
rspa.royalsocietypublishing.org

Research
Cite this article: Simpson DJW, Jeffrey MR.
2016 Fast phase randomization via two-folds.
Proc. R. Soc. A 472: 20150782.
http://dx.doi.org/10.1098/rspa.2015.0782

Received: 9 November 2015
Accepted: 14 January 2016

Subject Areas:
differential equations, applied mathematics

Keywords:
piecewise-smooth, desynchronization,
Filippov system, sliding motion

Author for correspondence:
D. J. W. Simpson
e-mail: d.j.w.simpson@massey.ac.nz

Fast phase randomization
via two-folds
D. J. W. Simpson1 and M. R. Jeffrey2

1Institute of Fundamental Sciences, Massey University, Palmerston
North, New Zealand
2Department of Engineering Mathematics, University of Bristol,
Bristol, UK

DJWS, 0000-0002-0284-6283

A two-fold is a singular point on the discontinuity
surface of a piecewise-smooth vector field, at which
the vector field is tangent to the discontinuity surface
on both sides. If an orbit passes through an invisible
two-fold (also known as a Teixeira singularity) before
settling to regular periodic motion, then the phase
of that motion cannot be determined from initial
conditions, and, in the presence of small noise,
the asymptotic phase of a large number of sample
solutions is highly random. In this paper, we show
how the probability distribution of the asymptotic
phase depends on the global nonlinear dynamics. We
also show how the phase of a smooth oscillator can
be randomized by applying a simple discontinuous
control law that generates an invisible two-fold. We
propose that such a control law can be used to
desynchronize a collection of oscillators, and that
this manner of phase randomization is fast compared
with existing methods (which use fixed points as
phase singularities), because there is no slowing of the
dynamics near a two-fold.

1. Introduction
When an orbit of a system of ordinary differential
equations approaches a stable periodic orbit, rather than
the location of the orbit in phase space at a given
time, a more useful quantity is often the asymptotic
(or latent) phase of the orbit. The asymptotic phase
distinguishes the long-term behaviour of different orbits,
and sets of points with the same asymptotic phase are
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called isochrons [1]. Isochrons cannot intersect, but may accumulate at phaseless sets where the
asymptotic phase is undefined. Near a point in such a set, termed a phaseless point, the asymptotic
phase is highly sensitive to perturbations.

In smooth systems, phaseless points are unstable equilibria that can only be approached
asymptotically (in backward time). In piecewise-smooth systems, we show that there exist
phaseless points that can be intersected in finite time, without any slowing of the dynamics
suffered near an equilibrium. The two-fold singularity, an enigma of piecewise-smooth dynamical
systems theory, is one such phaseless point.

There are many reasons why it might be desirable to alter the phase of an existing oscillatory
motion. One approach to tackling Parkinson’s disease, for instance, is to disturb the synchronized
neural activity associated with physical tremors [2,3]. Desynchronization can be achieved with
pulses [4], pulse trains [5], time-delayed control [6] or some other well-chosen feedback law [7].
Phase randomization for prototypical neuron models is achieved in [8] by briefly applying a
control that transports the orbit to the close proximity of a phaseless point. The orbit subsequently
returns to periodic motion but now has a different asymptotic phase. This phase is highly
sensitive to the precise point at which the orbit is located when the control is removed, so small
stochasticity in the system causes the resulting asymptotic phases of different neurons to be highly
randomized.

Two-fold singularities of piecewise-smooth systems were first described by Filippov [9] and
have garnered interest as points where both the forward and backward time uniqueness of
a flow can break down in an otherwise deterministic flow [10–12]. In a vector field that is
discontinuous on some hypersurface—the discontinuity surface—a two-fold is a point where the
flow has quadratic tangencies (‘folds’) to both sides of the surface. Two-folds occur generically at
isolated points in three-dimensional piecewise-smooth vector fields, and on (n − 2)-dimensional
manifolds in n-dimensional piecewise-smooth vector fields [12]. They have been identified in
models of electronic circuits [13] and contact mechanics [14], and have deep connections to
folded nodes of slow–fast systems [15]. The dynamics near a two-fold depends on whether the
vector field on either side is curving towards or away from the discontinuity surface, and on the
alignments of the two vector fields relative to each other [12].

In this paper, we illustrate the practical implications of a two-fold for phase randomization.
As well as suggesting how two-folds might affect real systems, this suggests a use for them as
control devices for the desynchronization of oscillators. To this end, we shall consider systems
where a two-fold either occurs naturally in a piecewise-smooth system, or is introduced to a
smooth system via a discontinuous control. We will simulate orbits in the presence of small noise
as they pass close to a two-fold, and focus on how their phases are randomized by the presence
of the singularity. The two-fold is not a zero of the vector field, so there is no slowing of the flow
during phase randomization achieved in this way.

We shall first demonstrate that the two-fold singularity is a phaseless set, before deriving and
simulating its effect on the distribution of the phase as a flow evolves through the singularity.
In particular, we show that the distribution of the phase can be manipulated with higher-order
terms in the vector field. We also explain how phase randomization can be achieved by using a
discontinuous control action to generate a two-fold.

Our central mathematical result consists of a simple procedure by which the distribution of
the asymptotic phase can be approximated. The results of this approximation are illustrated
in figure 1 (to be produced in §4). To produce figure 1, we shall consider the normal form of
the two-fold, add higher-order terms such that orbits emanating from the two-fold approach
a stable periodic orbit, and add small noise. Figure 1a shows a histogram of the phase φT,
computed relative to a reference time T and limiting to the asymptotic phase as T → ∞. This
shows an apparently uniform distribution, hence the phase of solutions from the initial point
is ‘fully randomized’. Figure 1b shows an analogous histogram using different higher-order
terms, indicating that nonlinearity in the flow influences the distribution. The black curves
show our theoretical approximations for the probability density functions of the phase derived
in §4b.
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Figure 1. Each panel shows a histogram of the phaseφT , of 104 sample solutions from the same initial condition, of the general
stochastic system (4.1). The twopanels correspond to different choices for thehigher-order terms that affect the global dynamics
of (4.1). One sample solution corresponding to each panel is shown in figure 7 (see caption of this figure for the parameter values
used). The solid curves show our theoretical approximation for the probability density function ofφT , see §4b. (Online version
in colour.)

