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Purpose: To demonstrate an interaction-based method for the refinement of Gene Set
Enrichment Analysis (GSEA) results.

Method: Intravitreal injection of miR-124-3p antagomir was used to knockdown the
expression of miR-124-3p in mouse retina at postnatal day 3 (P3). Whole retinal RNA was
extracted for mRNA transcriptome sequencing at P9. After preprocessing the dataset,
GSEA was performed, and the leading-edge subsets were obtained. The Apriori algorithm
was used to identify the frequent genes or gene sets from the union of the leading-edge
subsets. A new statistic d was introduced to evaluate the frequent genes or gene sets.
Reverse transcription quantitative PCR (RT-qPCR) was performed to validate the
expression trend of candidate genes after the knockdown of miR-124-3p.

Results: A total of 115,140 assembled transcript sequences were obtained from the clean
data. With GSEA, the NOD-like receptor signaling pathway, C-type-like lectin receptor
signaling pathway, phagosome, necroptosis, JAK-STAT signaling pathway, Toll-like
receptor signaling pathway, leukocyte transendothelial migration, chemokine signaling
pathway, NF-kappa B signaling pathway and RIG-I-like signaling pathway were identified
as the top 10 enriched pathways, and their leading-edge subsets were obtained. After
being refined by the Apriori algorithm and sorted by the value of the modulus of d, Prkcd,
Irf9, Stat3, Cxcl12, Stat1, Stat2, Isg15, Eif2ak2, Il6st, Pdgfra, Socs4 and Csf2ra had the
significant number of interactions and the greatest value of d to downstream genes among
all frequent transactions. Results of RT-qPCR validation for the expression of candidate
genes after the knockdown of miR-124-3p showed a similar trend to the RNA-Seq results.

Conclusion: This study indicated that using the Apriori algorithm and defining the statistic
d was a novel way to refine the GSEA results. We hope to convey the intricacies from the
computational results to the low-throughput experiments, and to plan experimental
investigations specifically.
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1 INTRODUCTION

MicroRNAs (miRNAs) are a class of noncoding RNAs that play
key roles in regulating gene expression and are involved in a
variety of biological processes during retinal development
(Damiani et al., 2008). In most cases, miRNAs inhibit the
expression or promote the degradation of messenger RNA
(mRNA) by interacting with the specific sequences located in
the 3 UTR of their target mRNA (Ha and Kim, 2014). According
to this feature, each miRNA can target hundreds of mRNAs. The
development of transcriptomics technologies such as RNA
sequencing (RNA-Seq) can provide a broad account of RNA
transcripts and consequently insight into changes in the mRNA
expression of downstream genes after experimental intervention
on the miRNA (Wang et al., 2009).

Due to the large amount of sequencing data generated by
RNA-Seq, appropriate bioinformatics methods are needed to
handle the data. After preprocessing the data, traditional
quantitative analysis for mRNA expression analysis focuses on
identifying differentially expressed upregulated and
downregulated genes between two individual groups.
Traditional strategies usually set an arbitrary cutoff in terms of
expression fold-change (e.g., fold-change ≥ 1.5 considered
significant) to filter the critical genes. Conservative and relaxed
cutoff values may cause false negative and false positive results,
respectively, making the results less objective and reproducible.
To overcome the analytical challenges of focusing on a single
gene, gene set enrichment analysis (GSEA) helps to gain further
insight into the distribution of genes preannotated in biological
categories by incorporating the entirety of gene expression.
However, both single and global gene analysis often generate a
large number of candidate genes (Ackermann and Strimmer,
2009). The lack of golden standard datasets also makes the
assessment of gene set analysis methods rudimentary (Maleki
et al., 2020). Hence, instead of extracting more genes from
datasets, the goal of this study was to attempt reducing the
dimensionality of analysis results and refining the intricacies
from the high-throughput results to the low-throughput
experiments.

