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Abstract. We provide indirect evidence that six axo- 
nemal proteins here referred to as "dynein regulatory 
complex" (drc) are located in close proximity with the 
inner dynein arms 12 and 13. Subsets of drc subunits 
are missing from five second-site suppressors, pf2, 
p f3, suppI3, suD:4, and suppz 5, that restore flagellar 
motility but not radial spoke structure of radial spoke 
mutants. The absence of drc components is correlated 
with a deficiency of all four heavy chains of inner 
arms I2 and 13 from axonemes of suppressors pf2, 

pf3, suppi3, and supp:5. Similarly, inner arm subunits 
actin, p28, and caltractin/centrin, or subsets of them, 
are deficient in pf2, p f3, and supp:5. Recombinant 
strains carrying one of the mutations p f2 ,  p f3, or 
suppy5 and the inner arm mutation ida4 are more 
defective for I2 inner arm heavy chains than the parent 
strains. This evidence indicates that at least one 
subunit of the drc affects the assembly of and interacts 
with the inner arms I2. 

T 
HE movement of Chlamydomonas flagella is gener- 
ated by at least six types of dynein including the outer 
dynein arm, the inner dynein arm I1, and two types of 

inner dynein 12 and I3 (25). Outer dynein arm and inner 
dynein arm I1 are formed by three and two distinct heavy 
chains, respectively, and consist of the same subunits along 
the axoneme (14, 27). In contrast, the inner dynein 12 and 
13 are each formed by two identical heavy chains and consist 
of different heavy chains depending on their location along 
the axoneme (25). Each dynein also comprises a distinct set 
of intermediate and light chains characterized by molecular 
weight ranging from 140,000 to 8,000 (27, 35). 

Two light chains, which are associated with inner arms I2 
and I3, were referred to as actin and Caltractin/centrin, 
respectively, on the basis of physical and chemical properties 
of the two proteins (13, 22, 29). The role of actin and caltrac- 
tin/centrin in other cytoskeletal structures is to transmit ten- 
sile stress and provide Ca++-dependent regulatory mecha- 
nisms, respectively (28, 30). In contrast, the function of the 
same proteins within the inner arm structure has not been 
identified. 

To investigate a possible function of actin and caltrac- 
tin/centrin in the regulation of inner arm movement, we in- 
tended to determine whether the ATPase activity or stabil- 
ity of inner arms 12 and I3 is Ca ++ sensitive in vitro. 
Moreover, we aimed to identify other axonemal proteins that 
interact with actin and caltractin/centrin in vivo. To reach 
these goals we analyzed complexes formed by actin, caltrac- 
tin/centrin, and 12 and 13 inner arm heavy chains that were 
isolated from the outer dynein mutant pf28 (18). We also 
quantitatively analyzed 12 and 13 inner arm deficiency in in- 
ner arm defective mutants (9, 16) and suppressors of flagellar 
paralysis that generate bending of flagella similar to those of 

inner arm mutants (3, 11). These second-site suppressors are 
missing different subsets of six axonemal polypeptides and 
suppress flagellar paralysis of radial spoke mutants without 
restoring the radial spoke structure (11). 

We found that the suppressors are defective for 12 and I3 
inner arm subunits to different extents. We also found that 
the polypeptides missing from the suppressors interact at 
least with inner arms I2 in wild-type strains. Therefore, we 
referred to these polypeptides as "dynein regulatory com- 
plex" (drc). z The absence of drc components combined 
with the deficiency of inner arms 12 generate an extensive 
deficiency of 12 inner arms in recombinant strains carrying 
both suppressor and inner arm mutations. This and other 
evidence described here suggests that actin and caltrac- 
tin/centrin are associated with I2 and I3 inner arms, proba- 
bly forming a linkage between the drc and each of I2 and 13 
inner arms. 

Materials and Methods 

Strains and Culture of Chlamydomonas Cells 
Chlamydomonas strains were obtained from the Chlamydomonas Genetics 
Center (Duke University, Durham, NC) and the laboratory of David Luck 
(Rockefeller University, New York). Nomenclature and phenotype of the 
strains used for analysis of axonemal components are listed in Table I. 

The mutant suppf5 was characterized at the beginning of this study and 
was isolated as a motility mutant following a mutagenesis of the wild-type 
strain 137c with nitrosoguanidine (8). It has slower motion than a wild-type 
strain and lacks four of the six axonemal polypeptides that compose the drc 
(Fig. 1). These four polypeptides are identical to those missing in the mutant 
pf3 (Table II). The motility of the mutant pf3, however, is slower than that 

1. Abbreviation used in this paper: drc, dynein regulatory complex, 

�9 The Rockefeller University Press, 0021-9525/92/09/1455/9 $2.00 
The Journal of Cell Biology, Volume 118, Number 6, September 1992 1455-1463 t455 



Table L Chlamydomonas Strains Used for Analysis of Axonemal Components 

Inner arm heavy Linkage group of Defective system 
Strain Motility of flagella Flagellar length* chain deficiency defective gene in the axoneme 

