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Abstract

Social behavior includes a variety of behaviors that are expressed between two or more individ-
uals. In humans, impairment of social function (i.e., social behavior and social cognition) is seen 
in neurodevelopmental and neurological disorders including autism spectrum disorders (ASDs) 
and stroke, respectively. In basic neuroscience research, fluorescence monitoring of neural activ-
ity, such as immediate early gene (IEG)-mediated whole-brain mapping, fiber photometry, and 
calcium imaging using a miniaturized head-mounted microscope or a two-photon microscope, 
and non-fluorescence imaging such as functional magnetic resonance imaging (fMRI) are increas-
ingly used to measure the activity of many neurons and multiple brain areas in animals during 
social behavior. In this review, we overview recent rodent studies that have investigated the 
dynamics of brain activity during social behavior at the whole-brain and local circuit levels and 
studies that explored the neural basis of social function in healthy, in brain-injured, and in autis-
tic human subjects. A synthesis of such findings will advance our understanding of brain mech-
anisms underlying social behavior and facilitate the development of pharmaceutical and 
functional neurosurgical interventions for brain disorders affecting social function.
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Introduction

Social behavior refers to a variety of behaviors that 
are expressed between two or more individuals of 
the same species and is commonly observed in 
many animal species. Clinically, social behavior is 
often impaired in neurodevelopmental and neuro-
logical disorders including autism spectrum disor-
ders (ASDs) and stroke, respectively. In particular, 
ASDs are characterized by social interaction and 
social communication difficulties and restricted and 
repetitive patterns of behaviors, and the elucidation 

of their pathophysiology is still fragmentary. Although 
the possibilities of treating ASDs with neuropeptides 
such as oxytocin (OT) and vasopressin have been 
studied,1–3) potential molecular targets for pharma-
ceutical treatment of social deficits have not been 
fully identified. Therefore, elucidation of social 
neural circuit mechanisms may bring them within 
a range of application of functional neurosurgery 
such as brain stimulation therapies. Since the neural 
basis of social behavior is complex and widespread 
across the brain, multiple experimental approaches 
including behavioral, genetic, pharmacological, and 
electrophysiological techniques have been employed 
for its understanding.4) Imaging has also recently 
emerged as a technology that can visualize the 
activity of numerous neurons within the brains of 
animals during social behavior. In this short review, 
we first overview some recent findings obtained by 
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applying this powerful methodology to studies 
exploring the neural circuit basis of rodent social 
behavior. We also discuss human clinical and func-
tional imaging studies that sought to investigate the 
neural basis of social function.

Whole-brain Mapping of Neural Activa-
tion Evoked by Social Behavior

Fluorescence monitoring of neural activity optically 
records signals of fluorescent neural activity reporter 
molecules within neurons.5) This technique can be 
classified into two types in terms of the size of the 
areas monitored: whole-brain versus local measure-
ments. Recent whole-brain mapping technologies 
aim to conduct automated, comprehensive mapping 
of changes in brain activity across the brain at the 
cellular level. They are usually achieved by combining 
immediate early gene (IEG)-mediated neuronal activity 
mapping with whole-brain reconstruction using serial 
sectioning or tissue clearing methods.6) IEGs such 
as transcription factor c-fos are a group of genes 
whose expression is rapidly induced in response to 
strong neuronal activation.7) Their expression is 
considered as a molecular hallmark of significant 
neural activity that is observed minutes to hours 
after the increased neural activity during behaviors. 
In practice, activity-dependent IEG expression is 
visualized as IEG promoter-driven expression of 
fluorescent marker proteins in transgenic mice, which 
is considered to reflect most, if not all expression 
patterns of endogenous IEG products. Although 
whole-brain mapping only provides a snapshot of 
brain activity in fixed brain samples and essentially 
lacks fine temporal resolution, it allows investigators 
to simultaneously screen the activation of many 
brain areas, including those that have not been 
extensively investigated in previous studies during 
a particular behavior of interest.