Several studies have characterized miRNA expression in the
developing mammalian retina, and miR-124-3p has been shown
to be one of the most abundantly expressed miRNAs (Karali et al.,
2007; Hackler et al., 2010; Karali et al., 2010; Karali et al., 2016).
Although the miR-124a-3p knockdown mouse exhibited
neuronal dysfunction and dysmaturation by disinhibition of
Lhx2, its downstream responses in mouse retinal development
after birth were still relatively deficient at the transcriptome level.
In our previous study, miR-124-3p exhibited a significantly
increasing trend after birth, and its related pathways predicted
by bioinformatics analysis were associated with biological
processes that may play crucial roles in mouse retinal
development (Wang et al., 2020). To gain insight into its
downstream processes, RNA-Seq was used to obtain the
expression profile of mRNA transcripts after the knockdown
of miR-124-3p.

In GSEA, given a set of genes sorted depending on given
conditions (e.g., mRNA expression level of downstream genes)

and a biological category, a running sum statistic is computed
iteratively from top to bottom of the sorted set to evaluate
whether it is enriched in the given biological category. When
processed, the running sum will increase whenever a gene
belonging to the given biological category is found and
otherwise decrease. Therefore, the running sum will be
relatively high if the gene set falls at either the top
(overexpressed) or bottom (underexpressed) and is likely to
be subsequently related to the given biological category.

Based on the properties mentioned above, GSEA is an
appropriate tool to obtain a precise description of the
downstream effects of miRNAs. Since a miRNA and its target
mRNAs demonstrate negative correlations because of
degradation (Ritchie et al., 2009; Wang and Li, 2009), when
the expression value of the miRNA is manipulated to decrease,
the upregulated and downregulated mRNA expression can be
assumed to be its direct effects and indirect effects, which are
likely to be enriched at the top and bottom in GSEA, respectively,
and vice versa.

Through the analysis of a downstream mRNA dataset from
RNA-Seq after miR-124-3p knockdown, we demonstrate how
the original GSEA method was extended and the results from
GSEA were refined, which could be used as a comprehensive
protocol for downstream analysis in the loss- and gain-
intervention to a specific miRNA. Some parameters, such
as the leading-edge subset, were modified to better describe
the characteristics of the bottom (underexpressed) mRNAs
based on the classical GSEA approach by Subramanian et al.
(2005). The union of the leading-edge subsets in the enriched
KEGG pathways was selected. For traditional GSEA, the
number of generated candidate genes is usually still too
high. One or several key genes or pathways need to be
identified for further functional experiments. Apriori
algorithm and a new statistic d were introduced to correct
this issue. It is hypothesized that genes play critical roles in
the entire leading-edge subsets if they have the most
interactions with other genes. Apriori algorithm could use
prior Boolean association rules (gene-gene interaction) to
mine these pivotal genes or gene sets. Afterward, the
expression vector of candidate genes or gene sets were
modified with their relationship as a new statistic d.
Finally, the candidate genes were refined, and key genes
were identified.

2 METHODS

2.1 Knockdown of miR-124-3p and RNA
Extraction
C57BL/6J mice were used to study the transcriptome of miR-124-
3p during retinal development. Mice at postnatal day 3 (P3) were
given 1 μl of 0.6 nmol/μl miR-124-3p antagomir in the left eye as
the anti-miR-124 group and 0.6 nmol/μl antagomir negative
control in the right eye as the negative control (NC) group by
intravitreal injection. Retinas frommice at P9 were harvested, and
total RNA was isolated by TRIzol (Invitrogen; Thermo Fisher
Scientific, Inc, Waltham, MA, United States) according to the
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manufacturer’s instructions. Both groups consisted of 12–15
mixed retina tissues, and one biological replicate was
conducted. In addition, to increase the heterogeneity of the
sample, the samples in each group were from at least two
different litters.

