidermal growth factor (EGF) and heregulin

(HRG). To demonstrate the feasibility of this simulator, we estimated how the reactions

critically responsible for ERK* and Akt* change with time and in response to different

doses of EGF and HRG, and predicted that only a small number of reactions determine

ERK* and Akt*. ERK* increased steeply with increasing HRG dose until saturation, while

showing a gently rising response to EGF. Akt* had a gradual wide-range response to

HRG and a blunt response to EGF. Akt* was sensitive to perturbations of intracellular

kinetics, while ERK* was more robust due to multiple, negative feedback loops. Overall,

the simulator predicted reactions that were critically responsible for ERK* and Akt* in

response to the dose of EGF and HRG, illustrated the response characteristics of ERK*
and Akt*, and estimated mechanisms for generating robustness in the ErbB signaling

network.

Introduction

The ErbB receptor signaling network is highly interconnected and regulates diverse

responses in a variety of cells and tissues. Dysregulation of the network is responsible for

the development and progression of several types of human cancer [1]. In MCF-7 human
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breast cancer cells, stimulation with epidermal growth factor (EGF), a ligand for the epider-

mal growth factor receptor (EGFR), or heregulin (HRG), a ligand for ErbB3/ErbB4 recep-

tors, induces transient or sustained activity of intracellular kinases, depending on the ligand

concentrations [2]. In particular, sustained and transient extracellular-signal-regulated

kinase (ERK) activity (ERK�) or Akt activity (Akt�) is known to induce differentiation and

proliferation of MCF-7 cells, respectively [3], indicating that duration and sustainability of

kinase activity is important to determine cell fates. Thus, a quantitative understanding of

ErbB receptor signaling, and the regulatory mechanisms underlying the dynamics of the

network, is important to establish effective strategies for treating cancers driven by network

dysregulation.

The multiple interconnecting pathways and feedback loops involved in ErbB signaling

make it difficult to predict the dynamic responses of the network. In this regard, mathemati-

cal modelling is an attractive approach to predicting dynamic behaviors under different

conditions, and understanding how a system responds to input signals and different kinds

of perturbations. Accordingly, mathematical modeling approaches have been applied to

analyze EGFR/ErbB signaling dynamics and identify underlying molecular mechanisms

(Kholodenko et al.(1999)[4], Schoeberl et al.(2002)[5], Hatakeyama et al.(2003)[6], Hen-

driks et al.(2003)[7], Resat et al.(2003)[8], Blinov et al.(2006)[9], Shankaran et al.(2006)[10],

Birtwistle et al.[11], and Nakakuki et al.[3]). Although network architecture, such as feed-

back and feedforward loops, reflects some of the mechanisms that generate robustness

and output properties, it does not address quantitative interpretations. Kinetic models are

required to estimate the contribution of each pathway to the properties and phenotypes of

the network.

Sensitivity analysis can identify critical reactions and estimate robustness of a biochemi-

cal network. Single parameter sensitivity is used to perform a local sensitivity analysis in

static or dynamic ways. Static sensitivity analysis provides steady-state insight, while

dynamic sensitivity (DS) analyzes time-variation modalities such as transient and oscillatory

systems [12]. DS analysis can be roughly divided into the direct differential methods

(DDMs) [13] and the indirect differential methods (IDMs) [14,15]. The DDMs solve the

ordinary differential equations and their associated DS equations simultaneously, where the

DSs are described in symbolic form. The IDMs infinitesimally perturb the value of one spe-

cific parameter, while keeping the other parameters constant; thus the simulation results

contain approximation errors. Global sensitivity analysis quantifies the sensitivities of the

model outputs with respect to variations of multiple parameters. To date, sampling-based

and variance-based methods have been proposed based on random sampling and Monte-

Carlo integrations [16]. Since there is generally a tradeoff between calculation speed and

accuracy, the choice of method depends on the requirements of model size and nonlinearity.

From the many options, multi-parameter sensitivity (MPS) [17], the sum of the squared

magnitudes of single-parameter sensitivities, is practical in terms of theoretical background,

applicability to biology, and computational cost. MPS represents how a system’s output

varies when small, random, and simultaneous fluctuations are provided to many kinetic

parameters.