Building on these observations, we propose that a periodic orbit in a smooth system can, via
the temporary application of a discontinuous control, be made to take an excursion through a
two-fold and then return to periodic motion, but now with a randomized phase. We provide
simulations of a simple model in which the effect is to desynchronize a collection of synchronized
oscillators. As discussed in §6, two-folds have potential advantages over equilibria as phaseless
points in the context of phase randomization. Although we provide a motivating toy example,
calculating and optimizing realizable control actions (as in [8]) are beyond the scope of this paper.

In §2, we briefly set out the normal form equations of the invisible two-fold singularity and
review a few pertinent details of the local dynamics. Here we include a novel definition of polar
coordinates that fit naturally with the local dynamics (and should be of particular interest to
dynamicists studying two-folds). We include higher-order terms with the normal form in §3, and
extend these definitions before simulating a flow through the two-fold subjected to stochastic
perturbations in §4. In §5, we give an example of an application to desynchronize smooth
oscillators using a discontinuous control, and provide closing remarks in §6.

2. Deterministic dynamics of the normal form
There exist three generic kinds of two-fold singularity, depending on whether both folds
are visible (curving away from the discontinuity surface) or invisible (curving towards the
discontinuity surface), or one is visible and one is invisible. In each case, there exist local
conditions under which the flow traverses the singularity in finite time. In this paper, we focus
on the case where both folds are invisible, called an invisible two-fold or Teixeira singularity
[10,16], in which the local flow passes through the singularity in finite time. The added interest
of the invisible two-fold is that the local flow winds repeatedly around the singularity, giving
oscillatory behaviour.

In three dimensions, X = (x, y, z), the normal form of the invisible two-fold is the piecewise-
smooth system

Ẋ =
⎧⎨
⎩

FL(X), x< 0,

FR(X), x> 0,
(2.1)

where

FL(X) = (z, V−, 1), FR(X) = (−y, 1, V+), (2.2)

and V−, V+ ∈ R are parameters [16,17]. The two-fold is located at the origin, X = (0, 0, 0). The
discontinuity surface x = 0 consists of attracting and repelling sliding regions, denoted A and R
(where the flow is confined to the surface and so slides along it), and two crossing regions C±
(where the flow passes transversally though the surface), as illustrated in figure 2.
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Figure 2. A schematic of the two-fold of (2.1). The discontinuity surface x = 0 is made up of an attracting sliding region A
(y, z> 0), a repelling sliding region R (y, z< 0), and two crossing sliding regions, C+ (y< 0, z> 0) and C− (y> 0, z< 0).
Parts of two orbits and their intersections with the discontinuity surface are shown. One orbit starts in R and has subsequent
intersections in C+ and C−. A second orbit starts and returns to an invariant line ζ ∈ C−; see §2a. (Online version in colour.)

The system is solved across the discontinuity by forming the Filippov system for (2.1). Using
ei to denote the ith coordinate vector in R

3, a Filippov solution of (2.1) is an absolutely continuous
function ϕ(t) that satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dϕ
dt

= FL(ϕ(t)), if eT1ϕ(t)< 0,

dϕ
dt

= FR(ϕ(t)), if eT1ϕ(t)> 0,

dϕ
dt

∈ {(1 − q)FL(ϕ(t)) + qFR(ϕ(t)) | 0 ≤ q ≤ 1}, if eT1ϕ(t) = 0,

(2.3)

for almost all values of t [9]. We let ϕ(t; X0, t0) denote a Filippov solution to (2.1) with initial
condition ϕ(t0) = X0. Each ϕ(t; X0, t0) is a concatenation of several smooth orbit segments,
including segments of evolution outside the discontinuity surface x = 0, and segments of
evolution on x = 0 referred to as sliding motion. Solving the convex combination in (2.3) for ẋ = 0
gives the system that sliding motion obeys on A and R as[

ẏ

ż

]
= 1

y + z

[
V− 1

1 V+

][
y
z

]
. (2.4)

Various details of the sliding flow can be derived from (2.4); see [16,17]. Throughout this paper,
we assume

V− < 0, V+ < 0, V−V+ > 1, (2.5)

in that case a typical orbit of (2.3) and (2.4) will intersect the two-fold in forward time or backward
time or both, and give the geometry shown in figure 2. With (2.5), the matrix in (2.4) has distinct
negative eigenvalues. Of these, the eigenvalue that is smallest (in absolute value) is λ= 1

2 (V+ +
V− + [(V+ − V−)2 + 4]1/2). As orbits of (2.1) slide into the singularity inside A, or slide out of
the singularity in R, they do so tangent to the weak eigenvector of the matrix (‘weak’ meaning
associated with the smallest eigenvalue) and so are tangent to the line z = (λ− V−)y on x = 0. The
time to reach or depart the singularity is finite. Specifically, the time is t = (V− − λ− 1)y/λ from
an initial point on the line z = (λ− V−)y with x = 0. Throughout the paper, we use the values

V− = −0.5, V+ = −2.5, (2.6)

to illustrate the results.
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In the remainder of this section, we review crossing solutions to (2.1) in §2a, introduce polar
coordinates for describing the flow as it spirals away from the two-folds in §2b, and define the
notion of ‘viable’ Filippov solutions in the context of simulation in §2c. In later sections, we apply
these concepts to more general piecewise-smooth systems.

(a) Crossing dynamics and an unstable cone
The left and right half systems of (2.1), Ẋ = FL(X) and Ẋ = FR(X), have solutions

ϕL(t; X0, t0) = (x0 + z0(t − t0) + 1
2 (t − t0)2, y0 + V−(t − t0), z0 + t − t0) (2.7)

and

ϕR(t; X0, t0) = (x0 − y0(t − t0) − 1
2 (t − t0)2, y0 + t − t0, z0 + V+(t − t0)), (2.8)

respectively, where X0 = (x0, y0, z0). In what follows, we use (2.7) and (2.8) to study Filippov
solutions ϕ(t; 0, y, z, t0) of (2.1). As indicated in figure 2, orbits wind around regions A and R,
repeatedly crossing x = 0 in regions C±. This can be understood with a return map that has been
studied in considerable detail [16,18]. Here, we review a few details of this map that are needed
for the ensuing analysis.