,/zm 

137 (wild-type) 12.0 (1.5) 
pf28 (oda 2) Slow motion 9.6 (1.1) XI outer arms 
pf22 None 4.0 (1.2) 2, 3' I inner arm 12, 13 
ida4 Slow motion 10.5 (1.5) 2', 2 XII inner arm I2 
pf23 None 4.0 (1.0) lc~, 1/3, 2', 2, 3' XI inner arm I2, 13 
pf2 Slow motion 8.9 (1.3) XI drc 
pf3 Slow motion 9.1 (1.4) VIII drc 
supp:3 Wild-type like motion 12.6 (1.6) drc 
sup#4 Wild-type like motion 12.2 (1.5) drc 
sups.r5 Slow motion 11.0 (1.3) drc 
ida4p:2 Slow motion 7.6 (0.6) 2', 2, 3' drc 

inner arm 12, I3 
ida4pr Slow motion 7.5 (0.8) 2', 2, 3' drc 

inner arm 12, I3 
ida4supp:3 Slow motion 10.0 (1.3) 2', 2, 3' drc 

inner arm 12, I3 
ida4suppr4 Slow motion 11.1 (1.3) 2', 2 drc 

inner arm I2 
ida4suppf5 Slow motion 9.1 (1.1) 2', 2 drc 

inner arm I2 

* Flagellar length is expressed as an average of 15 determinations. Standard deviation is reported in parenthesis. 

of the mutant suppf5. The analysis of tetrads from a cross between the mu- 
tant pf3 and suppf5 reveals that they are not alleles; ratios of parental di- 
type/nonparental ditype/tetratype are 15:3:18. 

All recombinant strains carrying the mutation suppf5 in combination 
with each of radial spoke mutations pf 1 and pf 14 (10) and central pair mu- 
tations pfl5 and pfl8 (1) have motile flagella. Therefore, the mutation 
supe/5 suppresses flagellar paralysis of radial spoke and central pair mu- 
tants. 

The mutations supp/3, suppf4, pf2, and pf3 suppress flagellar paralysis 
of the mutants pf 1 and pf 14 but not the paralysis of the mutants pf 15 and 
pf 18 (11). If the same criterion, namely observation of flagellar beating, was 
adopted in the analysis of suppression by the mutants supe/3, suppf4, pf2, 
pf3 and supp/5, then the range of suppression of the mutant supp/5 is wider 
than that of the mutants supp/3, supp:4, pf2 and pf3. 

Each of the recombinant strains was isolated from nonparental ditype 
tetrads with the exception of pf2ida4 that was isolated from a tetratype 

Figure I. Autoradiograms of 3sS-labeled axonemal polypeptides resolved by two-dimensional electrophoresis. Only portions of the origi- 
nal maps resolving polypeptides in the 130,000-15,000 molecular weight range are shown. The gels are oriented with basic polypeptides 
on the left. (a) Wild-type polypeptides. Solid triangles and numbers indicate single or group of polypeptides. Subsets of them are missing 
in the mutants pf2, pf3, supp/3 supp/4, and suppr (Table II). (b) suppy5 polypeptides. Open triangles indicate the positions of wild-type 
polypeptides missing in suppf5. Other differences between these two maps were not indicated because they were not reproduced in every 

experiment. 
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Table II. Deficiency of Axonemal Polypeptides in 
the Suppressors 

supvi5* Component Mr x 10 -3 pf2~ pf3~ supr suppr4* 

- - w  1 1 0 8  + - -  + + 

- -  2 8 3  + - + + 

+ 3 65 - + + + 
+ 4 60 -- + -- + 
--w 5 40 - -- + - -  

- -  6 2 9  - -  - -  + - -  

* This study. 
* Huang et al. (1982). 
w These components were resolved in two spots differing in apparent molecu- 
lar weight and isoelectric point. 

tetrad. Tetrads were prepared by standard methods (5). Each recombinant 
was defective for all axonemal polypeptides that are defective in the parent 
strains. 

Cell culture and labeling with [35S]sulfuric acid was performed on solid 
medium (25). 

Electrophoresis in Polyacrylamide Gels 

Electrophoresis of dynein heavy chains was performed as described (27). 
A discontinuous slab gel composed of 3.2 % polyacrylamide stacking layer 
and a 3.6-5 % polyacrylamide resolving layer was used. The slab did not 
contain urea. 

Two-dimensional electrophoresis of axonemal proteins was performed as 
described (26). Samples were applied at the anode of a 12 x 14 x 0.075 
cm gel containing ampholines. Nonequilibrium pH gradient electrophoresis 
was run for 17 h at 1.8 mA. Polypeptide maps were obtained through the 
application of a 0.6 x 14 cm strip of the ampholine-gel on a slab gel contain- 
ing 4-11% polyacrylamide (20). 