In this study, we developed a simulator to calculate the dynamic sensitivity of ERK� and

Akt� in an ErbB signaling network model with 237 kinetic parameters using MCF7 breast can-

cer cells. To demonstrate the feasibility of this simulator, we predicted reactions that were criti-

cally responsible for ERK� and Akt� in response to the dose of EGF and HRG, illustrated the

response characteristics of ERK� and Akt�, and estimated mechanisms for generating robust-

ness in the ErbB signaling network.
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Materials and methods

ErbB signaling network model

The ErbB signaling cascade in MCF7 cells consists of the following components: extracellular

ligands (EGF and HRG), four trans-membrane protein kinase receptors ErbB1 (EGFR), ErbB2

(HER2/NEU), ErbB3, and ErbB4, cytoplasmic adapter/scaffold proteins (Gab1, Grb2, and

Shc), phosphatase (PTP-1B), enzymes/protein factors (PI-3K, SOS, and RasGAP), the Ras-Raf-

MEK-ERK pathway, and small molecules (GTP) [1] (Fig 1). A ligand binding to a receptor

leads to homo- or heterodimerization of the receptors. Single-molecule imaging analysis dem-

onstrated that the binding constants of ErbB receptors to EGF and HRG are the same [18,19].

The receptor’s tyrosine kinase domain is activated by phosphorylation of tyrosine residues on

cytoplasmic tails of the receptor by dimerization partners. The phosphorylated tyrosine resi-

dues of the receptors can bind to cytoplasmic adapter/scaffold proteins, and enzymes recruited

to the plasma membrane. The interactions between these components finally activate multiple

downstream proteins, including ERK and Akt, which play an important role in activation of

transcription factors driving cell growth, survival, and differentiation.

We improved the kinetic model developed by Birtwistle et al. (2007) [11] to apply the DDM

to the model (S1–S6 Tables). We removed the if-then rules from the original model to make

the equations differentiable during the entire simulation time. The model contains the Ras/Raf

/MAPK and PI-3K/Akt pathways, as well as multiple ERK-mediated feedback loops. It com-

prises 95 reactions with 126 molecular species and 237 kinetic parameters. The kinetic model

is given by:

dxi

dt
¼ fiðx;pÞ ði ¼ 1; 2; . . . ;NxÞ ð1Þ

xi ¼ x0i t ¼ 0 ð2Þ

where t is the time, i is the index of molecular concentrations, x = (x1, x2, . . ., xNk)T is the vector

of molecular (species) concentrations, Nx is the number of molecules, p = (p1, p2, . . ., pNp)T is

the vector of constant parameters, Np is the number of parameters, fi is the mass balance func-

tion for xi, and x0i is the initial value. The model investigates the dynamics until 1,800 s, assum-

ing that the protein concentrations are kept constant. Since gene expression occurs after 1,800

s and protein concentrations change, it is difficult to build a model after 1,800 s due to the

complexity of gene regulation. Thus, the model is applicable for the simulation time from 0 s

to 1,800 s.

Analysis flow

We performed the following investigations: (i) Simulation and analysis of the dynamic

responses of ERK� and Akt� to systematic changes in EGF and HRG doses, (ii) Estimation of

critical parameters by simulating single-parameter DSs, and (iii) Analysis of mechanisms by

which ERK� and Akt� network show robustness to perturbations to intracellular kinetics and

addition of inhibitors.

Output properties

We used ERK� and Akt� at 1,800 s as the system’s output. In general, the output properties or

switching properties can be estimated by a response characteristic to input signals and by

robustness to perturbations, characterized by sensitivity analysis.

Dynamic sensitivity analysis of an ErbB signaling network
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Fig 1. The MCF7 ErbB signaling network map. Σ-states are summations over specific membrane-localized species with

identical downstream signaling activity and membrane-anchorage. ΣA:P3-A, ΣA-G, A-ΣG-O, ΣA-G-O, A-ΣG, ΣI:EijI, ΣAP-I,

ΣG:EijG, ΣSP-G, ΣS:EijS, ΣAP-S, ΣR:Eij, ΣAP-R, ΣT:EijT, ΣAP-T, ΣO:ΣG-O, A-ΣG-O, ΣA-G-O, E:EGF, H:HRG, Ei:ErbB, G:
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DDM for DS

Single parameter sensitivity is defined by:

sðxi; pjÞ ¼
@xiðt; pÞ
@pj

ð3Þ

The absolute DS of the differential equations is given by:

dsðxi; pjÞ

dt
¼
XNx

k¼1

@fi

@xk
sðxk; pjÞþ

@fi

@pj
; ð4Þ

where i is the index of molecules and j is the index of parameters. The relative DS is given by:

Sðxi; pjÞ ¼
@xiðt; pjÞ

@pj

pj

xiðt; pjÞ
ð5Þ

In this study, we used the relative DS for all the simulations and analyses.