First consider the region z< 0 on x = 0, where the flow ϕL is directed away from the
discontinuity surface. If y> 0, then (0, y, z) ∈ C−, so ϕR is directed towards the surface and hence
ϕ(t; 0, y, z, t0) immediately enters x< 0. If instead y< 0, then (0, y, z) ∈ R, so both ϕL and ϕR are
directed away from the surface and hence ϕ(t; 0, y, z, t0) is not uniquely determined (it may slide
along x = 0 following (2.4) or enter either x< 0 or x> 0 at any instant). For definiteness, when
y ≤ 0, we consider the Filippov solution ϕ(t; 0, y, z, t0) that immediately enters x< 0. From (2.7),
we find that ϕ(t; 0, y, z, t0) resides in x< 0 until the later time t = t0 − 2z when it is located at
(0, y − 2V−z, −z).

Second, consider y< 0 and assume ϕ(t; 0, y, z, t0) immediately enters x> 0. From (2.8), and by
applying arguments analogous to those in the previous paragraph, we find that ϕ(t; 0, y, z, t0)
resides in x> 0 until t = t0 − 2y when it is located at (0, −y, −2V+y + z).

From these observations, we can construct a return map capturing crossing dynamics. This is
formulated in the following proposition (refer to [16] for a complete proof).

Proposition 2.1. Suppose V−, V+ < 0, V−V+ > 1. For any y ∈ R and z< 0, let (0, y′, z′) denote the
next intersection of ϕ(t; 0, y, z, t0) with the discontinuity surface at a point with y′ > 0 (assuming ϕ(t)
immediately enters x< 0 in the case y< 0). If z< 2V+y/(4V−V+ − 1), then z′ < 0 and[

y′
z′

]
=
[

−1 2V−
−2V+ 4V−V+ − 1

][
y
z

]
, (2.9)

and the evolution time of the orbit from (y, z) to (y′, z′) is

t − t0 = 2((2V− − 1)z − y), (2.10)

whereas if z> 2V+y/(4V−V+ − 1), then z′ > 0.

The return map (2.9) is linear, area-preserving, and has a saddle-type fixed point at (y, z) =
(0, 0). The unstable multiplier (i.e. the eigenvalue of the matrix in (2.9) with modulus greater
than 1) is

μ= 2V−V+
(

1 +
√

1 − 1
V−V+

)
− 1, (2.11)

and the corresponding eigenvector is (1, γ ), where

γ = V+
(

1 +
√

1 − 1
V−V+

)
. (2.12)
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Figure 3. A plot of (2.14) using (2.6). This is the unstable manifoldΛ (2.14). OnΛ, one Filippov solution ψa(t) is shown.
Formulae for the evolution times τL > 0 and τR < 0 from an arbitrary point (0, y0, γ y0) ∈ ζ into x< 0 and x> 0,
respectively, are given by (2.21) and (2.22). (Online version in colour.)

In the full three-dimensional space of (2.1), this eigenvector corresponds to a ray

ζ = {(0, y, γ y) | y> 0}, (2.13)

that emanates from the two-fold, as shown in figure 2.
By evolving the flow forwards from ζ according to (2.7) and (2.8), we obtain a surface Λ that

is given implicitly by

x =

⎧⎪⎪⎨
⎪⎪⎩

−1
V−Ξ (y, z), x ≤ 0,

1
V+Ξ (y, z), x ≥ 0,

(2.14)

where

Ξ (y, z) = V+y2 − 2V+V−yz + V−z2

2(V+V− − 1)
. (2.15)

Figure 3 shows a plot of Λ. The surface Λ is non-differentiable at x = 0 and consists of part of a
hyperbolic paraboloid on each side of x = 0.

For any initial point on the ray ζ , the next intersection of ϕ(t; 0, y, γ y, t0) with C− is (0,μy,μγ y),
shown in figure 2. By substituting z = γ y into (2.10), we find that this iteration of (2.9) corresponds
to an evolution time of

t − t0 = 2((2V− − 1)γ − 1)y. (2.16)

By performing this iteration backwards through repeated crossings, we can construct a Filippov
solution that approaches the two-fold in backward time. This Filippov solution emanates from
the two-fold and has infinitely many intersections with ζ in finite time. Such an orbit is shown in
figure 3.

Given any a> 0, let ψa(t) (defined for t ≥ 0) denote the unique Filippov solution that is located
at the two-fold at t = 0, and located on ζ at t = a. That is, ψa(0) = (0, 0, 0) and ψa(a) ∈ ζ . By using
(2.16) and the classical formula for the sum of a geometric series, we determine the y-value of
ψa(a) to be

eT2ψa(a) = a

1 + (1 − 1/V−)/
√

1 − 1/(V−V+)
. (2.17)

After t = a, the Filippov solution ψa(t) next intersects ζ at t =μa. Consequently, ψa(μna) ∈ ζ , for
all n ∈ Z. It follows that each ψμna(t) is the same orbit as ψa(t), and so we can characterize all the
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ψa(t) by restricting our attention to values of a in a fundamental domain a∗ ≤ a<μa∗, for some
a∗ > 0. Since Λ is solely composed of Filippov solutions ψa(t), we can write

Λ= {ψa(t) | t ≥ 0, 1 ≤ a<μ}. (2.18)

The intersection of Λ with C− is ζ . Since ζ corresponds to an unstable eigenvector of the crossing
map, we refer to Λ as an unstable manifold of the two-fold.

(b) Polar coordinates
Since orbits of (2.1) on Λ spiral out from the two-fold (figure 3), it is natural to introduce polar
coordinates. The surface Λ projects uniquely onto the (x, y)-plane (and the (x, z)-plane, but we
use the former). The usual polar coordinates (x = r cos(θ ), y = r sin(θ )) bear no relation to the
behaviour of the system and yield complicated expressions that provide no insight. Instead we
derive radial and angular coordinates r(x, y) and θ (x, y) (which we interpret as ‘polar coordinates’)
in a way that the restriction of (2.1) to Λ takes a particularly simple form.

To obtain a suitable notion of the phase θ , we begin by finding the times τL > 0 and τR < 0 that
an orbit takes to travel from ζ to a given point in x< 0 and in x> 0, respectively.