Quantitative Analysis of Axonemal Components 

Quantitation of axonemal components was performed directly with image 
data obtained from the PhosphorImager (Molecular Dynamics, Sunnyvale, 
CA). The PhosphorImager is 10 times more sensitive than an X-ray film 
and gives a linear response in a range of 10:100,000 d.p.m. 

Other Procedures 

Determination of flagellar length (25), preparation of flagella through the 
exposure of cells to pH 4 (25), preparation of dynein fractions by exposure 
of the axoneme to high ionic strength (24), sedimentation of dynein frac- 
tions in sucrose gradient (27), isolation of inner arm heavy chains on 
hydroxyapatite column (23), assay of ATPase activity (24), and immuno- 
blots (21) were performed as described previously. 

Nomenclature 

The gene encoding Chlamydomonas caltractin (12) is identical to that en- 
coding Chlamydomonas centrin with the exception of one conservative sub- 
stitution (J. L. Salisbury, Mayo Clinic Foundation, Rochester, MN, per- 
sonal communication). Therefore, we referred to one inner dynein arm light 
chain as caltractin/centrin. 

Results 

Actin and Caltractin/Centrin Form a Complex with at 
Least One Inner Dynein Arm Heavy Chain 

We intended to confirm that actin and caltractin/centrin are 
associated with I2 and/or I3 inner dynein arm heavy chains 
and determine whether the stability or the activity of the 
complexes is Ca ++ sensitive. 

To confirm that actin, caltractin/centrin, and 12 and I3 in- 
ner arm heavy chains are part of the same complexes we ana- 
lyzed a protein fraction derived primarily from I2 and I3 in- 

Figure 2. Electrophoretograms of 3sS-labeled 
axonemal polypeptides of the mutant pf28. A 
portion of the original autoradiogram resolving 
polypeptides in the 500,000--400,000 molecu- 
lar weight range is shown. Equal amounts of 
radioactivity were analyzed. (Le~ lane) Un- 
fractionated axonemal polypeptides (Right 
lane) I1S fraction obtained by extraction of ax- 

onemal polypeptides, followed by sucrose gradient sedimentation 
both in the presence of 0.5 M NaC1 and 0.1 mM EGTA. Bands re- 
ferred to as lc~, 18, 2" 2, 3, and 3' are inner dynein arm heavy 
chains. 

ner arms. The protein fraction was extracted from axonemes 
of the outer dynein arm mutant pf28 and purified by 
sedimentation on a sucrose gradient. Inner arm heavy chains 
12 and 13 sediment as l lS  particles and remain associated 
with proteins of lower molecular weight (27). An electro- 
phoretogram resolving axonemal polypeptides of molecular 
weight close to 500,000 shows that the protein fraction con- 
taining l lS  particles is enriched in 12 and 13 heavy chains 
2', 2, 3, and 3' and does not contain I1 heavy chains lot and 
1B (Fig. 2). Although the ratio of each heavy chain to the 
others in the 1 IS fraction is different than in the axoneme, 
the l lS  fraction is suitable for an analysis of all four heavy 
chains together. 

We identified actin and caltractin/centrin by immunoblots 
of all the polypeptides contained in the 11S protein fraction 
(Fig. 3 a). A mAb against chicken gizzard actin (17) (Fig. 
3 b) and a polyclonal antibody to Chlamydomonas caltractin 
(13) (Fig. 3 c) bind actin and caltractin/centrin, respectively. 
A polyclonal antibody against chicken back muscle bound 
specifically to actin in a similar experiment (not shown). 
This evidence confirmed that both actin and caltrac- 
tin/centrin are bound to at least one of the I2 and 13 inner 
arm heavy chains. Axonemai actin may not form long fila- 
ments because rhodamine-labeled phalloidin (4) does not 
bind to the axoneme in detectable amounts (result not 
shown). 

Extraction and isolation of the l lS  protein fraction used 
for the immunoblots was performed at high ionic strength, 
in 0.5 M NaC1, 0.1 mM EGTA, and 10 mM Tris C1 (pH 7.4) 

Figure 3. Electrophoretogram 
of axonemal polypeptides of 
the mutant pf28 and corre- 
sponding immunoblots ob- 
tained with antibodies specific 
for actin or caltractin. (Lane 
a) Coomassie blue-stained 
polypeptides contained in an 
11S protein fraction. The po- 
sition of molecular weight 
standards is indicated on the 
left side. Two aliquots of the 
same 11S fraction were elec- 
trophoresed in parallel and 
then transferred to nitrocellu- 
lose. (Lane b and c) Autora- 

diograms of the corresponding immunoblots obtained using specific 
antibodies and 125I- labeled secondary antibodies. (Lane b) Immu- 
noblot incubated with anti-actin antibodies. (Lane c) Immunoblot 
incubated with anti-caltractin antibodies. 
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Figure 4. Sedimentation profile and electrophoretograms of 35S- 
labeled polypeptides from pf28 axonemes. (a) Sedimentation in a 
5-20% sucrose gradient of a protein fraction previously chro- 
matographed on a hydroxyapatite column and then dialyzed against 
a solution of low ionic strength in the presence of 0.1 mM EGTA. 
The direction of sedimentation was from right to left. (al) Proteins; 
(A) Mg-activated ATPase activity. (+) Mg-activated ATPase in the 
presence of 0.2 mM Ca ++. (b) Electrophoretograms of all poly- 
peptides contained in odd fractions 1-31. Triangles indicate actin, 
p28, and caltraetin/centrin cosedimenting with inner arm heavy 
chains. The position of molecular weight standards is indicated on 
the left side. 