MPS analysis

The MPS characterizing the total robustness is calculated as the sum of the squared magni-

tudes of single-parameter sensitivities [17].

MPSðxi;pÞ ¼
Xn

j¼1

@xiðt; pjÞ

@pj

pj

xiðt; pjÞ

 !2

; ð6Þ

where n is the number of parameters and MPS (xi, p) is the target function or output for a sys-

tem. MPS is a theoretical and intelligible measure that characterizes robustness much faster

than the existing methods, based on the assumption that the relative change in the target func-

tion is linear in response to changes in each parameter. Actually, the MPS is a feasible measure

for quantifying robustness in response to small perturbations in many biological, nonlinear

models [17].

Implementation

We developed the Matlab-based simulator to accurately calculate DSs by the DDM. The simu-

lator with instructions is freely available at: http://www.cadlive.jp/cadlive_main/Softwares/

DSsimulator/DynamicSensitivity.html. Since the simulator employs our own application of

the partial differentiation converter [20, 21], it does not require any options other than the

main body of Matlab. Numerical simulation and subsequent statistical analysis were per-

formed by MATLAB1 R2013a version 8.1 (MathWorks 2013) on a personal computer using

Windows 7 (CPU: Intel1 Core™ i7-2760QM 2.40 GHz, RAM: 8.00 GByte).

Grb2, S:Shc, I:PI3K, T:PTP1-B, O:SOS, A:Gab1, R:RasGAP, RsD:Ras-GDP, RsT:Ras-GTP, P2:PIP2, P3:PIP3, Eij:ErbB

homo- or heterodimer bound, EijX: Eij bound to protein. Single-sided solid-head arrows with solid lines depict chemical

transformation, while those with dotted lines depict a potentially multistep chemical reaction process. Single-sided double

solid-head arrows depict summation into a Σ-state. P denotes tyrosine phosphorylation, PT denotes threonine/serine

phosphorylation, and *denotes activation. Red arrows show the targets of ERK, Akt, and ErbB inhibitors.

https://doi.org/10.1371/journal.pone.0178250.g001
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Immunostaining and imaging cytometry experiments

MCF-7 cells were seeded at a density of 1 × 104 cells/well in 96-well plates for fluorescent imag-

ing. The next day, culture medium was replaced with serum free medium. After 16 h, cells

were stimulated with EGF and HRG for the indicated period, fixed with 4% paraformaldehyde

in PBS, and permeabilized with 0.1% Triton X-100 in PBS for 5 min. After washing with PBS,

the cells were incubated in blocking buffer and then incubated with primary antibodies (anti-

p-ERK (ERK�) antibody #4370, and anti-p-Akt (Akt�) antibody #2965 from Cell Signaling

Technology) at 4˚C. The next day the cells were fluorescently labeled with secondary antibod-

ies (Dylight550-anti-rabbit-IgG, Thermo Fisher Scientific), and then stained with DAPI for

detecting nuclei. Fluorescence images were obtained using an InCell Analyzer 2000 (GE

Healthcare), and image analysis was done using Developer tool software.

Results

Time course of ERK* and Akt*
The kinetic model had been validated using the experimental response of ERK� and Akt� with

respect to EGF and HRG stimulation in [11]. To further validate the model, we measured

ERK� and Akt� in response to EGF and HRG using imaging cytometry, as shown in Fig 2.

Both the simulated and experimental ERK� and Akt� increased initially and were then sus-

tained, or decreased under all the conditions. Both the activities increased with an increase in

HRG dose. These simulation results were relatively consistent with the experimental dynamics

of ERK� and Akt�. Considering these dynamic behaviors of ERK� and Akt�, a high final activ-

ity value was consistent with high sustainability and long signaling duration. The final activi-

ties were employed to characterize sustained ERK� and Akt�.