First, choose any x< 0 and y ∈ R. We let y0 > 0 be such that by evolving (2.1) forwards from
(0, y0, γ y0) we arrive at (x, y, z) ∈Λ, for some z ∈ R, without again intersecting x = 0, and let τL > 0
be the corresponding evolution time. This is illustrated in figure 3. Note that the value of z is given
from (2.14) by x = −Ξ (y, z)/V−.

We have ϕL(τL; 0, y0, γ y0, 0) = (x, y, z), and so, by (2.7),

x = γ y0τL + 1
2 τ

2
L , y = y0 + V−τL and z = γ y0 + τL. (2.19)

We solve the first two of these equations simultaneously for y0 and τL. Eliminating y0 yields
( 1

2 − γV−)τ 2
L + γ yτL − x = 0, to which an application of the quadratic formula gives

τL =
y −

√
y2 − 2(2γV− − 1)x/γ 2

(2γV− − 1)/γ
. (2.20)

Upon substituting (2.12) into (2.20), substantial simplification is possible and we obtain

τL =
y −

√
y2 − (2V−/V+)x

V−
(

1 +√
1 − 1/(V−V+)

) . (2.21)

Moreover, y0 is given by y0 = y − V−τL with (2.21).
Second, choose any x> 0 and y ∈ R. We let y0 > 0 be such that by evolving (2.1) backwards

from (0, y0, γ y0) we arrive at (x, y, z) ∈Λ, for some z ∈ R, without first re-intersecting x = 0, and
let τR < 0 be the corresponding evolution time. Here z is specified by x =Ξ (y, z)/V+, and, in the
same manner as above, we obtain

τR = y −
√

y2 + 2x, (2.22)

and y0 = y − τR.
Using these expressions, we now build a useful set of polar coordinates for the projection of Λ

onto the (x, y)-plane. We let the positive y-axis correspond to θ = 0 and r = y, i.e.

r(0, y) = y, θ (0, y) = 0, for all y> 0. (2.23)

The positive y-axis corresponds to points on ζ . Naturally, we want to define θ such that a change
of 2π corresponds to one complete revolution from ζ back to itself. By (2.16), forward evolution
from (0, y, γ y) returns to ζ in a time proportional to y. This suggests that we want θ̇ to be inversely
proportional to y (or the distance from the two-fold, r). Moreover, the orbit returns to ζ at the
point (0,μy,μγ y). That is, the value of r increases from y to μy and so changes by an amount
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Figure 4. Contours r(x, y)= constant (panel a) andθ (x, y)= constant (panel b), where r andθ are given by (2.25) and (2.26).
Contours of θ (x, y) are parabolas of the form x = Ky2, for different values of K . Contours of r(x, y) are parabolas of the form
x = c1(y − K)2 + c2K 2, for different values of K , where c1 and c2 are constants that depend on the values of V− and V+.
In each plot, one orbit of (2.1) is shown spiralling away from the origin. These illustrations use (2.6) for the values of V−

and V+. (Online version in colour.)

proportional to y, suggesting ṙ should be constant. In summary, we would like to define r and θ
so that they satisfy (2.23) and

ṙ = α, θ̇ = β

r
, (2.24)

for some constants α,β > 0. The following choice of r and θ achieves this.

Proposition 2.2. Suppose V−, V+ < 0 and V−V+ > 1. Let

r(x, y) =

⎧⎪⎨
⎪⎩
αy − (α − 1)

√
y2 − 2V−

V+ x, x< 0,

αy − (α − 1)
√

y2 + 2x, x> 0,
(2.25)

and

θ (x, y) =

⎧⎪⎪⎨
⎪⎪⎩
β

α
ln
(

1 + α

y/τL(x, y) − V−

)
, x< 0,

β

α
ln
(

1 + α

y/τR(x, y) − 1

)
+ 2π , x> 0,

(2.26)

where τL and τR are given by (2.21) and (2.22), and

α= 1

1 + (1 − 1/V−)/
√

1 − 1/(V−V+)
and β = 2πα

ln(μ)
, (2.27)

where μ is given by (2.11). Then (2.25) and (2.26) define a continuous bijection from (x, y) ∈ R
2 to (r, θ ) ∈

(0, ∞) × [0, 2π ) ∪ (0, 0) that satisfies (2.23). Moreover, under this coordinate change the restriction of (2.1)
to Λ is given by (2.24) with (2.27).

A constructive proof of proposition 2.2 using (2.7) and (2.8) is given in appendix A. Figure 4
illustrates contours of r(x, y) and θ (x, y) as defined in (2.25) and (2.26).

Given (2.26), the negative y-axis corresponds to θ = 2π ln((1 − 2α)μ)/ln(μ). Also by (2.27), we
have 0<α < 1

2 , with α→ 0 as V−V+ → 1 and α→ 1
2 as V−V+ → ∞ (assuming V−/V+ is fixed as

the limit is taken). Graphically, we have found also that 0<β <π .
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The right-hand side of (2.24) is defined everywhere except at r = 0 (the two-fold) and can be
solved explicitly. Taking r → 0 as t → t0 as an initial condition, for all t> t0 the solution to (2.24) is
given by

r(t) = α(t − t0), θ (t) =
(
β

α
ln(t − t0) + C

)
mod 2π , (2.28)

for some C ∈ [0, 2π ). Therefore, the Filippov solution ψa(t), defined in §2a, may be written in polar
coordinates as

ψa(t) = (r(t), θ (t))=
(
αt,

β

α
ln
(

t
a

)
mod 2π

)
. (2.29)

(c) Viable Filippov solutions
The following result shows that orbits emanating from the two-fold either dwell in the repelling
sliding region R for some time, or evolve on Λ for all later times.

Proposition 2.3. Let ϕ(t) = ϕ(t; 0, 0, 0, 0) be a Filippov solution of (2.1) located at the two-fold at t = 0.
Then either: (i) ϕ(t) ∈Λ for all t> 0 or (ii) ϕ(t) ∈ R for some t> 0 and ϕ(t) 
∈Λ for all t> 0.