(27). To determine whether the actin and caltractin/centrin, 
both Ca ++ binding proteins, bind to inner arm heavy chains 
or regulate the ATPase activity of the l lS complexes in a 
Ca++-dependent manner, we isolated the 11S particles by a 
different procedure. 

The I2 and I3 inner ann heavy chains were isolated by 
chromatography on hydroxyapatite column and then sedi- 
merited under conditions of low ionic strength (20) in the 
presence of 0.1 mM EGTA or (3.1 mM CaC12. These condi- 
tions led to the isolation of 11S fractions that are suitable for 
ATPase activity assays and similar in purity to those ob- 
tained by sedimentation at high ionic strength. An llS pro- 
tein fraction containing Mg+*-activated ATPases was iso- 
lated in a sucrose gradient containing 0.1 mM EGTA, 10 
mM Tris C1 (pH 7.4) (Fig. 4 a). Electrophoretograms of 
polypeptides contained in odd fractions of the sucrose gra- 
dient show that the 11S peak is formed by dynein heavy 
chains, actin, and caltractin/centrin (Fig. 4 b). A 28,000 mo- 
lecular weight polypeptide, referred to as p28, is also a com- 
ponent of the 11S complexes. Tubulin subunits and other mi- 

nor polypeptides are contaminants because they do not form 
a sedimentation peak coincident to that of the inner arm 
heavy and light chains. Inner arm heavy chains 2', 2, 3, and 
3' were identified as components of the 11S peak through gel 
electrophoresis resolving the inner arm heavy chains (not 
shown). 

A similar l lS protein fraction was obtained when the 
sedimentation on a sucrose gradient was performed at low 
ionic strength in the presence of 0.1 mM CaC12 (not 
shown). Therefore, the association between 12 and I3 heavy 
chains and the set of proteins including actin, p28 and 
caltractin/centrin is Ca ++ insensitive and stable at high and 
low ionic conditions. 

Mg§247 ATPase activities of l lS particles are in- 
sensitive to Ca ++ ions. Mg§ ATPase activities of 
12 and I3 inner arm heavy chains are similar in the absence 
or presence of 0.2 mM CaCI2 (Fig. 4 a). 

Actin, Caltractin/Centrin, and p28 Bind to Inner Arm 
Heavy Chains and Other Axonemal Subunits 

To determine whether actin, p28, and caltractin/centrin as- 
sociate with all I2 and I3 inner arm heavy chains or a subset 
of them, we analyzed qualitatively and quantitatively axone- 
real polypeptides of three inner arm mutants, pf22,  ida4, 
and pf23 that are defective for subsets of heavy chains 2; 2 
and 3' (16, 25). 

The mutants pf22, ida4, and pf23 were compared to a 
wild type strain. An electrophoretogram resolving dynein 
heavy chains (Fig. 5) shows that the mutantpf22 lacks heavy 
chains 2 and 3'. The mutant ida4 lacks heavy chains 2' and 
part of heavy chain 2 and finally the mutantpf23 lacks heavy 
chains 2" 2 and Y. 

Axonemal polypeptides of molecular weight lower than 
200,000 from the mutants pf22, ida4, and pf23 were 
resolved by two-dimensional gel electrophoresis. The posi- 
tions of actin, p28, and caltractin/centrin in the two-dimen- 
sional maps were identified by comparison with a map resolv- 
ing the low molecular weight components of an 11S protein 
fraction from the mutant pf28 (Fig. 6 a; see Fig. 4 for the 
characterization of the 11S fraction). Actin, p28, and caltrac- 
tin/centrin are present in axonemes of the mutants pf22 and 
pf23 (Fig. 6, b and d). In contrast, p28 is virtually absent 
from axonemes of the mutant ida4 (Fig. 6 c). 