Fig 2. Time course simulation of ERK* and Akt*. (A) Simulated and experimental time course of ERK*. (B) Simulated and experimental time course

of Akt*. The HRG concentrations were 0.1, 0.5 and 10 nM, while the EGF concentration was set to 0.5 nM. The solid, dashed and dot-dash lines indicate

the simulated results at 0, 0.5 and 10 nM HRG, respectively. The cross, circle and triangle indicate the experimental activity at 0.1, 0.5 and 10 nM HRG,

respectively. The initial activities are set to zero by subtracting the background intensity from the measured activities and then the resultant activities are

normalized so that the maximum intensity during time course is 1. The error bars denote the standard deviations of signal intensities in quadruplicate

independent experiments.

https://doi.org/10.1371/journal.pone.0178250.g002
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To understand the input-output relationship, we simulated final ERK� and Akt�, while

systematically changing the dose of EGF and HRG, as shown in Fig 3. The final ERK� was

enhanced by HRG or EGF. ERK� increased steeply to half activity (0.5) even when stimulated

with 0.1 nM HRG, and became saturated (>0.9) at more than 0.5 nM HRG. EGF stimulation

increased ERK�, but did not induce a high final ERK� (>0.9) without HRG stimulation. Thus,

the effect of EGF on ERK� was smaller than that of HRG. On the other hand, Akt� gradually

increased to half activity at 0.5 nM HRG, and showed high activities (>0.9) above 4 nM HRG,

while the response to EGF was minimal. Akt� showed a gradual, wide-range response to HRG,

but a blunt response to EGF.

Time course of DS for ERK* and Akt*
To illustrate how the reactions critically responsible for ERK� and Akt� change with time and

in response to different doses of EGF and HRG, we simulated the DSs of ERK� and Akt� with

respect to 237 kinetic parameters. Fig 4 shows the two representative patterns of the DS time

course. These DSs reached maximum or minimum levels around 100 s and then decreased or

increased, approaching a steady-state. The timing of local maximum or local minimum corre-

sponded to the steepest gradients of ERK� and Akt� dynamics.

Fig 5 shows the distribution of 237 kinetic parameter DSs of ERK� and Akt� at 100 s, 300 s,

and 1,800 s. The distributions were considerably more outlier-prone than the normal distribu-

tion. A limited number of the parameters had very high DSs for both ERK� and Akt�, while

many parameters had very small DSs. Therefore, it appeared that a small number of reactions

Fig 3. A heat map of the simulated final activity of ERK* and Akt*. The final ERK* and Akt* were simulated

while systematically varying the ligand concentrations of EGF and HRG. The ERK* and Akt* were normalized by

their maximum values. The red color becomes more intense with an increase in ERK* and Akt*. A solid red bar

represents maximum activity.

https://doi.org/10.1371/journal.pone.0178250.g003
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determine the dynamics of ERK� and Akt�. As shown in Figs 6–9, the critical parameters

can be classified into three distinct groups: ERK�-specific highly sensitive parameters, Akt�-

specific highly sensitive parameters, and both ERK�- and Akt�-specific highly sensitive param-

eters. Here, ERK� DS parameters of more than 0.25, and Akt� DS parameters of less than 0.55

were deemed ERK�-specific critical parameters. Similarly, ERK� DS parameters of less than

Fig 4. Time course of the DSs of ERK* and Akt*. The simulated DSs of ERK* and Akt* with respect to

kon44 (A), and koff44 (B). The concentrations of EGF and HRG were 0.5 nM and 0.5 nM, respectively.

https://doi.org/10.1371/journal.pone.0178250.g004
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Fig 5. Frequency distributions of the DSs of ERK* and Akt*. (A) Frequency distribution of the DSs of

ERK*. (B) Frequency distribution of the DSs of Akt*. DSs (n = 237) were simulated at 100 s and 300 s with

(HRG, EGF) = (0.5 nM, 0.5 nM). The black and white bars indicate the distributions at 100 s and 300 s.

https://doi.org/10.1371/journal.pone.0178250.g005
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0.25, and Akt� DS parameters of more than 0.55 were deemed Akt�-specific critical parame-

ters. Common critical parameters were defined as those with ERK� DSs of more than 0.25, and

Akt� DSs of more than 0.55. Since we focused on the relative transitions in critical parameters

with respect to time and ligand dose, the threshold values were determined so that they can

intelligibly describe relative transitions.