Kim et al.8) visualized whole-brain activation in 
response to sex-specific social behavior using serial 
two-photon tomography and automated analysis of 
IEG expression in male transgenic mice expressing 
green fluorescent protein (GFP) under the c-fos 
promoter. A comparison of GFP expression patterns 
3 hours after the 90 second encounter with a male 
or a female intruder revealed shared and distinct 
activation patterns. Specifically, a wide range of 
projection areas of the main olfactory bulb (MOB) 
and the accessory olfactory bulb (AOB), which are 
involved in processing odorant signals and phero-
monal signals, respectively, were activated by social 
interaction.9,10) The interaction with males elicited 
activation biased toward downstream areas of the 
MOB, while AOB revealed a strong bias toward 

female interaction. The sensing of nonvolatile pher-
omones by the AOB has been proposed to play a 
critical role in mate recognition.11)

Furthermore, the activation of striatopallidothal-
amocortical circuitry, which includes the ventral 
striatum, ventral pallidum, thalamus, and the 
prefrontal cortex, and is considered to be involved 
in behavioral motivation, was observed during inter-
action with female but not with male mice. In the 
hypothalamus, the medial preoptic nucleus and 
ventral premammillary nucleus were only activated 
during interaction with female mice, whereas the 
ventrolateral part of the ventromedial nucleus (VMHvl) 
was activated by interaction with both male and 
female mice. This study demonstrates that IEG-based 
whole-brain mapping can be used for screening of 
brain regions activated by specific aspects of social 
behavior, such as sex discrimination and social 
recognition. Although the temporal resolution of 
this technique is not as high as calcium imaging, 
the information obtained by this technique is valu-
able for subsequent in-depth studies of identified 
brain regions (Fig. 1).

Social behavior at the whole-brain scale has also 
been investigated with non-fluorescence imaging 
techniques. Resting-state functional magnetic reso-
nance imaging (fMRI), which is now widely used 
in research on functional connectivity in the human 
brain, is beginning to be used in investigating 
mouse models of brain disorders, particularly mouse 
models of ASDs.12) Liska et al.13) reported that 
homozygous Cntnap2-deficient mice exhibited 
impaired social investigation and reduced long-
range and local functional connectivity in prefrontal 
and midline brain connectivity hubs. In addition, 
fMRI in awake mice that bear paternal duplication 
of the human chromosome 15q11-13 syntenic region 
revealed whole-brain functional hypoconnectivity 
and absence of fMRI responses to odors of stranger 
mice.14) Although fMRI also lacks cellular resolu-
tion, it may complement IEG mapping by providing 
a more dynamic picture of brain activation in living 
mice.

Monitoring Social Behavior-related 
Local Circuit Activity in Freely  

Moving Mice

Fiber photometry
The fluorescence changes of calcium indicators 

are monitored at the local circuit level in freely 
moving animals by fiber photometry or by minia-
turized head-mounted epi-fluorescence microendos-
copy, or in head-fixed animals by two-photon laser 
scanning microscopy, as reviewed elsewhere.5,15)
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Fiber photometry optically monitors the average 
activity of multiple cells nearby a single optical fiber 
probe. Gunaydin et al.16) were the first to use fiber 
photometry in the study of social behavior. They 
expressed the fluorescence calcium indicator protein 
GCaMP in the ventral tegmental area (VTA) dopa-
minergic (DA) neurons in mice and examined their 
activity during social interaction. DA neurons in the 
VTA are involved in processing of emotionally salient 
stimuli and reward, and project to widespread brain 
regions.17,18) Fiber photometry revealed that these 
neurons responded to contact with either stranger 
mice or novel objects, but the dynamics of their 
activity differed between social interaction and novel 
object investigation. Consistently, the dynamics of 
DA neuron activity could predict social interaction 
and novel object interaction on a trial-by-trial basis. 
Direct optogenetic control of DA neuron activity 
bidirectionally modulated social behavior. Importantly, 
fiber photometry further revealed that activity dynamics 
of DA projection to the nucleus accumbens (NAc) 
could encode social, but not novel object interaction 
(Fig. 1). Direct observation of projection-specific 
activity by fiber photometry thus enables separate 
investigations of their roles in social behavior.