Ratios between the radioactivity values of actin, p28, and 
caltractin/centrin and the radioactivity values of an insoluble 
axonemai component (26), referred to as s in the maps (Fig. 
6, b-d) are reported in Table III. Multiple gels containing 

Figure 5. Electrophoretograms 
of 35S-labeled axonemal poly- 
peptides of a wild-type strain 
and inner arm mutants pf22, 
ida4, and pf23. A portion of 
the original autoradiogram re- 
solving polypeptides in the 
500,000-400,000 molecular 
weight range is shown. Equal 
amounts of radioactivity were 
analyzed in each lane. Bands 
referred to as 2', 2, 3 and 3' 
are 12 and I3 inner arm heavy 
chains. 
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Figure 6. Autoradiograms of 35S-labeled axonemal polypeptides resolved by two-dimensional electrophoresis. Only portions of the origi- 
nal maps resolving polypeptides in the 55,000-15,000 molecular weight range are shown. The gels are oriented with basic polypeptides 
on the left. (a) Map resolving actin, p28, and caltractin/centrin that are present in an llS protein fraction (see Fig. 4, a and b for the 
characterization of the 11S fraction). The protein p28 is resolved into two components that differ in their isoelectric point. (b) Polypeptides 
from the mutant pf22. (c) Polypeptides from the mutants ida4. (d) Polypeptides from the mutant pf23. Solid triangles indicate the position 
of actin, p28, and caltractin/centrin. Open triangles indicate the positions of wild-type p28 components missing in the mutant ida4. The 
polypeptide labeled s was adopted as internal standard in each sample. 

axonemal polypeptides from wild-type or inner arm mutants 
pf22, ida4, and pf23 were analyzed. 

Both actin and p28 are deficient in all three mutants. 
Caltractin/centrin is deficient in the mutant ida4. No evi- 
dence was found suggesting that actin or p28 or caltrac- 
tin/centrin are associated only to a subset of heavy chains. 

In summary, the mutantpf23 lacks heavy chains 2" 2, and 
3' and is deficient in actin and p28, whereas the mutant ida4 
lacks heavy chain 2" part of 2 and is more deficient for actin, 

p28, and caltractin/centrin than the mutant pf23. Therefore, 
a greater loss of heavy chains as in the mutant pf23 does not 
correlate with a greater deficiency of light chains. Con- 
versely, the lesser loss of heavy chains in the mutant/da4 
does not correlate with a less pronounced deficiency of light 
chains. This evidence and the evidence obtained by the isola- 
tion of llS particles indicate that all three light chains, or a 
subset of them, bind to the axoneme through the heavy 
chains as well as other molecules. 
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Table IlL Quantitative Analysis of lnner Arm Light Chains 

Axoneme 
Strain Actin* p28" Caltractin/centrin* 2D-gels preparations 

Wild-type 3.99 (0.76) 1.49 (0.38) 1.02 (0.36) 7 4 
pf22 0.88 (0.43) 0.45 (0.27) 0.98 (0.34) 3 2 
ida4 0.74 (0.32) 0.08 (0.02) 0.59 (0.23) 4 3 
pf23 1.04 (0.56) 0.35 (0.07) 1.55 (0.46) 5 3 
pf2 2.24 (0.77) 0.94 (0.54) 0.67 (0.30) 4 3 
pf3 1.72 (0.31) 0.61 (0.24) 0.54 (0.16) 5 2 
supp/3 3.30 (0.42) 1.00 (0.35) 0.92 (0.27) 4 3 
suppy4 6.15 (2.31) 1.46 (0.36) 1.10 (0.31) 6 3 
supp/5 1.84 (0.68) 0.81 (0.48) 0.76 (0.45) 10 5 

* Numbers are averages of determinations performed on several two-dimensional gels and ratios between radioactivity values of actin, p28, and caltractin/centrin 
and radioactivity values of an insoluble axonemal component referred to as s. Standard deviations are indicated in parentheses. 

Some Suppressors of Flagellar Paralysis Are 
Inner Arm Mutants 

Second binding sites for actin or p28 or caltractin/centrin 
could be on the tubulin subunits or other axonemal proteins 
that are in close proximity with the inner ann  heavy chains. 
To test the latter hypothesis, we turned to the analysis of a 
group of mutants each lacking a distinct subset of axonemal 
proteins referred to as drc (see Introduction and Materials 
and Methods). 

The position of the drc within the axoneme is unknown but 
an interaction between drc and inner dynein arm subunits is 
suggested by the observation that the suppressors pf2 and 
pf3 generate bending patterns of flagella similar to those of 
inner arm mutants (3). 

Quantitative analysis of  axonemal polypeptides resolved 
by two-dimensional gel electrophoresis revealed that the mu- 
tants pf2, pf3, and suppf5 are defective for actin to approxi- 
mately the same extent. In addition, the mutan tp f3  is defec- 
tive for p28 and caltractin/centrin (Table III). Therefore, the 
lack of drc components 1 and 2 or 3 and 4 was correlated 
with a deficiency of one or three inner arm light chains. 

These deficiencies could not be predicted from qualitative 
analyses of  inner arm components. All four inner arm heavy 
chains 2" 2, 3, and 3' are present in the axonemes of the mu- 
tants pf2, pf3, suppf3, supp~ and supp/5 (Fig. 7). In con- 
trast, quantitative analyses of  electrophoretograms revealed 
that heavy chains 2; 2, 3, and 3' are present in reduced 
amounts in the axonemes and flagella of the mutants pf2, 
pf3, SUppi3, and supef5. The ratios between radioactivity 
values of  combined heavy chains 2', 2, 3, and 3' and radioac- 
tivity values of combined 7 and 1/3 chains of outer arm and 
inner arm I1 (27) are reported in Table IV. 