Proof. First, suppose ϕ(t) ∈ R for some t> 0. Since Filippov solutions to (2.1) can only enter the
repelling region R by passing through the two-fold (illustrated in figure 2), then either ϕ(t) ∈ R for
all t> 0, in which case clearly ϕ(t) 
∈Λ for all t> 0, or ϕ(t) ∈ R on time interval (0, b], and at t = b,
the Filippov solution ϕ(t) is ejected into either x< 0 or x> 0. Suppose without loss of generality
that ϕ(t) enters x< 0. Then, subsequent crossing motion (for all t ≥ 0, it can be shown [12]) is
described by the return map (2.9) starting from ϕ(b). Since ϕ(b) 
∈ ζ , iterations under (2.9) do not
lie on ζ , hence ϕ(t) 
∈Λ for all t> 0.

Second, suppose ϕ(t) 
∈ R for all t> 0. By solving backwards in time, the only way that solutions
can reach the two-fold without intersecting R is through intersections with ζ (illustrated in
figure 3). This is because orbits cannot reach the two-fold by evolving backwards in time on the
attracting sliding region. Nor can solutions reach the two-fold by evolving purely in either the left
half-space (x ≤ 0) or the right half-space (x ≥ 0) because such evolution follows (2.7) and (2.8). The
only remaining possibility is to reach the two-fold via crossing motion. In view of the saddle-type
nature of (y, z) = (0, 0) for (2.9), this can only be achieved along the unstable eigenvector. Therefore
ϕ(t) ∈Λ for all t> 0. �

Now, we introduce the notion of a ‘viable’ Filippov solution to represent an orbit that is robust
for the purpose of forward time numerical simulation. Any orbit that evolves from a point in R,
simulated using discretization or by modelling the switch using hysteresis, time-delay or noise, is
likely to be immediately ejected into either x< 0 or x> 0. In view of proposition 2.3, any simulated
orbit that arrives at the two-fold is likely to subsequently evolve on Λ (or at least very near Λ), as
observed in [16]. Indeed, perturbations of a planar two-fold by hysteresis, time-delay and noise
studied in [19] confirm that perturbed systems follow Filippov solutions provided they do not lie
on a repelling sliding region.

Definition 2.1. A Filippov solution is said to viable if it does not intersect (or travel along) a
repelling sliding region in forward time.

For the system (2.1), ϕ(t; X0, t0) is viable if and only if, for all t> t0, ϕ(t; X0, t0) 
∈ R. The idea
is that viable Filippov solutions are the most relevant in real systems or in simulations. The last
result of this section follows immediately from proposition 2.3 and provides us with a complete
characterization of viable Filippov solutions to (2.1) that pass through the two-fold.

Corollary 2.1. Let ϕ(t) = ϕ(t; 0, 0, 0, 0) be a Filippov solution of (2.1) that is located at the two-fold at
t = 0. Then ϕ(t) is viable if and only if ϕ(t) =ψa(t), for some a.
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3. Deterministic global dynamics
The vector field near a generic invisible two-fold in a three-dimensional system can be
transformed to

Ẋ =
{

FL(X) + GL(X), x< 0,

FR(X) + GR(X), x> 0,
(3.1)

where FL and FR are the constituents of the normal form (2.2), and

GL,R(X) = (O(x, |y, z|2),O(|X|),O(|X|)) (3.2)

represent higher-order terms.
As described in [16], there exists a surface Λ̃ (that coincides with Λ in the limit |X| → 0) on

which viable Filippov solutions to (3.1) evolve. This surface intersects x = 0 with y> 0 on a curve
ζ̃ that matches ζ to first order. We let ψ̃a(t) denote a viable Filippov solution to (3.1) with ψ̃a(0) = 0
and ψ̃a(a) ∈ ζ̃ .

Next, in §3a, we define the asymptotic phase for orbits of (3.1), study the associated isochrons
in §3b, and find times of return to the discontinuity surface in §3c.

(a) The asymptotic phase of an orbit
Let us suppose that (3.1) has a stable periodic orbit Γ of period τ such that orbits emanating
from the two-fold on Λ̃ approach Γ . Examples are given below and also in [16]. In the examples
considered below, Γ has exactly two intersections with the discontinuity surface, one with y> 0
and one with y< 0. We use the intersection point with y> 0 as a reference point with zero phase.

Let ϕ̃(t; X0, t0) be a Filippov solution to (3.1) that limits to Γ as t → ∞. The phase of ϕ̃, relative to
a reference time T that is assumed to be sufficiently large that the orbit lies close to Γ , is defined as

φT = 2π (T − sT)
τ

mod 2π and sT = max
t≤T

[x(t) = 0, y(t)> 0]. (3.3)

Note that sT ≤ T is the previous time at which the orbit lies on x = 0 with y> 0. The ‘mod 2π ’
ensures φT = [0, 2π ), but is almost redundant, because the orbit is close to Γ and so T − sT is
unlikely to be greater than τ . Assuming the forward orbit of X0 is unique and converges to Γ , the
asymptotic phase of X0 is defined as

φ = lim
T→∞

φT. (3.4)

(b) Isochrons
An isochron is a set of points with the same asymptotic phase [1]. Isochrons were introduced
by Winfree in [20] and shown to be (n − 1)-dimensional Ck manifolds for n-dimensional Ck vector
fields by Guckenheimer in [21]. Isochrons of the three-dimensional piecewise-smooth system (3.1)
are therefore two-dimensional piecewise-smooth manifolds. Since we are only concerned with
orbits that spiral out from the two-fold, it suffices to consider the intersection of the isochrons of
(3.1) with Λ̃. Figure 5 shows the intersection of five isochrons with Λ̃, produced using

GL(X) = GR(X) = −X. (3.5)

The surface Λ̃ was computed by fitting a mesh to 1000 numerically computed forward orbits.
The stable periodic orbit Γ forms the boundary of this surface. The isochrons were computed
by interpolating between computed points on the forward orbits and correspond to φ = 2πk/5
for k = 0, . . . , 4. This method is described by Winfree in [1]. More sophisticated methods for
computing isochrons are discussed in [22,23].
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Figure 5. The intersection of five isochrons with the surface Λ̃ for the system (3.1) with (2.6) and (3.5). The phases of the
isochrons are indicated. (Online version in colour.)
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Figure 6. The return time function f for the system (3.1) with (2.6) and (3.5).

The isochrons accumulate at the two-fold where the asymptotic phase is undefined. The two-
fold is a phaseless point and the basin of attraction of the two-fold, which is a three-dimensional
region, is a phaseless set.