The medial prefrontal cortex (mPFC) is a cortical 
area that has been relatively well studied for its 
involvement in social behavior. Reciprocal connec-
tions with the mPFC involve diverse subcortical 
structures, including the amygdala, the hypothalamus, 
the hippocampus, the NAc, and regions of the cortex 
that process sensory and motor inputs and outputs.19) 
mPFC lesions and optogenetically induced excit-
atory–inhibitory (E/I) imbalance in mPFC have been 
reported to impair social interaction in mice,20,21) 
consistent with altered E/I balance in mouse models 

of ASDs.22,23) Using fiber photometry, Selimbeyoglu 
et al.24) found impaired activity of parvalbumin-ex-
pressing inhibitory neurons during social exploration 
in the mPFC of Cntnap2-knockout mice. Specifically, 
the activity of these neurons was higher during 
interaction with a novel mouse than with a novel 
object in wild-type mice, whereas this increase was 
not observed in Cntnap2-knockout mice. This finding 
suggests that dynamic modulation of E/I balance in 
the mPFC fails to occur during social interaction in 
autism-model mice.

Calcium imaging using a head-mounted miniatur-
ized microscope

Activity of deep brain circuits can be visualized 
by implanting a micro gradient refractive index 
(GRIN) lens into the brain of the mouse and attaching 
to the head a miniaturized fluorescence microscope 
that consists of a built-in optical equipment and a 
complementary metal oxide semiconductor sensor 
(Fig. 2). The head-mounted, integrated microscope 
is small and light enough that it practically does 
not hinder the behavior of the mouse, which is 
favorable for studying social behavior in laboratory 
settings (Fig. 3). Excitation light and emitted fluo-
rescence pass through the micro GRIN lens, enabling 
calcium imaging of the deep brain activity at cellular 
resolution. Although the field of view is typically 
limited to the scale of local circuits containing tens 
to hundreds of neurons, these methods can reveal 
how information associated with the behavior of 
interest is coded by a population of neurons in 
local circuits of particular brain areas on a milli-
second scale temporal resolution.

Pheromonal signals play a central role in the 
recognition of other individuals in mice. Their 

Fig. 1 An illustration of social behavior-related brain circuits discussed in this review. Red dotted arrows show 
projections. AMY: amygdala, AOB: accessory olfactory bulb, HyP: hypothalamus, MOB: main olfactory bulb, mPFC: 
medial prefrontal cortex, mPOA: medial preoptic area, NAc: nucleus accumbens, PL: prelimbic cortex, VTA: ventral 
tegmental area.

Neurol Med Chir (Tokyo) 60, September, 2020



I. Miura et al.432

signals are sensed by a specialized organ called the 
vomeronasal organ located in the nasal cavity, and 
the information is sent to the amygdala via the AOB 
(Fig. 1).25–28) Thus, the amygdala is thought to repre-
sent information regarding other individuals. However, 
how such information is coded by neuronal ensem-
bles in the amygdala was unclear.29,30) Li et al.31) 
imaged neuronal activity of the medial amygdala 
(MeA) during social and sexual behaviors using 
fluorescence microendoscopy. Individual cells of 
the MeA responded specifically to same-sex mice, 
opposite-sex mice, predator cue (rat bedding) or 
pups, while some cells responded to more than one 
category, showing that discrimination between the 
same-sex, opposite-sex, and pups at a neuronal 
population level was not completely differentiated. 
However, after sexual behavior, the proportion of 
cells that responded specifically to each category 
increased, and the neuronal population became 
distinguishable between these three categories. In 
males, this sexual experience-dependent change was 

suppressed by intraperitoneal administration of an 
OT receptor antagonist. From a mechanistic point 
of view, the plastic changes in MeA could be caused 
by the modulation of the upstream AOB by sex 
hormones.32–34) In addition, endogenous OT may 
directly act on OT receptors expressed in the MeA 
circuitry,35) although OT is also known to induce 
plasticity in the sensory cortex and the NAc.36,37) 
Overall, this paper reveals that MeA neurons are 
selectively excited or inhibited by social cues and 
information about these behavioral events is present 
in some individual neurons, although it is signifi-
cantly more robust and reliable at the population 
level. This information is also shaped by sexual 
experience and by OT in males.