2.2. RT–qPCR Validation for the Knockdown
of miR-124-3p and RNA-Seq
Reverse transcription quantitative PCR (RT–qPCR) was
performed to validate the knockdown rate of the anti-miR-
124 group compared with the NC group. Total RNA from
both groups was reverse transcribed using a PrimeScript RT
reagent kit (Takara Bio, Inc, Otsu, Japan). Real-time PCR was
subsequently performed on the resulting cDNA template with
a TB Green™ Premix Ex Taq™ II kit (Takara Bio, Inc, Otsu,
Japan) on a StepOnePlus™ Real-Time PCR System (Applied
Biosystems; Thermo Fisher Scientific, Inc, Waltham, MA,
United States). The 2−ΔΔCt method was used to quantify
miRNA expression levels with the u6 gene as an internal
reference (Livak and Schmittgen, 2001). After significant
knockdown of the expression level of miR-124-3p was
confirmed by RT–qPCR, RNA-Seq was carried out to
detect the expression levels of mRNAs in both groups. The
RNA-Seq data in the present study are deposited in the Gene
Expression Omnibus (GEO) repository, accession number
GSE200915 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE200915).

2.3 GSEA
GSEA was carried out using Python 3.6 (Python Software
Foundation. Python Language Reference, version 3.6, available
at https://www.python.org).

2.3.1 Data Preprocessing
To normalize the length of the mRNA sequences and the
sequencing depth of a sample, transcripts per million (TPM)
were used to assess the expression level of mRNAs. Read
counts for all the mRNA transcripts were demonstrated in
Data Sheet 1. The method for calculating TPM was described
in detail elsewhere (Wagner et al., 2012; Dillies et al., 2013).
Based on previous research, the frequency distribution of
genes with different expression levels has a mode at TPM
nearly equal to 0 and a long tail toward higher TPM values
(Wagner et al., 2013; Bush et al., 2018; Monaco et al., 2019).
Therefore, to determine an appropriate interval to filter genes
with very low expression, a base 10 logarithmic scale was used
to evaluate the frequency distribution of TPM for the genes in
all groups.

2.3.2 Calculating the Expression Difference
In each group set, the expression difference for a gene between
the two groups was defined as the log2-transformed fold-
change value of TPM. To reduce the false positive rate of
the results, only genes that had the same expression trend
between the two biological replicates were considered reliable.

Based on these methods, a list of candidate genes and their
corresponding gene expression differences was obtained.

2.3.3 Obtaining the Enrichment Score and Its Related
Parameters in Kyoto Encyclopedia of Genes and
Genomes Pathways
The candidate genes were ranked from highest to lowest expression
level, and the enrichment score (ES) for each Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway was calculated based on the
GSEA approach (Subramanian et al., 2005). KEGG gene annotation
was derived from theKEGGdatabase (https://www.genome.jp/kegg-
bin/download_htext?htext=ko00001.keg&format=json&filedir=).
After excluding three types of annotations (“09160 Human
Diseases”, “09180 Brite Hierarchies”, “09,190 Not Included in
Pathway or Brite”) in KEGG pathways that were not related to
retinal development, GSEA was performed on 354 pathways whose
expression patterns might have changed in the retina. Afterward, the
p value for each KEGG pathway was estimated by comparing the
absolute value of its maximum ES with randomly generated sets of
absolute values of maximum ES. A p value <0.05 was considered
significant or enriched. To balance the accuracy of the estimation
and the required computing power, the number of permutations
used to generate the comparisons was set to 1,000. For an enriched
pathway, a leading-edge subset is a set of genes that contributes to the
maximum ES in the ranked list of genes. The subset will be found at
the top if themaximumES is positive (upregulated gene subset) or at
the bottom if the maximum ES is negative (downregulated gene
subset). Afterward, the union of the leading-edge subsets in the
enriched KEGG pathways was selected.

2.3.3.1 Calculating the Maximum ES
Since a total of n candidate genes were ranked from highest to
lowest expression level, we denoted δ � (δ1, δ2 . . . δn) as the
vector of differences, where each element δi in δ represented
the expression difference of a single gene gi between two groups.
Accordingly, a corresponding gene vector g � (g1, g2 . . .gn) was
defined, where each element gi was the gene name using NCBI
Gene Symbol. To calculate the ES in a KEGG pathway, it is
necessary to determine whether the gene gi belongs to this
pathway. We established the following definition: if gi

belonged to the annotations of this pathway, r(gi) � 1; if gi

did not belong to the annotations of this pathway, r(gi) � 0, and
a new vector r � (r1, r2, . . . rn) was generated, where each
element ri consisted of 0 and 1. To facilitate the iteration in
the computer program, the calculation of ES was rewritten into
the following form according to the method described by
Subramanian et al (Subramanian et al., 2005).