There is a parallel between these results and the results 
obtained with the quantitative analysis of  actin, p28, and 
caltractin/centrin. The mutants pf3 and supp/5 are the most 
defective for inner arm heavy chains and actin, whereas the 
mutant suppr4 is similar to wild-type. For each strain the 
deficiency of inner arm heavy chains in samples of axonemes 
is similar to the deficiency of the same components in sam- 
pies of flagella. Therefore, inner arm heavy chains were not 
extracted preferentially when flagellar membrane and matrix 
proteins were separated from the axoneme. 

Although we did not identify the axonemal subunits bind- 
ing actin or p28 or caltractin/centrin, we found that the loss 
of components 1 and 2 or 3 and 4 of  the drc is correlated with 
the defect of  assembly of all four heavy chains of  inner arms 

12 and 13. Components 1, 2, 3, and 4 do not appear to be 
components of  inner arms 12 and 13 because they are absent 
when inner arm heavy chains are only deficient. Instead they 
may form a binding site for these arms or modify their 
subunits to make them assembly-competent.  In both cases 
they should interact directly with one or more subunits of the 
inner arms 12 and I3. To test this hypothesis, we determined 
whether the loss of  a subset of  drc components 1, 2, 3, and 
4 affects the assembly of a specific type of inner arm in the 
presence of a preexisting inner a rm defect. 

Molecular Interactions between drc and 
Inner Arm Subunits 
Assuming that drc subunits modify or are contiguous to 
subunits of  inner arms 12 and I3 we expect to find that a 
deficiency of a specific inner arm is enhanced in recombinant 
strains carrying both suppressor and inner arm mutations. 

For our analysis we isolated five recombinants between the 
inner ann mutant ida4 and each of the five suppressors pf2, 
pf3, SUpp/3, suppr4, and supp/5. The mutant ida4 was cho- 
sen instead of the mutant pf22 or pf23 because it is the least 
defective in inner arm heavy chains, lacking only heavy 
chain 2' and being defective for heavy chain 2 (Figs. 5 and 8). 

Recombinant strains pf2ida4, pf3ida4, and supg5ida4 
all show an enhanced loss of inner arm heavy chain 2 com- 
pared to the parent strains. Recombinants pf2ida4 and 

Figure 7. Electrophoretograms of 35S-labeled axonemal polypep- 
tides of wild-type strains and mutants p f2, pf3, SUppI3, suppf4, 
and suppy5. A portion of the original autoradiogram resolving 
polypeptides in the 500,000-400,000 molecular weight range is 
shown. Equal amounts of radioactivity were analyzed in each lane. 
A lower intensity of suppf4 dynein heavy chains was caused by the 
presence of cellular contaminants in the axoneme preparation. 
Bands referred to as 3,+lB, 2', 2, 3, and 3' are dynein arm heavy 
chains. 
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Table IV. Quantitative Analysis of lnner Arm Heavy Chains* 

Wild-type p f 2  p f3  supp/3 suppr4 sup~i5 

Axonemes  0.95 0.81 0.50 0.77 1.11 0.55 
Flagella* 0.95 0.78 0.54 0.78 0.93 0.60 

* Numbers are ratios between radioactivity values of combined heavy chains 
2', 2, 3, and 3' and radioactivity values of combined heavy chains 7 + 1/3. Five 
determinations of radioactivity were performed on the same electrophoreto- 
gram. Standard deviations were lower than 7 % in each case. 
~: Flagella or axonemes were prepared from different cultures. Flagella were 
analyzed to establish that losses of dynein arms did not occur after the solubili- 
zation of flagellar membrane. 

pf3ida4 lack heavy chains 2 and part of 3', whereas 
supp15ida4 lacks heavy chain 2. In contrast, supr/3ida4 is 
only slightly more deficient for heavy chain 2 than ida4 and 
suppi4ida4 is indistinguishable from ida4 (Fig. 8). The loss 
of inner arm heavy chain 2 was not observed by qualitative 
analysis of the recombinant pf2suppi5 (result not shown). 

In summary, ida4, an inner arm mutation that causes a 
partial defect in inner arms 12, combined independently with 
each of the suppressor mutations pf2, pf3, and suppl 5, re- 
sulted in a total loss of inner arms 12. The suppressors pf2, 
pf3, and suppI5, differ from the suppressor suppi3 and 
suppr4 because they are deficient for actin and drc compo- 
nents 1, 2, or 3. Therefore, the loss of heavy chain 2 in ida4 
recombinants is caused by a synergistic effect of defects 
affecting different parts of the inner arm structure. This evi- 
dence supports a model where part of the drc interacts with 
inner arms 12. 