(c) Times of return to the discontinuity surface
Here, we define a return time function f for the curve ζ̃ . First note that ψ̃a(a) ∈ ζ̃ by definition.
Then, for any a> 0, let t = f (a)> a be the next time at which ψ̃a(t) ∈ ζ̃ . Figure 6 shows a plot of f
using (2.6) and (3.5) and was computed by numerical simulation.

For small a, f (a) ≈μa, because near the two-fold the higher-order terms GL and GR have little
effect and the return time is μa for the normal form (2.1), as stated in §2a. For large a, ψ̃a(t) is
located near Γ and so f (a) ≈ a + τ .

In §4, we use f to extrapolate the probability density function for φT from points near the
two-fold to points near Γ .
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4. Stochastic dynamics and phase randomization
Here, we study a stochastic perturbation of (3.1) defined by the three-dimensional stochastic
differential equation

dX(t) =
{

FL(X(t)) + GL(X(t)), x(t)< 0
FR(X(t)) + GR(X(t)), x(t)> 0

}
dt + εD dW(t), (4.1)

where W(t) is a standard three-dimensional Brownian motion, D is a 3 × 3 matrix of constants,
and 0 ≤ ε� 1 represents the noise amplitude. Given a sample solution to (4.1), ϕ̃ε(t; X0, 0), and a
time T, we define sT and φT by (3.4) in the same manner as for the deterministic system (3.1).

Here we show that the asymptotic phase is highly randomized for sample solutions to (4.1)
that pass close to the two-fold before approaching a stable periodic orbit. We provide numerical
evidence for this in §4a, then derive an approximation to the phase distribution in §4b. To illustrate
the results, we use (2.6) and two choices for GL and GR, namely (3.5) and

GL(X) = GR(X) = (−x3, −y3, 0), (4.2)

because they provide substantially different phase distributions. With different values of V− and
V+ and different choices for GL and GR, we have observed similar results.

(a) Sample solutions and phase randomization
A sample solution to (4.1) using (2.6) and (3.5) is shown in figure 7a. The initial point is X = (0, 1, 1),
and we denote this solution as ϕ̃ε(t; 0, 1, 1, 0). The deterministic solution ϕ̃(t; 0, 1, 1, 0) slides into
the two-fold in a time t0 = 3.0445 (to four decimal places). The perturbed solution ϕ̃ε(t) initially
follows a random path close to ϕ̃(t) near the discontinuity surface. Then while t ≈ t0, the perturbed
solution ϕ̃ε(t) is located near the two-fold. It is during this brief period that the order-ε noise has
an order-1 influence on the location and phase of ϕ̃ε(t) at later times. Next ϕ̃ε(t) spirals outwards.
The initial portion of this spiralling motion is close to the two-fold, and so the higher-order terms
GL and GR have little influence. At later times, ϕ̃ε(t) is located relatively far from the two-fold.
Here GL and GR are important and ϕ̃ε(t) approaches the stable periodic orbit of (3.1), Γ .

We computed 104 sample solutions analogous to the solution shown in figure 7a (i.e. with the
same initial point and parameter values). Figure 1a shows a histogram of the phase φT of these
solutions. Here we used T = 15, because transient dynamics appears to have decayed by this time.
We note that the phase is roughly uniformly distributed on [0, 2π ).

Figure 7b shows a sample solution using (4.2) instead of (3.5). As in figure 7a, the solution
approaches the two-fold (the deterministic sliding time is t0 = 2.9763, to four decimal places),
then spirals out towards a stable periodic orbit Γ . Figure 1b shows a histogram of the phase φT of
104 sample solutions, using T = 40. Again, the phase is highly random, but, in this case, the phase
distribution is not well approximated by a uniform distribution. A phase of φT ≈ 3π/2 appears to
be about twice as likely as a phase of φT ≈ π/2. In further simulations (not shown) with different
values of ε and T, we observed similar phase distributions to those shown in figure 1.

In §4a, we combine the polar coordinate description of the local dynamics (given in §2b) with
the global return time function f (given in §3c) in order to construct approximations to the phase
distributions of figure 1.

(b) The probability distribution of the asymptotic phase
Let X0 ∈ R

3 be such that the deterministic forward orbit of this point ϕ̃(t; X0, 0) is located at the
two-fold at some time t0 > 0. For sample solutions ϕ̃ε(t; X0, 0), we are only interested in the phase
φT at large values of T (in order to adequately approximate the asymptotic phase φ) but our
analysis requires considering all T> t0.

For any T> t0, let pT(sT) denote the probability density function for the value of sT (the
previous time of intersection with the discontinuity surface at a point with y> 0). We begin
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Figure 7. (a) A typical sample solution, both in phase space and as a time series, for (4.1) with (2.6) and (3.5) using D= I
and ε= 0.001. (b) A typical sample solution using instead (4.2). Both solutions start at X = (0, 1, 1), pass near the two-fold
X = (0, 0, 0), then approach a stable periodic orbitΓ . The solutions were computed using the Euler–Maruyamamethod with
a step-size of�t = 10−5. (Online version in colour.)

by explaining that for intermediate values of T − t0, specifically ε� T − t0 � 1, it is suitable to
assume that sT − t0 has a reciprocal probability distribution, that is,

pT(sT) = 1
ln((T − t0)/(f −1(T) − t0))(sT − t0)

. (4.3)

Since the noise amplitude ε is small, if T − t0 � 1 then an arbitrary sample solution ϕ̃ε(t) will lie
near the two-fold with high probability. Thus for the purposes of computing sT, we can ignore the
higher-order terms GL and GR. Also if ε� T − t0, then with high probability an arbitrary sample
solution will lie sufficiently far from the two-fold that for the purposes of computing sT we can
ignore the noise. Therefore, here it is suitable to restrict our attention to the normal form (2.1), and
we work with this system in polar coordinates (2.24).

Any solution to (2.24) that limits to the two-fold as t → t0 (with t> t0) is given by (2.28) for
some C ∈ [0, 2π ). The system (2.24) is independent of θ , which implies we should treat C as a
random variable with a uniform distribution on [0, 2π ).