In the early stages following activation with 0.5 nM HRG and 0.5 nM EGF, three classes of

critical parameters were estimated (Figs 6 and 7). The critical reactions for ERK activation were

distributed among multiple competitive pathways: ErbB dimers!!PTP-1B!Gab1!GrB2!

SOS!Ras!Raf!MEK!ERK�, ErbB dimers!Grb2!SOS!Ras!Raf!MEK!ERK�, and

ErbB dimers!RasGAP!Ras!Raf!MEK!ERK�. Interestingly, a few critical reactions were

found on circuitous pathways that are distant from ERK� and close to Akt�: ErbB dimers!PI-

3K, and ErbB dimers!Gab1$ PI-3K. The PI-3K and Gab1 pathways to Akt� may compete

with the other pathways to ERK�, because PI-3K and Gab1 are located at the branching

points for ERK and Akt activation. The pathways of ErbB dimers!PI-3K!Akt� and ErbB

dimers!PTP-1B!Gab1!Akt� were critical for Akt activation. The pathway of ErbB

dimers!PTP-1B!Gab1$PI-3K was common to activation of ERK and Akt. At 0.5 nM HRG

and 10 nM EGF, the number of critical pathways for both ERK and Akt activation decreased.

With an increase in HRG to 10.0 nM, the common critical reactions disappeared, then Akt�-spe-

cific pathways became dominant (Fig 7).

In the late stage (Figs 8 and 9), at 0.5 nM of HRG and 0.5 nM of EGF, three classes of critical

parameters were estimated, and the number of ERK�-specific critical parameters decreased

compared with the early stage. The critical pathways linked to ERK activation converged to the

pathway: ErbB dimers!PTP-1B!Gab1!GrB2!SOS!Ras!Raf!MEK!ERK�. The path-

way of ErbB dimers!PTP-1B and PI-3K!Akt� was critical for Akt activation. The pathway

of ErbB dimers!PTP-1B!Gab1$ PI-3K were the common critical reactions. As the EGF or

HRG doses increased, the common critical parameters disappeared, then Akt�-specific critical

parameters became dominant. An increase in EGF or HRG dose made the critical parameter

distributions converge to almost the same distribution. The critical reactions for ERK� were

located just upstream of ERK�; those for Akt� were in the pathway of ErbB dimers!PTP-

1B!Gab1$ PI-3K!Akt.

MPS dynamics

Single parameter sensitivity is effective for exploring a specific reaction that is sensitive to per-

turbation, but it cannot characterize the robustness of the entire system. Generally, some single

sensitivities increase and others decrease, thus it is difficult to precisely estimate the robustness

of the entire system. We calculated the MPSs of ERK� and Akt� with respect to all kinetic

parameters to estimate the robustness of ERK� and Akt� to perturbations to intracellular kinet-

ics (Fig 10). The MPSs of both ERK� and Akt� remarkably decreased after 100 s, and they also

decreased concomitant with an increase in EGF or HRG. The MPSs were more suppressed by

HRG than by EGF. The MPSs of ERK� were considerably less than those of Akt� at each time

and each dose, indicating that ERK� is more robust than Akt� to perturbations to intracellular

kinetics.

Effect of inhibitors

To further investigate network architectures, we performed pathway inhibitor experiments in
silico. Three inhibitors (a MEK inhibitor, an Akt inhibitor, and an ErbB inhibitor) were added

to the signaling network (Fig 11). Addition of the inhibitors can be regarded as intracellular

perturbations, because the inhibitors change the kinetic parameters of their associated
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Fig 6. Critical parameter shifts in the early stage in response to EGF at a low HRG concentration. Orange,

blue and green colors indicates the Akt*-specific, ERK*-specific, and dual-specific critical reactions or parameters

at 100s with (EGF, HRG) = (0.5nM, 0.5nM) and (EGF, HRG) = (10.0nM, 0.5nM).

https://doi.org/10.1371/journal.pone.0178250.g006
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Fig 7. Critical parameter shifts in the early stage in response to EGF at a high HRG concentration.