es0 � 0

esi � ri
|δi|p
NR

+ (ri − 1) 1
n −NH

+ esi−1, i≥ 1

where NH � ∑ ri, NR � ∑ ri|δi|p, esi represents the value of ES
and p is a weighing factor with a range of [0, 1]. A value of p � 1
was set as a constant in the study. By the method of mathematical
induction, it was easy to prove that esn � 0.
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In particular,NR equal to 0 indicated that none of the genes in
g belonged to the annotations in the KEGG pathway. To prevent
a division by zero error (when NR � 0), we set any value of esi
equal to 0 under this condition. Thus, the maximum ES,
esmax � sign(esk)max(|es1|, |es2| . . . |esn|), was obtained, where
|esk| was the maximum element in the max(·) function, and
sign(·) represented the signum function to indicate the positive
and negative values of esmax.

2.3.3.2 Estimating the Significance of the Maximum ES
To estimate the significance of the esmax generated from g in the
KEGG pathway, a nominal p value was calculated using an
empirical phenotype-based permutation method derived from
Subramanian et al. (2005). Given the null hypothesis that the
order of the elements in g was random, the way to reject the null
hypothesis was to calculate the probability of esmax in its
randomly generated distribution, which was derived from a set
of randomly assigned g . When the order of elements in g was
disrupted and the other parameters remained unchanged, the
new corresponding value of esmax was related only to the random
rearrangement of elements in g . After repeating the above
random rearrangement process v times, a series of values of
es′max with a total number of v were obtained based on the null
hypothesis, and the absolute value was taken:
(|es′max1|, |es′max2|, . . . |es′maxv|). The empirical cumulative
distribution function (CDF) F̂v for es′max (derived from the
null hypothesis) can be described as follows:

F̂v(x) � 1
v
∑v
i�1
I(∣∣∣∣es′maxi

∣∣∣∣≤x)
where I(·) is the indicator function of an event and v corresponds
to the number of permutations in Subramanian et al
(Subramanian et al., 2005). According to the empirical CDF,
the p value for an esmax in a pathway was calculated as follows:

p � 1 − F̂v(|esmax|)

2.3.3.3 Obtaining the Leading-Edge Subsets
In an enriched pathway, the leading-edge subset in g appears
prior to the peak score for a positive esmax and appears
subsequent to the peak score for a negative esmax. The
leading-edge subset L can be described as follows:

L �
⎧⎪⎪⎨⎪⎪⎩

{gj|r(gj) � 1, j< i} if esmax > 0{gj|r(gj) � 1, j≥ i} if esmax < 0
{∅} if esmax � 0

where i represents the position number of esmax.

2.3.4 Refining the Results From Leading-Edge
Subsets
Some genes or gene sets with interactions appear more frequently
than others, indicating their pivotal roles in the enriched KEGG
pathways. For instance, the interacting gene set Raf1–Map2k1–Erk
plays an important role in a series of pathways, such as the ErbB
signaling, FoxO signaling, and Ras signaling pathways. The Apriori

algorithm designed for finding frequent item sets was introduced to
identify these frequently appearing genes or interacting gene sets
(Agrawal and Srikant, 1994). The goal of the algorithm is to identify
genes (including a single gene or multiple genes with interactions)
whose frequency of occurrence in the gene interactions is greater than
a specified threshold. Prior knowledge of gene–gene interactions
was determined by the Reactome database (Croft et al., 2011) (https://
reactome.org/download/tools/ReatomeFIs/FIsInGene_122220_
with_annotations.txt). After the frequent gene sets were calculated by
the Apriori algorithm, a new statistic d was defined to
comprehensively evaluate the real weights of a frequent gene set.
Finally, by sorting the modulus of the statistic d, the significant genes
were obtained for further experiments.