Brain plasticity is usually investigated in the 
context of learning and memory. However, it is 
intriguing that sexual behavior induces long-lasting 
changes in the evolutionarily ancient subcortical 
brain regions such as the amygdala. Similar plas-
ticity was also recently reported in the ventromedial 

Fig. 2 Microendoscopic calcium imaging using a miniaturized head-mounted fluorescence microscope. (A) A GRIN 
lens implanted into the mouse brain (arrow). (B) Mouse with a head-mounted fluorescence microscope attached 
onto its head. (C) A brain section showing a neuronal population that was labeled with the fluorescent calcium 
indicator protein GCaMP and imaged through a GRIN lens. The diameter of the GRIN lens in this example is 
500 µm. (D). An illustration of microendoscopic calcium imaging through a GRIN lens. Morphology and time-
varying changes in GCaMP fluorescence intensity of individual neurons are analyzed from a time-lapse movie. 
GRIN: gradient refractive index.
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hypothalamus.38) Using microendoscopic calcium 
imaging, Remedios and colleagues examined the 
activity of Estrogen receptor 1-expressing neurons 
in the VMHvl of the hypothalamus, which are 
involved in innate social behaviors such as mating 
and fighting.39) When naïve adult male mice inter-
acted with either male or female mice, cell ensem-
bles activated by each conspecific sex were over-
lapping with each other. However, as they acquired 
sexual and social experience, these cells began to 
respond specifically to interaction with either male 
or female mice. This plasticity required direct contact 
with conspecifics. This study demonstrates that the 
formation of hypothalamic cell ensembles involved 
in recognition of sex occurs via experience-depen-
dent processes. Collectively, microendoscopic calcium 
imaging in freely moving animals can thus reveal 
novel social experience-dependent plasticity in 
previously inaccessible deep brain regions.

Microendoscopic calcium imaging has also been 
utilized in the cortex. Liang et al.40) imaged activity 
of mPFC neurons when mice freely explored restrained 
male social targets using fluorescence microendos-
copy. Activity of principal neurons in the dorsal 
prelimbic (PL) cortex in male mice revealed that 
the latency at which neuronal activity increases or 
decreases varied between individual cells during 
social exploration. Interestingly, about 10% each of 
cells exhibited higher (ON ensemble) or lower 
activity (OFF ensemble) during social behavior, and 
it was possible to decode social exploration behavior 
from the observed activity of these ensembles. 

Neuronal members in the ON and OFF ensembles 
did not always belong to the same ensembles in 
different tasks or on the same task conducted on 
different days, but the frequency of such recurrence 
and the rate of overlap were shown to be higher 
than chance. Furthermore, psychiatric disorder-re-
lated changes in social behavior and mPFC ensemble 
activity were evaluated after administration of 
phencyclidine (PCP), an NMDA receptor antagonist 
that elicits schizophrenia-like symptoms. In contrast 
to behavior and neuronal activity without PCP, PCP 
administration reduced interest in stranger mice 
and decreased the recurrent probability of ON and 
OFF ensembles to chance levels, suggesting a close 
association between mPFC ensemble activity and 
social behavior. In summary, the distinct and dynamic 
ON and OFF ensembles in the mPFC encode real-
time information during social exploration behavior. 
Similar neuronal ensembles are also found in the 
insular cortex.41)

Microendoscopic imaging of projection neuron 
activity has also been reported in the mPFC. Murugan 
et al.42) performed retrograde tracer experiments that 
identified the NAc, VTA, and the amygdala as targets 
of projection from the PL (Fig. 1). RNA sequencing 
revealed that these three types of projection neurons 
have different gene expression profiles, and opto-
genetic experiments demonstrated that the neurons 
that project to the NAc, a brain region involved in 
reward-related learning,43–47) were causally implicated 
with social behavior. They then specifically labeled 
the PL-NAc projection neurons with Cre-dependent 

Fig. 3 Imaging local brain circuit activity during social behavior. (A) The home cage intruder test. A stranger mouse 
is introduced into the home cage of a subject mouse, and the behavior of their interaction such as physical contact 
is analyzed. (B) Microendoscopic calcium imaging experiments conducted during the home cage intruder test.
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GCaMP expression and monitored their activity 
during social behavior with microendoscopic calcium 
imaging in the PL. They found that a subset of 
PL-NAc projection neurons responded to social 
interaction, only when the conspecifics were present 
at certain locations. Furthermore, spatially specific 
manipulation of their activity bidirectionally modu-
lated social-spatial learning. This study shows that 
PL-NAc projection neurons encode a combination 
of social and spatial information that may support 
a formation of social-spatial association.