Discussion 

The Presence of Caltractin/Centrin and Actin within 
the Axoneme 

The transition between ciliary and flagellar types of motion 
of Chlamydomonas axonemes can be observed in vivo (31), 
with demembranated cell models (15) and with isolated axo- 
nemes (2). In each case the transition depends on the Ca ++ 
concentration of the medium where the axoneme moves. At 
Ca ++ concentrations above 10 -6 M axonemes assume a 
flagellar type of waveform instead of the usual ciliary type, 
even in the absence of outer dynein arms (3). This indicates 
that the formation of flagellar bending waves is triggered by 
at least one axonemal component that responds to concentra- 

Figure 8. Electrophoretograms of asS-labeled axonemal polypep- 
tides of a wild-type strain, mutants sup~r and ida4 and recom- 
binant strains pf2ida4, pf3ida4, supp/3ida4, suppf4ida4 and 
suppy5ida4. Portions of the original autoradiograms resolving 
polypeptides in the 500,000-400,000 molecular weight range are 
shown. Equal amounts of radioactivity were analyzed in each lane. 
Bands referred to as 2', 2, 3, and 3' are I2 and I3 inner arm heavy 
chains. 

tions of Ca ++ greater than 10 -6 M and regulates the function 
of inner dynein arms. 

The characterization of a calcium binding protein, caltrac- 
tin/centrin from Chlamydomonas basal bodies (13), provided 
suggestive evidence that caltractin/centrin was also an inner 
arm subunit. Caltractin/centrin has the same molecular 
weight and isoelectric point as a protein subunit associated 
with inner dynein arm heavy chains and axonemal actin (23). 
On the basis of these observations we were interested in con- 
firming the identification of caltractin/centrin as an inner 
arm component. In addition we wanted to determine whether 
Ca ++ ions regulate the structure or function of inner dynein 
arms in vitro. 

We have confirmed that caltractin/centrin is associated in 
vitro and in vivo with the heavy chains of inner dynein arms 
I2 and I3, actin, and a third small protein referred to as p28. 
However, a change of Ca ++ concentration does not affect the 
Mg++-activated ATPase activity or the molecular composi- 
tion of caltractin/centrin-containing complexes in vitro. 

Evidence of an association among I2 and I3 inner arm 
heavy chains, actin, p28, and caltractin/centrin was obtained 
by qualitative analyses of polypeptide complexes or axo- 
nemes that were isolated from motility mutants. The analysis 
of polypeptides did not determine whether all three light 
chains bind to each of the heavy chains. As a consequence, 
we do not know if any light chain is located only in the distal 
or proximal part of the inner arm row, as the inner arm heavy 
chains 2' and 3' are (25). Instead, quantitative analyses sug- 
gested that actin, p28, and caltractin/centrin bind to the axo- 
neme through I2 or I3 inner arm heavy chains as well as 
other molecules. 

Axonemal molecules binding actin, p28, and caltrac- 
tin/centrin may be found among components 1, 2, 3, and 4 
of the drc, which interacts at least with I2 inner arm heavy 
chains. Although the lack of drc components 5 and 6 from 
the mutant supps4 does not cause an inner arm defect, the 
absence of components 1, 2, 5, and 6 from the mutant pf3 
is paralleled by the highest deficiency of actin, caltrac- 
tin/centrin, and I2 and I3 inner arm heavy chains. Therefore, 
drc components 1 and 2 may affect the binding of inner arms 
I2 and I3 to the axoneme directly or through an interaction 
with actin and caltractin/centrin. 

We could not obtain direct evidence that actin or p28 or 
caltractin/centrin binds to drc components after extraction 
from the axoneme because we could not isolate complexes 
containing drc components and inner arm light chains. The 
drc components are not dissociated from the axoneme under 
conditions that lead to the solubilization of nearly all other 
axonemal substructures, with the exception of radial spoke 
stalks (26 and G. Piperno, unpublished results). In this re- 
spect the drc differs from outer and inner dynein arms and 
radial spoke heads that were isolated as complexes from 
wild-type axonemes. Nearly all the polypeptides that tenta- 
tively were identified as components of dynein arms and 
radial spoke heads by the analysis of motility mutants (9, 10), 
were identified also as components of the same substructures 
after isolation (26, 23, 24). 

The Location of the "Dynein Regulatory Complex" 
The test for the existence of an interaction between drc and 
dynein arms through the analysis of recombinant strains car- 

Piperno et al. Regulation of Motility in Chlamydomonas Flagella 1461 



rying both drc and inner arm defects has a precedent in the 
analysis of a recombinant carrying supp:l and pf22 muta- 
tions (11). The mutant supp:l has outer dynein arms but 
carries an outer arm/$ heavy chain that is defective. The mu- 
tant pf22 is deficient for outer dynein arms and lacks inner 
arms components 2 and 3' (25). In contrast, the recombinant 
sup~:lpf22, lost completely the outer dynein arms. There- 
fore, more than one structural defect is needed to cause the 
loss of outer dynein arms, which likely are bound to the axo- 
neme through more than one site. Similarly a loss of drc 
subunits in combination with a deficiency of inner arms 12 
resulted in the loss of inner arms 12 in each recombinant 
pf2ida4, pf3ida4, and supp:5ida4. This evidence supports 
the conclusion that the drc and inner arms 12 interact 
directly. 