Orange, blue and green colors indicates the Akt*-specific, ERK*-specific, and dual-specific critical reactions or

parameters at 100s with (EGF, HRG) = (0.5nM, 10.0nM) and (EGF, HRG) = (10.0nM, 10.0nM).

https://doi.org/10.1371/journal.pone.0178250.g007
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Fig 8. Critical parameter shifts in the late stage in response to EGF at a low HRG concentration. Orange,

blue and green colors indicates the Akt*-specific, ERK*-specific, and dual-specific critical reactions or parameters

at 300s with (EGF, HRG) = (0.5nM, 0.5nM) and (EGF, HRG) = (10.0nM, 0.5nM).

https://doi.org/10.1371/journal.pone.0178250.g008
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Fig 9. Critical parameter shifts in the late stage in response to EGF at a high HRG concentration. Orange,

blue and green colors indicates the Akt*-specific, ERK*-specific, and dual-specific critical reactions or

parameters at 300s with (EGF, HRG) = (0.5nM, 10.0nM) and (EGF, HRG) = (10.0nM, 10.0nM).

https://doi.org/10.1371/journal.pone.0178250.g009
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proteins. The MEK inhibitor delayed the start-up of both ERK� and Akt� and suppressed path-

way activation. The ERK pathway inhibitor suppressed HRG- or EGF-induced ERK� [11]. The

Akt inhibitor specifically suppressed Akt�, with minimal effect on ERK�, suggesting that Akt

activation does not affect the ERK activation pathways, despite the extensive crosstalk between

the two. The ErbB inhibitor, which blocks ligand binding to the receptor, delayed the start-

up of both ERK� and Akt� and suppressed pathway activation. Since the ErbB receptor is

upstream of ERK� and Akt�, both pathways were affected. It is difficult to control ERK� with

these inhibitors because ERK pathways connect upstream of Akt� or through feedback loops

to ErbB dimers and Gab1.

Discussion

Systematic analysis

To demonstrate the feasibility of the developed DS simulator, we analyzed the robustness of

the ERK� and Akt� with respect to a combination of EGF and HRG. In general, it is difficult to

systematically test many ligand or drug combinations in vivo, because clinical testing is expen-

sive and time-consuming. Systematic analysis of kinetic models of ErbB signaling can over-

come such problems, because models can computationally predict the output properties for

combinations of multiple ligands. A major challenge for ErbB signaling studies is to under-

stand how a combination of stimuli gives rise to different responses despite the promiscuous

activation of shared pathways. Birtwistle et al. (2007) [11] built a detailed kinetic model of the

Fig 10. MPS time course of ERK* and Akt* in response to different concentrations of EGF and HRG.

The heat map illustrates the MPS values of ERK* and Akt* simulated at different concentrations of EGF and

HRG. The white color represents a very small MPS value, i.e., enhanced robustness with respect to external

changes in EGF and HRG, while the red color represents a high MPS value, i.e., sensitivity with respect to

external changes in EGF and HRG.

https://doi.org/10.1371/journal.pone.0178250.g010
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Fig 11. Dynamics of ERK* and Akt* in response to the addition of three inhibitors. (A) Control. No inhibitor

added. (B) ERK inhibitor (9.0 nM). (C) Akt inhibitor (0.6 nM). (D) ErbB inhibitor (30 nM). The inhibitors were added at 0

s. The black lines, dashed lines and dotted lines indicate the simulated time courses of ERK* and Akt* at HRG

concentrations of 0 nM, 0.5 nM and 10.0 nM, respectively. The EGF concentration was fixed at 10.0 nM.

https://doi.org/10.1371/journal.pone.0178250.g011
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ErbB signaling network and performed perturbation analysis to reveal how the network gener-

ates robust ERK and Akt activation, but the model was not amenable to a comprehensive

mathematical analysis. We present a systematic analysis for understanding how a response to

the two ligands alters the output properties of ERK� and Akt�, and how the network generates

a robust response to different types of perturbations. To characterize the output response of

ERK� and Akt�, the final activities were used. Many signaling pathways that transmit informa-

tion from ErbB dimerization to ERK or Akt activation are not direct, and there is extensive

overlap and crosstalk, thus it is difficult to discriminate between critical pathways and those

that are less important. We used single parameter sensitivity to predict critical reactions in the

many possible signaling pathways. Reactions with a low sensitivity indicated that they were sat-

urated or their contributions were smaller than those of competitive or alternative pathways.