Monitoring Social Behavior-related Local 
Circuit Activity in Head-Fixed Mice

Two-photon calcium imaging
Two-photon microscopy utilizes the principle of 

two-photon excitation, in which fluorescent molecules 
are excited by simultaneous absorption of two 
near-infrared photons of half the energy compared 
to single-photon excitation. Near-infrared lights have 
higher permeability into living tissues, and thus 
enable to excite fluorescent molecules deep within 
the tissue. Two-photon calcium imaging generally 
has a high resolution capable of calcium imaging of 
dendritic spines, although the head of the mouse 
has to be fixed under the microscope objective, which 
may limit the experimental design for social behavior.

McHenry et al.48) imaged responses of neurons in 
the medial preoptic area (mPOA) to social odor 
cues using two-photon calcium imaging in awake 
head-fixed mice. mPOA neurons in the hypothalamus 
express estrogen and progesterone receptors and are 
involved in hormonal control of sexual behavior.49) 
Importantly, a subset of these neurons project to 
the VTA which plays a pivotal role in control of 
social behavior, as mentioned earlier.16) McHenry 
and colleagues found that these VTA-projecting 
mPOA neurons express neurotensin, a neuropeptide 
localized in the mPOA. Two-photon calcium imaging 
of neurotensin-positive mPOA neurons through an 
implanted GRIN lens in preestrus female mice 
revealed that attractive male urine odor recruited 
activity of more cells than female urine odor or 
nonsocial attractive odor in an estrogen-gated manner. 
Optogenetic activation of VTA-projecting neuroten-
sin-positive mPOA neurons increased DA release 
in the NAc and social approach to males, suggesting 
that activation of VTA projecting mPOA neurons 
has rewarding effects. The imaging experiments in 
this study demonstrate the usefulness of head-fixed 
two-photon calcium imaging in characterizing 
neuronal responses to social stimuli.

Jennings et al.50) observed activity of neuronal 
populations in the orbitofrontal cortex (OFC) during 

social interaction by GRIN-lens-mediated two-photon 
calcium imaging. They developed a new social 
interaction paradigm for head-fixed mice, in which 
a juvenile stimulus mouse placed in a tubular circular 
social arena in front of the head-fixed subject mouse 
could freely interact with it through an opening in 
the tube. The authors found that distinct neuronal 
populations responded to caloric rewards and social 
stimuli, and single-cell resolution activation of feed-
ing-responsive neurons causally promoted feeding 
behavior, whereas social-responsive neurons inhib-
ited feeding behavior. Their findings demonstrate 
that these two types of OFC neurons form distinct 
subnetworks that bidirectionally control feeding 
behavior. Technically, the combination of two-photon 
calcium imaging with single cell optogenetics and 
a head-fixed social behavioral task greatly expands 
its potential for precise observation and manipula-
tion of neuronal activity during social behavior.

Research on Human Social Cognition 
and Behavior

Social function in humans is more complex than 
in mice. Human social cognition consists of various 
different aspects,51) and as a way to understand it, 
Henry et al.52) have proposed to divide it into four 
categories: theory of mind (ToM), social perception, 
affective empathy, and social behavior. ToM is the 
ability to think from the viewpoint of another person 
and is based on the recognition that their mental 
state is different from one's own, as assessed by 
the False-belief task.53) Social perception is the 
ability to interpret clues to guess emotions and is 
evaluated by a test in which a subject guesses 
emotions from face photographs of various expres-
sions.54) Affective empathy is an emotional response 
to another person's situation, as measured by the 
Empathy Quotient55) and the Empathic Concern 
subscale of the Interpersonal Reactivity Index.56) 
Social behavior is behavior during interactions with 
other people, and can be evaluated by the Frontal 
Systems Behavior Scale.57)