The enlmncement of inner arm 12 defect in recombinants 
pf2ida4, pf3ida4, and supp:5ida4 is correlated with the 
deficiency of actin in suppressors pf2, pf3, and supp:5 (Ta- 
bles HI and IV). Therefore, suppressor defects that lead to 
loss of 12 inner arms in the recombinants may derive from 
defective interactions between inner arm light chains and drc 
components. These polypeptides may include the defective 
gene products of suppressors pf2, pf3, and supp:5. 

The location of the drc within the axoneme has never been 
determined. We propose that the drc is located in close prox- 
imity with inner arms 12 and 13 since it affects the assembly 
of inner arms 12 and 13 when it is defective. In a position 
close to inner arms 12 and I3, the drc could be located be- 
tween the radial spokes S1 and $2 and the inner arms that 
are a target of the drc activity. 

A complex double-rowed organization of inner arms was 
described by Muto et al. (19) as the result of tilt-series thin 
section EM of Chlamydomonas flagella. Within a repeating 
unit of 96 nm the inner arms appeared to be formed by a row 
of structures consisting of four electron dense structures and 
three pairs of densities located centrifugally and centripe- 
tally, respectively. Muto et al. (19) postulated that both rows 
of densities are formed by inner arm heavy chains. In con- 
trast, we propose that one row of densities contains the drc 
and is located in a centripetal position closer to the radial 
spoke stalks. This hypothesis can be tested through EM of 
axonemes from mutants lacking drc components. 

From its putative location between the stem of inner arm 
I2 and radial spoke stalks the drc may regulate the activity 
of radial spokes. The spokes in bend regions of the axoneme 
form an angle with central pair and doublet microtubules in- 
stead of being perpendicular as they are in straight regions 
of the axoneme (34). The drc also may regulate the motion 
of inner arms 12 and 13 toward the proximal region of the ax- 
oneme (6). Lastly, it may form a specific binding site of inner 
arms 12 and 13 on the surface of doublet microtubules (33). 

The Regulation of Axonemal Motility 
The dynein arms at opposite sides of axoneme bends must 
be in an active and passive state, respectively, as far as con- 
cerns their contribution to the formation of the bend. 
Moreover, axoneme bending occurs between points having 
different rates of active sliding among doublet microtubules. 
These conditions indicate that dynein arm activity is highly 
regulated and may require the function of complexes like the 
drc that interact only with specific types of dynein. 

It was proposed that the mechanisms regulating the forma- 
tion of bending waves may operate primarily through varia- 
tions of mechanical properties of the axonemal substructures 
(7). A position of the drc close to radial spokes and inner 
arms would allow the formation of a physical linkage be- 
tween these substructures. This linkage could generate a 
conformational and not a chemical change of protein sub- 
units of the three systems in response to axonemal bending. 

Within 96-nm sections of each outer doublet actin, 1328 
and caltractin/centrin may regulate the function of both inner 
arms I2 and 13 and the drc. The possible integration with 
other axonemal substructures appears to be a characteristic 
of every intermediate and light chain that was identified as 
an inner arm component (9). A polypeptide referred to as 1' 
(molecular weight 110,000) was found to be missing in the 
radial spoke mutant pf5 in association with the loss of two 
subunits of the radial spoke stalk (10). Moreover, a second 
inner arm component referred to as 2' (molecular weight 
83,000) is missing in all mbo mutants, mutants that are both 
defective for proximal beak-like projections and able to 
generate only flagellar type of bending of the axonemes (32). 
Therefore, several kinds of regulation may be mediated 
through inner ann intermediate and light chains and have in- 
ner arm heavy chains as a main terminal. 

The assembly and/or function of complexes formed by 12 
and I3 inner arm heavy chains, p28, and caltractin/centrin 
may be regulated also through posttranslational modifica- 
tions because each of these subunits is phosphorylated in 
vivo (23). In addition, the presence of caltractin/centrin as 
part of these complexes provides a site for functional regula- 
tion through changes of Ca ++ concentration. Both kinds of 
regulations have the inner dynein arms as a main terminal 
since the outer dynein arms do not have a strong influence 
toward changing the waveforms of flagella (3). 

In summary, we have shown that the drc interacts with in- 
ner arms 12 in vivo. To integrate this observation in a more 
general model of the mechanism generating specific bending 
patterns of flagella, we intend to determine whether the 
radial spokes form a continuous structure with the drc and 
whether Ca ++ ions above 10-6 M level change the signaling 
occurring between radial spokes and inner arms. 
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