The number of iterations was set to 4, which meant that
gene interactions were generated with a maximum item size of
4. As Apriori uses a “bottom up” approach, genes in the union
of the leading-edge subsets were used as the first-level
candidates. Afterward, the number of genes in a candidate
was increased by one, and the candidates that had an
infrequent pattern (defined by the threshold) or were not
consistent with the gene interaction knowledge were
pruned. According to the above method, frequent
candidates were extended one gene at a time. The threshold
was set to 3, indicating that a candidate would be removed if its
frequency was less than 3 among all transactions. The
algorithm terminated when no frequent candidates could be
generated, and frequent gene sets were identified by screening.
Since the frequent gene sets were calculated based on prior
annotation, a new statistic d was defined to comprehensively
evaluate the real weights of a frequent gene set. The statistic d
of a frequent gene set is equal to the multiplication between the
column vector of the expression level and its correlation
matrix, and the modulus of the statistic d represents
comprehensive expression based on prior annotation and
the actual expression level. Finally, by sorting the modulus
of the statistic d, the significant genes were obtained for further
experiments.

2.3.4.1 Generating the Correlation Matrixes From a Gene Set
According to prior knowledge in the Reactome database, there are
three categories of gene effects on another: upregulation,
downregulation, or no effect, where the symbols ‘→’ and ‘⇢’
represent upregulation and downregulation, respectively. For a
vector containing n genes, its correlation matrix M was a square
matrix of order n, whose elements were the interaction
information among these genes. We defined its element aij as
follows:

aij �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if gi → gj and i ≠ j
−1 if gi/>gj and i ≠ j

0 if gi had no effect on gj and i ≠ j
1 if i � j

where i and j represent the index numbers of gi and gj in the
tuple, respectively.

For example, for a 4-dimensional vector of a gene set
(A, B, C, D) with the following relationship:
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{(A → B), (A/>C), (A → D), (B/>C), (C → D)} (1)
the correlation matrix was described as follows:

M �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 −1 1
0 1 −1 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.3.4.2 Generating Interactions From the Leading-Edge
Subsets
Genes from the union of the leading-edge subsets were used to
iteratively generate gene transactions. After obtaining the
union of the leading-edge subsets with m genes, the vector
l consisting of these genes and the correlation matrix M
reflecting their interactions were created. Elements in l
were considered basic gene interactions in the first
iteration. For an iteration vector, a gene would be
appended to a gene transaction if it had an interaction
(upregulation or downregulation) with the gene at the end
of the transaction, and all possible new interactions were used
as the basic gene interactions for the next iteration. In the
study, gene interactions with a maximum of 4 items were
generated.

For example, let the 4-dimensional vector l � (A, B, C, D)
be the union of the leading-edge subsets, and let the
interactions be as described above in (1). For 4 iterations,
the sequences of gene interactions I � (I1, I2, I3, I4) were
generated as follows:

I1 �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(A)
(B)
(C)
(D)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ I2 �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A, B)
(A, C)
(A, D)
(B, C)
(C,D)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
I3 �

⎧⎪⎨⎪⎩
(A, B, C)
(A, C, D)
(B, C, D)

⎫⎪⎬⎪⎭
I4 � { (A, B, C, D) } (3)

2.3.4.3 Mining Frequent Gene Sets by the Apriori Algorithm
To detect frequent gene sets from the gene transactions, the value
support was used to evaluate the frequency of a gene set. For the
vector a of a gene set, the support of a was defined as the total
count of a in all transactions.

For example, the support of (A, C) in interactions I in (3) was
2 ((A, C) in I2 and (A, C, D) in I3).

Given a threshold min for support (a threshold min � 3 was
set in this study), gene interactions I � (I1, I2 . . . It) generated
from t iterations and setting both the frequent gene set and the
infrequent gene set, F and �F, to ∅ initially, the algorithm in the
study was described in two steps below:

Step 1. Start with i � 1. Traverse all interactions in I. Append the
interactions whose support≥min to F and the interactions
whose support<min to �F, respectively. Based on the Apriori
principle, if a transaction is found to be infrequent, then all its
super interactions are also infrequent. Remove the transaction in
Ii+1 (if it exists) when a transaction in �F belongs to the transaction
in Ii+1.