Given C, we can calculate sT by using (2.28) to solve θ (t) = 0 for sT. We write (β/α) ln(T − t0) =
2πn + θ̂ , for some n ∈ Z and θ̂ ∈ [0, 2π ). By (2.28), if 0 ≤ C< 2π − θ̂ , then

β

α
ln(sT − t0) + C = 2πn, (4.4)

and if 2π − θ̂ ≤ C< 2π , then
β

α
ln(sT − t0) + C = 2π (n + 1). (4.5)

By (4.4) and (4.5), the assumption that C is uniformly distributed implies that ln(sT − t0) is
also uniformly distributed. Therefore, in this approximation, sT − t0 has a reciprocal probability
distribution as given by (4.3).
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Figure 8. Plots of f n, using n= 10, where f is the return time function defined in §3c. Panel (a) corresponds to (3.5), for which
t0 ≈ 3.0445, and we used T = 15. Panel (b) corresponds to (4.2), for which t0 ≈ 2.9763, and we used T = 40.

As sample solutions ϕ̃ε(t) continue to evolve outwards from the two-fold, because there are
no other singular points for solutions to encounter, the noise only has the effect of diffusing
intersection times sT by a small amount. Therefore, in order to approximate pT for larger values
of T> t0, we can again ignore the noise (as long as T is not so large that the contribution of the
accumulated small diffusive effects is significant). In this approximation, pT can be expressed in
terms of pf −1(T) by iterating the density under f , specifically

pT(sT) = pf −1(T)(f
−1(sT))

df −1

dsT
. (4.6)

Iterating n times gives

pT(sT) = pf −n(T)(f
−n(sT))

df −n

dsT
. (4.7)

We can therefore approximate pT for a large value of T by using (4.7) with a value of n that is
sufficiently large that f −n(T) − t0 is small, and so the reciprocal probability density function (4.3)
can be used for pf −n(T). This is the manner by which we obtained the two approximations shown
in figure 1, using n = 10 in both cases. The iterative procedure (4.7) was performed numerically,
because analytic expressions for f appear to be unavailable.

Figure 8 shows plots of f n for both (3.5) and (4.2). We note that if f n(a) is an affine function
of ln(a) then our procedure generates a uniform distribution for pT. Indeed, in figure 8a, f n is
indistinguishable from an affine function on the given scale and so, in figure 1a, the distribution
is approximately uniform. In figure 8b, f n has a notable nonlinearity, and, for this reason, the
distribution in figure 1b is significantly non-uniform.

5. Desynchronizing a collection of smooth oscillators
Now suppose that we wish to break the synchrony of a collection of coordinated oscillators. In [8],
this is achieved by applying a control that pushes the state of the oscillators towards an unstable
equilibrium, where small random perturbations efficiently randomize the phase of the oscillators.
Upon removal of the control action, each oscillator returns to the original regular periodic motion
but now the oscillators are desynchronized. Here we propose a ‘fast’ method to achieve this, using
a two-fold as the phase singularity rather than an equilibrium; in that case there is no slowing of
the dynamics as the oscillators return to periodic motion. The example we give is intended to
illustrate this concept in a simple way, with practical applications left to future work.
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Figure 9. The dynamics of (5.2) for t1 < t< t2 (when the control is active) in the absence of noise using (5.5), t1 = −5,
and t2 = 2.5. The evolution of x2 + y2 = 1—the periodic orbit of (5.1)—is indicated for t1 < t< 0. As we evolve the set
x2 + y2 = 1, it contracts to thediscontinuity surface at t ≈ −3.7, then to the two-fold at t = 0. For 0< t< t2, viable Filippov
solutions emanating from the two-fold evolve on Λ̃. (Online version in colour.)

To illustrate our method, we assume the oscillators are governed by the planar system

(ẋ, ẏ) = F(x, y) = (x − y − x(x2 + y2), x + y − y(x2 + y2)), (5.1)

and apply a discontinuous control that creates a two-fold singularity. In principle, this can be
achieved with any system exhibiting a stable periodic orbit, including excitable systems such as
the FitzHugh–Nagumo equations [8].

Consider the two-dimensional stochastic differential equation

(dx(t), dy(t)) = (F(x(t), y(t)) + H(t − t1)H(t2 − t)c(t)) dt + ε dW(t), (5.2)

where W(t) is a standard two-dimensional Brownian motion, and 0 ≤ ε < 1 is the noise amplitude.
The function H is the Heaviside function and t1 and t2 are the start and end times of the
control action c(t). In order to generate a generic two-fold, c(t) must be discontinuous and
time-dependent. Here we show that the piecewise-linear form

c(t) =
{

(a1t, a2), x ≤ 0,

(a3t, a4), x> 0,
(5.3)

where a1, a2, a3, a4 ∈ R are control parameters, is sufficient for our purposes. An identification of
more sophisticated functions providing superior performance is beyond the scope of this paper.

By treating the time t as a third dynamic variable, i.e. with ṫ = 1, the system is three-
dimensional and is piecewise-smooth when t1 < t< t2 with the discontinuity surface x = 0. The
fold lines on x = 0 (where ẋ = 0) are y = a1t and y = a3t, so the origin (x, y, t) = (0, 0, 0) is a two-fold.
Via elementary calculations, we find that we need a2 < a1, a3 < a4 and a1 
= a3 in order for the two-
fold to be generic and for both folds to be invisible, as in (2.1). We also require a1 < a3 in order to
have V−, V+ < 0 and V−V+ > 1, as in (2.5). In summary, we require

a2 < a1 < a3 < a4. (5.4)
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Figure 10. Panel (a) shows five sample solutions to (5.2) using (5.5), t1 = −5, t2 = 2.5, ε= 0.001 and the initial condition
(x, y)= (1, 0) at t = −15. The control (5.3) causes the solutions to pass close to a two-fold at t = 0, effectively randomizing
the phase. Panel (b) shows one of the solutions in phase space, with the location of the solution highlighted at key times. The
sample solutionswere computed using the Euler–Maruyamamethodwith a step-size of�t = 10−5. (Online version in colour.)

After some experimentation, we found the values

a1 = −0.2, a2 = −1, a3 = 0.2 and a4 = 1 (5.5)

to be particularly effective. With smaller values of the ai, larger negative values of t1 are required
in order for the control to direct orbits into the two-fold; in that case the phase randomization is
not achieved as quickly. With larger values of the ai, we observed distributions of the asymptotic
phase that were substantially non-uniform; in that case the control does not ‘fully randomize’
the phase.