In branching cascades, the reaction pathways generated from one molecular species can com-

pete with each other, and an increase in one reaction causes others to decrease. MPS was

employed to characterize the robustness of ERK� and Akt� to perturbations to all intracellular

kinetics.

In addition to system analysis, we developed the DDM-based DS simulator that solves the

exact value of the DS without approximation, while the IDMs use approximate sensitivity val-

ues [22, 23]. In principle, the accuracy of DDM outperforms IDM.

Robustness and response

We focused on the DSs of ERK� and Akt� in the ErbB signaling network of MCF-7 cells

because the duration of activity plays an important role in the control of proliferation, survival

and differentiation in response to EGF and HRG. ERK� increased steeply with the increase in

HRG and was saturated at a low dose of HRG, while showing a gently rising response to EGF.

Akt� had a gradual wide-range response to HRG dose, but the response to the change in EGF

was minimal. We predicted the switching or output properties of ERK� and Akt� in response

to the combination of EGF and HRG. As far as robustness is concerned, the ERK� was robust

to intracellular perturbations, because ERK� is controlled by multiple negative feedback loops

(e.g., ERK�!Gab1!RasGAP!Ras!Raf!MEK!ERK�, ERK�!Gab1!Grb2!SOS!

Ras!Raf!MEK!ERK�, ERK�!Gab1!Shc!Grb2!SOS!Ras!Raf!MEK!�ERK,

ERK�!SOS!Ras!Raf!MEK!ERK�, ERK�!ErbB_dimers!RasGAP!Ras!Raf!

MEK!ERK�) [24]. On the other hand, Akt� was sensitive to perturbations in intracellular

kinetics. Note that Akt� is not regulated by negative feedback loops. Inhibitor addition sug-

gested that those feedback loops play a significant role in connecting ERK� to Akt� through

ErbB dimers, PI-3K, or Gab1, because the ERK� specific inhibitor affected not only ERK�, but

also Akt�.

Critical reactions responsible for ERK* and Akt*
DS analysis of 237 kinetic parameters involved in ERK� and Akt� predicted that only a small

number of parameters were critical and governed the robustness of the model. Although fre-

quent crosstalk is found in mammalian signaling pathways, a fundamental question is which

of these pathways are critical or dominant in response to different conditions and stimuli.

While network or pathway maps cannot address this issue due to a lack of quantitative infor-

mation, sensitivity analysis can facilitate the identification of critical pathways. We estimated

that a set of critical parameters changed in response to ligand doses and time. The critical

parameters were widely distributed at the early time points or at low doses of EGF and HRG,

suggesting that many pathways were involved in signal transduction. The reaction pathway

from ErbB dimers to PI-3K to Akt� was responsible for ERK activation at low doses of HRG
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and EGF. This is because the PI-3K pathways compete with pathways activated by ErbB dimer-

ization to drive Akt activation, or signaling downstream of PI-3K is connected to ERK activa-

tion through circuitous pathways. Since the pathways from ErbB dimers to PTP-1B and Gab1

are common to ERK and Akt activation, it is reasonable to assume that that they play a domi-

nant role in ERK and Akt activation. As EGF and HRG dose increased over time there was a

dynamic transition of critical reactions, and the critical parameters common to ERK� and

Akt� were Akt�-specific.

Conclusion

Using our DDM-based DS simulator, we estimated the response characteristics and robustness

of the ErbB signaling network in cancer cells. The data showed how the reactions critically

responsible for ERK� and Akt� changed with time and in response to different doses of EGF

and HRG, and illustrated that only a small number of reactions determine ERK� and Akt�.

Akt� was sensitive to perturbations in intracellular kinetics, while ERK� was more robust due

to multiple, negative feedback loops. ERK� increased steeply concomitant with an increase in

HRG dose until saturation, while showing a gently rising response to EGF. Akt� had a gradual

wide-range response to HRG, and a blunt response to EGF.
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