Step 2. Repeat Step 1 until no further successful extensions are
found. F is the returned result.

For example, for the gene interactions I described above in (3)
and a given threshold min � 3, the process of the Apriori
algorithm was as follows:

i � 1: I1 �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(A)
(B)
(C)
(D)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ support �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(A): 7
(B): 6
(C): 8
(D): 6

⎫⎪⎪⎪⎬⎪⎪⎪⎭ F �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(A)
(B)
(C)
(D)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
�F � ∅

In i � 1, no interactions in I2 were removed.

i � 2: I2 �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A, B)
(A, C)
(A, D)
(B, C)
(C,D)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
support �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A, B): 3
(A, C): 2
(A, D): 1
(B, C): 2
(C,D): 4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
F �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(A)
(B)
(C)
(D)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ { (A,B)
(C,D)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ �F �
⎧⎪⎨⎪⎩

(A,C)
(A,D)
(B,C)

⎫⎪⎬⎪⎭
In i � 2, (A, C, D) and (B, C, D)were super interactions in �F

and were removed in I3.

i � 3: I3 � { (A, B, C) } support � {(A, B, C): 2}

F �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(A)
(B)
(C)
(D)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ { (A,B)
(C,D)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
�F �

⎧⎪⎨⎪⎩
⎧⎪⎨⎪⎩

(A,C)
(A,D)
(B,C)

⎫⎪⎬⎪⎭ { (A,B,C) }⎫⎪⎬⎪⎭
In i � 3, (A,B, C, D) was a super transaction in �F and was

removed in I4. Iteration was terminated, and the frequent gene set
F was obtained.

2.3.4.4 Calculating the Weights of the Frequent Gene Set
After the frequent gene set was obtained by the Apriori algorithm,
a new statistic d was introduced to evaluate the real ‘weights’ of
the frequent gene set consisting of expression levels obtained
from RNA-Seq. Given an element vector g from the frequent gene
set, d was defined as the multiplication of its expression vector δ
on its correlation matrix M:

d � δM

For example, given an element vector g � (A,B) from the
frequent gene set F, its expression vector δ � (a, b) and

correlation matrix M � [ 1 1
0 1

] [derived from the relationship
(A → B)] were:

d � [ a a + b ]
The modulus of d should be:
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������d������ �            
a2 + (a + b)2

√
Since gene B was upregulated by gene A according to the

prior knowledge, theoretically, if the expression value a of gene
A was increased (a> 0), its expression value b should also be
increased (b> 0). However, under the same condition where
the expression value a was increased (a> 0), if the expression
value b was decreased (b< 0), or if the increase in the
expression value b was not as large as in the first case, ‖d‖
would be smaller in the second case than in the first case,
indicating that the weights in the second case were smaller
than those in the first case. Specifically, for a single gene S, ‖d‖
is the absolute value of its expression level:

����d���� � ����(s)[ 1 ]���� � |s|

Any frequent gene set could be described by d no matter how
complicated the interactions among genes, and its ‖d‖
represented the comprehensive weights related to their
interactions and expression levels.

For instance, given the 4-dimensional vector of gene set
l � (A, B, C, D), its expression vector δ � (a, b, c, d) and its
correlation matrix M given above, its comprehensive weights
were described as follows:

d � (a, b, c, d)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 −1 1
0 1 −1 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� [ a a + b −a − b + c a + c + d ]

������d������ �                                    
a2 + (a + b)2 + (−a − b + c)2 + (a + c + d)2

√
According to this method, the weights associated with any

frequent gene set will be referred to as its value of ‖d‖, and the
frequent gene set with the highest weights could then be identified by
ranking the value of ‖d‖. Since the value of ‖d‖ will increase with the
increase in the number of items, the value of ‖d‖must be compared
among frequent gene sets with the same number of genes.