We require t1 < 0 and |t1| to be sufficiently large that all points on the periodic orbit of (5.1)
are directed into the two-fold from t = t1 to t = 0. The size of the set of all points (x, y) that are
directed into the two-fold increases with |t1|, and with (5.5) this set contains the periodic orbit for
all t1 ≤ −4.1, approximately. For this reason, we use t1 = −5. The evolution of the periodic orbit
from t = t1 to t = 0 is shown in figure 9.

Finally, we would like the value of t2 > 0, at which time the control is turned off, to be small
so that the phase randomization is achieved relatively quickly. However, with smaller values
of t2 solutions lie nearer to (x, y) = (0, 0) at t = t2. Since this point is an equilibrium of (5.1),
smaller values of t2 cause solutions to dwell near (0, 0) for longer periods of time, and so the
phase randomization is not affected as quickly. Here we use t2 = 2.5 as it proves to be a suitably
intermediate value. In figure 9, the unstable manifold Λ̃ is shown for t = 0 to t = t2.

Figure 10 illustrates the phase randomization using (5.5), t1 = −5 and t2 = 2.5. We see that
the randomization appears to be highly effective. A quantitative comparison of our phase
randomization with other methods remains for future work.

6. Discussion
In this paper, we have studied orbits that pass through an invisible two-fold (Teixeira singularity)
then limit to a stable periodic orbit. We considered the presence of small noise in order to
remove the ambiguity of evolution through the two-fold. We found that the phase of the limiting
periodic motion is highly randomized and that the probability distribution of the phase depends
crucially on the nature of the nonlinear dynamics experienced by orbits between the two-fold
and the periodic orbit. By using polar coordinates to describe the motion of orbits as they
initially depart from the two-fold, and a one-dimensional return map to describe the global
dynamics approaching the periodic orbit, we constructed an approximation to the probability
density function of the asymptotic phase that matches well to the results of numerical simulations
(figure 1).
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In §5, we showed how a simple discontinuous control law can generate a two-fold in a smooth
system. We propose that in this fashion the two-fold can be used to desynchronize a collection
of oscillators and that this may have the following advantages to desynchronization using an
unstable equilibrium.

(i) With an unstable equilibrium, the control action must direct the state of each oscillator
close to the equilibrium, and the effectiveness of the randomization correlates with the
accuracy of this action. With a two-fold, however, the control does not need to be as
precise, because it only needs to direct orbits to the basin of attraction of the two-fold.

(ii) With an unstable equilibrium, the effect of the randomization is due to inherent
stochasticity in the system and any artificial randomness in the control law. With a two-
fold, the randomization is inherent in the ambiguity of forward evolution through the
two-fold.

(iii) Orbits dwell near unstable equilibria and so can take a relatively long time to return
to regular periodic motion. With a two-fold there is no slowing of the dynamics, hence
we refer to our desynchronization as ‘fast’ phase randomization. Indeed, in figure 10,
we see that solutions return quickly to approximately regular periodic motion after the
control is turned off. Whether this truly constitutes fast desynchronization requires a
study of the full time for which the control action is required. This and a study of practical
discontinuous control actions remain for future work.

Teixeira’s paper [10] inspired a legacy of intrigue around a specific case of the two-fold
singularity, first studied more generally in [9]. Interest has only increased as its role as a
determinacy-breaking singularity has become more clear [11,16]. This paper begins to reveal the
practical side of these insights, including how two-folds may manifest in physical systems, and
how they might be put to use as tools for control. Little is still known about where two-folds
appear naturally in physical systems. Similarly, little is known about what applications they may
have in control systems, but a role as a phase randomizer is suggested here. Perhaps the obvious
next step is to design implementable control circuits to investigate the practical obstacles and
opportunities that they present.
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Appendix A. Proof of proposition 2.2
Proof. Since ψa(a) ∈ ζ , the y and r-values of ψa(a) are the same; see (2.23). The y-value of ψa(a) is

given by (2.17). By (2.29), the r-value of ψa(a) is equal to αa. By matching these two expressions,
we conclude that α is given by (2.27).

At the beginning of §2b, we showed that, given x< 0 and y ∈ R, if τL > 0 is given by (2.21) and
y0 = y − V−τL, then evolving (2.1) forwards from (0, y0, γ y0) for a time τL takes us to the point
(x, y, z), where x = −Ξ (y, z)/V− (2.15). Moreover, this defines a bijection from the region x< 0,
y ∈ R to the region y0 > 0, 0< τL <−2γ y0.

By (2.24), evolving (r, θ ) = (y0, 0) for a time τL takes us to the point

(r, θ ) =
(

y0 + ατL,
β

α
ln
(
ατL

y0
+ 1

))
. (A 1)

This is a bijection from y0 > 0, 0< τL <−2γ y0 to r> 0, 0< θ < (β/α) ln(1 − 2αγ ) (assuming β > 0).
By substituting (2.21) and y0 = y − V−τL into (A 1) and simplifying, we arrive at (2.25) and (2.26)
for x< 0.
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Similarly, given x> 0 and y ∈ R, let τR < 0 be given by (2.22) and y0 = y − τR. This is a bijection
to y0 > 0, −2y0 < τR < 0, and evolving (2.1) backwards from (0, y0, γ y0) for a time τR takes us to
(x, y, z), where x =Ξ (y, z)/V+ (2.15).

In polar coordinates evolving (r, θ ) = (y0, 0) for a time τR takes us to

(r, θ ) =
(

y0 + ατR,
β

α
ln
(
ατR

y0
+ 1

)
+ 2π

)
, (A 2)

which is a bijection to r> 0, (β/α) ln(1 − 2α) + 2π < θ < 2π . Substituting (2.22) and y0 = y − τR

into (A 2) leads to (2.25) and (2.26) for x> 0.
Finally, by matching the limiting left and right values for θ on the negative y-axis as given by

(2.26), we obtain

θ = β

α
ln(1 − 2αγ ) = β

α
ln(1 − 2α) + 2π . (A 3)

By using the identity μ= (1 − 2αγ )/(1 − 2α) and solving (A 3) for β, we obtain the expression for
β given in (2.27).

This completes the proof, because the last calculation provides continuity of θ (x, y), and by
construction r and θ satisfy the ordinary differential equations (2.24). �
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