Social cognition in patients with brain injury has 
been studied in various cases in which left, right or 
both sides of the brain were damaged. Adams et al.58) 
have conducted a meta-analysis of social cognition 
in stroke patients. They compared the aforementioned 
four categories of social cognition in 937 stroke 
patients and in 1630 healthy subjects. They found 
that ToM, social perception, and social behavior were 
significantly impaired in stroke patients, whereas 
affective empathy was maintained. Regarding laterality, 
ToM was impaired more severely in right-sided lesion 
cases than in left-sided lesions, while the impairment 
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of social perception was more severe in bilateral 
lesions than in unilateral cases. Whether the effects 
of laterality on social function remains inconclusive, 
as there are a few reports that lesions on the right 
side affect social function more severely than those 
on the left side,59,60) while Samson et al. show that 
impairment of the left temporoparietal junction (TPJ) 
reduces the performance of the False-belief task.61)

An attempt to determine which brain region is 
responsible for social perception was made by 
Adolphs and colleagues.62) They conducted computed 
tomography and MRI in addition to social percep-
tion tests in 108 local brain injury and in 30 healthy 
subjects. Intriguingly, they reported that right 
somatosensory-related cortices (S1, S2, and anterior 
supramarginal gyrus) are important for the ability 
to visually recognize emotions from other people's 
facial expressions, suggesting that reading the 
emotions of others may require their own internal 
somatosensory representations.63)

fMRI performed on healthy subjects revealed that 
the mPFC, anterior cingulate cortex (ACC), TPJ, and 
superior temporal sulcus (STS) are implicated in 
ToM.64–66) The STS is an area that directly receives 
input from the primary visual and auditory areas 
and is involved in processing of face, voice, and 
eye gaze stimuli.67–70) Isik et al.71) reported that 
activity of right posterior STS (pSTS) shows high 
sensitivity to visual stimuli depicting social inter-
action. In this study, 14 normal subjects were shown 
videos in which point-lights or two animate shapes 
moved in ways that reminded subjects of social 
interaction such as helping and hindering while 
fMRI was performed to examine activity of multiple 
regions including the pSTS. They found that the right 
pSTS showed strong responses to videos suggesting 
social interaction, but the responses declined other-
wise. In contrast, activities of the nearby TPJ and 
middle temporal region were not specific to social 
interaction stimuli.

Using fMRI, Watanabe et al.72) reported that reduced 
brain activity in the right inferior frontal gyrus, 
bilateral anterior insula, ACC/ventral mPFC, and 
dorsal mPFC (dmPFC) was associated with impaired 
social judgments of incongruent verbal–nonverbal 
information in individuals with ASD. Moreover, 
intranasal administration of OT mitigated this autistic 
behavioral deficit and restored the activity in ACC 
and dmPFC, as demonstrated in a randomized 
double-blind placebo-controlled trial.73) Interestingly, 
evidence from MRI indicates that alteration in 
structure and function of the mPFC, hypothalamus, 
and amygdala are associated with genetic variants 
of OT receptor gene that confer risk for social 
behavioral deficits and ASD.74,75) These findings 

suggest that the brain regions involved in rodent 
social recognition and behavior may also be impli-
cated in social function in humans.

Conclusions and Perspectives

In this review, we overviewed recent imaging studies 
in rodents that investigated brain activity during 
social behavior at the whole-brain and local circuit 
levels, and some noteworthy studies in brain-injured, 
in autistic, and in healthy subjects that sought to 
explore the neural basis of social function and its 
impairment in humans. Rodent studies incorporate 
invasive techniques and rapidly developing state-of-
the-art technologies for visualizing and manipulating 
brain circuit activity, which will continue to elucidate 
the comprehensive picture of social brain networks 
(Fig. 1). Technological refinements in human brain 
imaging and manipulation of brain activity, such as 
transcranial magnetic stimulation used clinically to 
treat depression,76) will be expected to reveal a causal 
relationship between brain activity and social func-
tion in humans, albeit with less specificity compared 
to rodent studies. Studies in rodents and humans 
will thus go hand in hand to advance our under-
standing of and the development of therapies for 
brain disorders affecting social function.
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