2.4 RT-qPCR Validation for the Candidate
Genes
RT-qPCR was performed to validate the candidate genes. Total
RNA from retinas was isolated and procedures for reverse
transcription and Real-Time PCR were described previously
earlier. Gene expression levels were quantified using the 2−ΔΔCt

method and normalized to GAPDH levels (Livak and Schmittgen,
2001). Graphical representation of the results was performed
using GraphPad Prism v8.3.0 (GraphPad Software, Inc.).

3 RESULTS

3.1 Data Preparation and Normalization
A total of 115,140 assembled transcript sequences were obtained
from the clean data, among which 75,959 were distinct mRNA
sequences. After TPM normalization, the expression levels of
genes were observed on a 10-base logarithmic scale. The overall
TPM values showed a one-tailed distribution, which was
consistent with previous literature reports (Wagner et al.,

FIGURE 1 | The upper panel showed the overall distribution of mRNA TPM values, and the lower panel showed the log2-transformed fold-change in filtered genes.
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FIGURE 2 | The left heatmap demonstrated ES values for all the 354 pathways in GSEA. The right heatmap illustrated randomly generated maximum ES values for
the corresponding pathways.

FIGURE 3 | The left panel indicated the top 10 enriched pathways. The right panel indicated the expression level of the union of their leading-edge subsets.
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2013; Bush et al., 2018; Monaco et al., 2019). Figure 1 shows that
several genes had TPM values of 10−4, an amount of which was so
small that it could not be clearly observed on the histogram. In
addition, the TPM distribution on the order of 10−7 was irregular
and inconsistent with the one-tailed distribution of the previous
orders of magnitude. TPM data below 10−6 were excluded from
further analysis. The expression differences of filtered genes were
determined based on the log2-transformed fold-change TPM
values. After miR-124-3p was knocked down in the mouse
retina, most genes in the anti-miR-124 group were
upregulated compared to the NC group, while a small portion
were downregulated.

3.2 Identified Enriched KEGG Pathways and
Their Leading-Edge Subsets
Based on GSEA of 354 pathways, the ranked gene list was enriched at
the top inmost of the pathways and enriched at the bottom in a small

number of pathways. After p values were calculated based on 1,000
permutations, pathways related to retinal development with p values
<0.05 were selected (Figure 2). The results indicated that only
pathways with a positive maximum ES showed significant
enrichment in upregulated genes, consistent with the negative
regulation of mRNA by miRNA. The top 10 enriched pathways
and the expression levels of their leading-edge subsets are shown in
Figure 3: theNOD-like receptor signaling pathway, C-type-like lectin
receptor signaling pathway, phagosome, necroptosis, JAK-STAT
signaling pathway, Toll-like receptor signaling pathway, leukocyte
transendothelial migration, chemokine signaling pathway, NF-kappa
B signaling pathway and RIG-I-like signaling pathway.

3.3 The Weights of Frequent Gene Sets
From the Leading-Edge Subsets
The Apriori algorithm was performed on the union of the
leading-edge subsets to identify the frequent gene set. After the

FIGURE 4 | The figure illustrated d values and their interactions in frequent gene sets. The upper panel showed the expression patterns of frequent gene sets with
two items, while the lower panel showed the expression patterns of frequent gene sets with 3 items.
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first iteration, 60 single genes were identified as frequent. Based on
this, frequent gene sets with 2 and 3 genes were further identified,
and no frequent gene sets were found with more than 4 genes.
Values of ‖d‖ for frequent gene sets with 2 and 3 genes were
calculated. In Figure 4, each colored line represents an interaction.
The wider the height of the color line is, the greater the value of ‖d‖.
The background color of the gene represents the interactions
between the gene and its downstream genes. The darker the
background color of the gene is, the higher the number of
interactions. Upstream of the frequent interactions with two
genes, Prkcd, Igf1, Irf9, Cxcl12, Trim25, Stat2, Stat3 and Stat1
had a considerable ‖d‖ value and interactions with the
downstream genes. For frequent interactions with 3 genes in the
first set, genes with a considerable ‖d‖ value and interactions were
Isg15, Prkcd, Eif2ak2, Cxcl12, Il6st, Pdgfra, Socs4, Stat2, Stat3,
Csf2ra, Irf9 and Stat1. In summary, Prkcd, Irf9, Stat3, Cxcl12,

Stat1 and Stat2 had the greatest interactions and the greatest
value of ‖d‖ to downstream genes among all frequent
transactions, indicating that they played a pivotal role in the
downstream genes of miR-124-3p. The frequent gene sets and
their weights are shown in Data Sheet 2. RT-qPCR was
performed to validate the expression of candidate genes. These
genes exhibited a similar trend to the RNA-Seq results (Figure 5).
Primer sequences were described in Data Sheet 3.

4 DISCUSSION

After gain and loss intervention of the upstream miRNA in a
functional experiment, transcriptomics technologies such as
RNA-Seq make it possible to obtain a large amount of
downstream gene expression data in a single experiment.

FIGURE 5 | Results of RT-qPCR showed the expression of candidate genes bewteen NC and anti-124 group, which exhibited a similar trend to the RNA-Seq
results. Each RT-qPCR experiment was repeated three times with independently isolated RNA samples. Results were presented as mean ± standard deviation (anti-
miR-124 group, miR-124-3p knockdown group; NC group, negative control group; *p < 0.05, **p < 0.01)
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To handle high-throughput data, although there are many
other methods based on the entire gene set analysis, such as
CePa (Gu et al., 2012) and SPIA (Tarca et al., 2009), GSEA is
still one of the most widely used and outperformed methods by
focusing on the entire gene set rather than a single threshold
(Bayerlová et al., 2015). Using GSEA, we analyzed the ranked
gene list after knockdown of miR-124-3p to determine if they
were enriched in given phenotypes, that is, KEGG pathways
related to retinal development in our study. In the results, most
genes in the anti-miR-124 group were upregulated compared
to the NC group, and only pathways in upregulated genes
showed significant enrichment, which was consistent with
prior theories. A series of KEGG pathways with significant
enrichment could be obtained as well as their leading-edge
subsets of their associated genes by GSEA. However, for a low-
throughput functional experiment, only one or several
downstream genes and pathways were selected. The number
of generated candidate genes is usually still too high and needs
further refinement.

Since not all genes play an equally important role in a pathway,
we hypothesized that the genes that have the most interactions
with other genes in the entire leading-edge subsets are likely to be
the most important. To obtain those genes or gene sets,
interactions based on KEGG pathway topology were
generated, and the Apriori algorithm was performed. The
Apriori algorithm is designed for mining the frequent item set.
Although it has exponential time complexity, interactions were
generated based on the correlation matrix of a, and the
nonexistent gene interactions (with an element equal to 0)
were excluded, which reduced the amount of computation
from bottom to top.

This greatly decreased the calculation time of the Apriori
algorithm, making the calculation time acceptable. Moreover,
we introduced a new statistic d to evaluate the connection
between the prior knowledge and its actual expression. The
larger the value of d in a gene or gene set, the better the
agreement between the KEGG pathway topology and its actual
expression. Accordingly, we further refined the result of
leading-edge subsets.

The statistic d was a corrected expression vector, considering
the relationship and gene expressions. For genes having
interactions, if the expression levels did not conform to the
prior interactions among them, the value of ‖d‖ might still be

small even if the expression levels of these genes were large. This
made the modulus of ‖d‖ a good representative of the
comprehensive value of the gene set. The comparison of
relative biological importance among gene sets could be
achieved by comparing their ‖d‖ values. By sorting the value
of ‖d‖, critical genes or gene sets were identified.

5 CONCLUSION

In this study, through mRNA sequencing after miR-124-3p
knockdown, GSEA was performed to identify significant
KEGG pathways and their leading-edge subsets. We
demonstrated that using the Apriori algorithm and defining
the statistic d was a novel way to refine the GSEA results
(Figure 6). The actual expression level and its correlation of a
gene set was combined and represented by a single number, the
modulus of d. According to this information, a series of key
downstream genes and gene sets were identified.
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